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Abstract 23 
 24 

We investigated the serum concentrations of two brominated flame retardants (BFRs) – 25 

polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) –in 59 26 

women aged between 23 and 42 from the United Kingdom. We also collected demographic 27 

data, including age, bodyweight and height in order to test for associations with BFR levels. 28 

Temporal and global differences were also assessed using previously published data. 29 

HBCDD was detected in 68% of samples with a mean concentration of 2.2 ng/g lipid (range 30 

= <0.3 – 13 ng/g lipid). The dominant stereoisomer was α-HBCDD with an average 31 

contribution of 82% (0-100%) towards ΣHBCDD, was followed by γ-HBCDD (average 32 

contribution = 17%). PBDEs were detected in 95% of samples with a mean ∑PBDE (sum of 33 

BDEs -28, -47, -99, -100, -153, -154 and -183) concentration of 2.4 ng/g lipid (range = <0.4 – 34 

15 ng/g lipid). BDEs -153 and -47 were the dominant congeners, contributing an average of 35 

40% and 37% respectively, to the average ΣPBDE congener profile.  36 

Data from this study suggests that HBCDD levels decrease with age, it also suggests a 37 

positive association between bodyweight and HBCDD levels, which likewise requires a 38 

large-scale study to confirm this. The data also show that 10 years after their European ban, 39 

PBDE body burden has begun to decrease in the UK. Whilst it is too early to draw any firm 40 

conclusions for HBCDDs, they appear to be following a similar pattern to PBDEs, with levels 41 

decreasing by a factor of >2.5 since 2010. Whilst the human body burden appear to be 42 

decreasing, both PBDEs and HBCDD are still consistently detected in human serum, despite 43 

legislative action limiting their production and use. This highlights the need to continuously 44 

assess human exposure and the effectiveness of policy aimed at reducing exposure.    45 
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1.0 Introduction 46 

Hexabromocyclododecane (HBCDD) and polybrominated diphenyl ethers (PBDEs) have 47 

been used extensively worldwide as brominated flame retardants (BFRs) in a wide variety of 48 

commercial, domestic and industrial applications.  There are three commercial PBDE 49 

formulations – Penta-, Octa- and DecaBDE. The main PBDE applications include electrical 50 

and electronic equipment (EEE - such as TVs, PCs and small domestic appliances) (European 51 

Commission, 2011), soft furnishings (e.g. sofas, mattresses, pillows and curtains) (United 52 

Nations Environment Programme (UNEP), 2010) and in polyurethane foam (PUF) seat 53 

fillings used in automobiles (European Chemicals Bureau, 2000). The primary use of 54 

HBCDD is to flame retard expanded and extruded polystyrene (EPS/XPS) used in building 55 

insulation foam (European Chemicals Agency, 2009). As of 2001 (the last reliable figures 56 

publicly available), Europe accounted for 2 %, 16 %, 14 % and 57 % of the annual global 57 

demand for Penta-, Octa-, DecaBDE and HBCDD respectively (Bromine Science and 58 

Environmental Forum (BSEF), 2003). 59 

 60 

Both PBDEs and HBCDD are lipophilic and resistant to metabolism allowing them to 61 

bioaccumulate in the liver and other fatty tissues. They have long half-lives in humans of 62 

approximately 664 – 2380 days and 64 days for PBDEs and HBCDD, respectively (Geyer et 63 

al., 2004), and have been associated with adverse health effects in humans.. For example, 64 

PBDEs are thought to disrupt levels of sex hormones, including luteinising hormone and 65 

follicle stimulating hormone in men (Meeker et al., 2009), in addition to other toxic effects 66 

including disruption to the liver, kidneys and thyroid gland; neurodevelopmental deficits 67 

including inhibited foetal and infant development; and various cancers (Costa, 2008). 68 

Furthermore, in vitro studies have demonstrated that doses as low as 5µM can induce oxidative 69 

stress and disrupt steroidogenesis, with high level PBDE exposure resulting in pregnancy 70 



This accepted manuscript is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. The 
published version is at https://www.sciencedirect.com/science/article/pii/S0013935119304281?via%3Dihub 

failure (Lefevre et al., 2016).  Exposure to the Penta-BDE formulation can activate the aryl 71 

hydrocarbon (Ah) –receptor (Gu et al., 2012), cause a reduction in hepatic vitamin A levels, 72 

impair neurodevelopment, and induce carcinogenesis (D'Silva et al., 2004, Hornung et al., 73 

1996). Similarly, the OctaBDE formulation causes developmental toxicity, whilst the DecaBDE 74 

formulation is believed to be the least toxic as it contains higher molecular weight congeners 75 

that have relatively decreased cell membrane permeability, and are more readily metabolised 76 

(D'Silva et al., 2004, Chevrier et al., 2013). However, it is also believed that higher brominated 77 

congeners (such as BDE-209, which makes up >95% of the Deca-BDE formulation (La 78 

Guardia et al., 2006)) can be broken down by physical and biological processes to form lower 79 

brominated PBDE congeners that are found readily in Penta- and Octa-BDE formulations 80 

(D'Silva et al., 2004). Data on human health effects of HBCDD exposure is limited - Eggesbø 81 

et al., 2011 reported that it does not appear to have an effect on the human thyroid (Eggesbø et 82 

al., 2011). However,  Dorosh et al. (2011) suggested its potential endocrine disrupting ability 83 

by altering oestrogenic activity.. Further, Genskow et al. (2015) has suggested that HBCDD 84 

exposure damages dopaminergic neurons, with consequences for neurological and endocrine 85 

system function, and there is evidence for reduced birthweight and significant adverse 86 

neurodevelopment, including impaired motor skills and increased anxiety levels in rodent 87 

models (Maurice et al., 2015). 88 

 89 

Concerns over the toxicity of these BFRs led to bans on Penta- and Octa-BDE technical 90 

products within Europe in 2003, and globally in 2009 under the UNEP Stockholm Convention 91 

(SC) (Stockholm Convention, 2009). Significant restrictions were placed on the DecaBDE 92 

technical product in 2008 (Deffree, 2008), and it was included in the SC in 2017 (Chemical 93 

Watch, 2017), alongside HBCDD in 2013 (Health and Environment Alliance, 2013). Whilst 94 

these bans will eventually lead to reduced exposure, they only prevent the new manufacture 95 
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and new use of these chemicals, meaning that BFRs will still be incorporated into products 96 

already on the market, and currently in circulation. Both PBDEs and HBCDDs are still 97 

regularly found in various indoor microenvironments across the world (Sahlstrom et al., 2015, 98 

Johnson et al., 2013, Ni and Zeng, 2013, Harrad and Abdallah, 2015), meaning that humans 99 

will continue to be exposed to them for the foreseeable future. Given that exposure to these 100 

chemicals can lead to a plethora of toxic health effects, it is vital that they are continually 101 

monitored in general populations across the globe.  102 

 103 

The aims of this study are to provide the first data on HBCDD exposure in the UK population 104 

using human sera, and to provide updated assessment of human exposure to PBDEs and 105 

HBCDDs in reproductive-aged women in the UK. The relationship between these BFRs and 106 

various demographics (weight, body mass index (BMI), and age) will also be assessed to gain 107 

insight into any potential health effects caused by target compounds. We include a temporal 108 

assessment of HBCDD and PBDE body burdens in the UK, and a comparison of UK body 109 

burdens with available data from other cross-sectional populations, globally.  110 

 111 

2.0 Materials & Methods 112 

2.1 Sample Collection and Preparation 113 

This prospective cohort study was performed within the Hull IVF Unit, UK in 2014, following 114 

approval by The Yorkshire and The Humber NRES ethical committee, UK (approval number 115 

02/03/043). A total of 59 women were recruited into the study, whose baseline characteristics 116 

are shown in Table 1. Inclusion criteria were age 20-45 years, BMI ≤35 and undergoing in vitro 117 

fertilisation. Patients with known immunological disease, diabetes, renal or liver insufficiency, 118 

acute or chronic infections, or inflammatory diseases were excluded from the study.  119 

 120 
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A fasting blood sample was collected on day 21 of the luteal phase of the cycle, and prior to 121 

commencing IVF treatment. Samples were centrifuged, aliquoted, and stored at -80 °C. 122 

Samples were shipped on dry ice to The Queensland Alliance for Environmental Health 123 

Sciences at The University of Queensland, Australia for further analysis. 124 

 125 

2.2 Lipid Analyses of Samples 126 

Serum (300µL) was analysed for cholesterol (TC) and triglycerides (TG) by Sullivan 127 

Nicolaides Pathology (SNP), Australia. Total lipid (TL) concentration (mg/dL) was calculated 128 

using the following equation (Phillips et al., 1989). 129 

𝑇𝑇𝑇𝑇 = 2.27.𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐺𝐺 + 62.3 130 

 131 

2.3 Sample Extraction & Clean-up 132 

Five mL of serum was aliquoted into a 50 mL polypropylene centrifuge tube. Samples were 133 

spiked with 5 ng each of internal standards (13C12-labelled BDEs -28, -47, -99, -100, -153, -134 

154, -183, 13C12-labelled α-, β- and γ-HBCDD). Samples were vortexed for approximately 1 135 

minute and left to stand for 30 minutes. 6 mL acetonitrile, 3 mL milliQ, 5 g anhydrous MgSO4 136 

and 1 g NaCl were added along with a ceramic homogenizer. Samples were manually shaken 137 

for 1 minute prior to centrifuging at 4500 RPM for 8 minutes at 10 °C. The supernatant layer 138 

was collected and transferred to a glass tube. The extract was evaporated to near-dryness on a 139 

hot plate using a gentle stream of nitrogen and reconstituted in approximately 1 mL hexane. 1 140 

mL >98% concentrated sulfuric acid was added and the sample was vortexed for at least 30 141 

seconds. The aqueous and organic layers were left to separate overnight at <4 °C. The 142 

supernatant layer was transferred directly onto a silica solid phase extraction cartridge (Supelco 143 

LC-Si 3mL/500 mg), preconditioned with 6 mL dichloromethane, followed by 6 mL hexane. 144 

The sample was allowed to load onto the cartridge gravimetrically. Target compounds were 145 
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eluted into a glass tube using 6 mL hexane, followed by 8 mL dichloromethane at 146 

approximately 2 mL/min. The sample was evaporated to near-dryness and reconstituted in 100 147 

µL iso-octane containing 2.5 ng 13C12-PCB-141 and 13C12-TBBPA as recovery standards. After 148 

analysis for PBDEs by high resolution gas chromatography coupled with high resolution mass 149 

spectrometry (HRGC/HRMS) extracts were solvent exchanged into 100 µL methanol and 150 

analysed for HBCDD via liquid chromatography tandem mass spectrometry (LC-MS/MS). 151 

 152 

2.4 Instrumental Analysis 153 

For PBDE analysis by HRGC/HRMS,a Thermofisher TRACE 1300 gas chomatograph was 154 

coupled to a Thermofisher DFS mass spectrometer. The injector was operated in splitless mode 155 

with separation achieved on an Agilent DB-5ms column (30 m length x 0.25 mm in diameter 156 

x 0.25 µm film thickness). Experiments were conducted in MID mode at 10,000 resolution 157 

(10% valley definition). The inlet, transfer line and source were held at 250 ºC, 280 ºC and 280 158 

ºC respectively. The flow rate was maintained at 1.0 mL/min. Details of acquisition ions for 159 

PBDEs are outlined in the supporting information (SI, (Tables S1 and S2 respectively). 160 

 161 

HBCDDs (α-, β- and γ-) were measured in serum samples using an AB/Sciex API 5500Q mass 162 

spectrometer (AB/Sciex, Concord, Ontario, Canada) coupled to a Shimadzu Nexera HPLC 163 

system (Shimadzu Corp., Kyoto, Japan). The mass spectrometer (MS) was operated in multiple 164 

reaction monitoring mode using negative electrospray ionisation. A volume of 5 µL was 165 

injected. Separation was achieved using a Kinetex XB C18, 50 x 2.0 mm 1.7 µm column 166 

(Phenomenex, Torrance CA) using a mobile phase gradient of 85% methanol, ramping up to 167 

100% methanol over 6 min and then holding for 4 min at a flow rate of 0.3 mL/min. Full MS 168 

parameters have been provided previously (Drage et al., 2017). 169 

 170 
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2.5 Quality Control 171 

A blank sample was extracted as every 6th sample (n=10), alternating between 5 mL of MilliQ 172 

water (n=5) and 5 mL bovine calf serum (n=5). If a target compound was detected in a blank 173 

at less than 5% of measured sample concentration, then no correction occurred; if blank 174 

concentration was 5–25% of measured sample concentration, the blank concentration was 175 

subtracted from that of the sample.  176 

 177 

In the absence of a certified QC sample, method precision and accuracy were determined using 178 

bovine serum (5mL, n=5) fortified with target compounds. 30 µL of a solution containing 2 179 

ng/mL of all target compounds in methanol was added to each aliquot, which was then vortexed 180 

for 1 minute and left at <4 °C overnight. Good accuracy and precision was found for all target 181 

analytes with average recoveries between 80-120% and a relative standard deviation <15% 182 

(Table S2).  183 

 184 

Internal standard recoveries of 13C-labelled HBCDDs were estimated by expressing their ratio 185 

with 13C12-TBBPA in the samples as a percentage of the same ratio in a non-extracted side-186 

spike (NESS). The recoveries of the remaining internal standards was calculated using their 187 

ratio with 13C12-PCB-141. Average recoveries ranged from 59% (13C12-BDE-28) to 84 % 188 

(13C12-BDE-154). Details of recoveries of all internal standards are provided in the SI (Table 189 

S3).  190 

 191 

2.6 Statistical Analysis 192 

For the purposes of calculations of averages and all statistical testing where a compound was 193 

below the limit of quantification (LOQ), values were set to half the limit of detection (LOD). 194 
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All statistical tests were computed using Microsoft Excel 2010 and SPSS for Windows version 195 

22.0. 196 

 197 

3.0 Results & Discussion 198 

This study reports the first data for HBCDD in human serum from the UK. Sum of α-, β-, and 199 

γ-HBCDD (ΣHBCDD) was detected in 40 out of 59 samples at a concentration range of <0.3 200 

– 13 ng/g lipid. The average concentration measured was 2.2 ng/g lipid, the geometric mean 201 

was 0.75 ng/g lipid and the median was 1.8 ng/g lipid (Table 2).  202 

 203 

The dominant stereoisomer was α-HBCDD with an average contribution of 82% (0-100%) 204 

towards ΣHBCDD, was followed by γ-HBCDD (average contribution = 17%). β-HBCDD was 205 

only detected in one sample where it contributed 25% to a ΣHBCDD concentration of 11 ng/g 206 

lipid. This stereoisomer pattern in human sera is consistent with previous studies from Australia 207 

(Drage et al., 2017), India (Devanathan et al., 2012), Sweden (Weiss et al., 2006), Canada 208 

(Ryan et al., 2006) and Japan (Kakimoto et al., 2008). The dominance of α-HBCDD in human 209 

and other biotic samples is likely due to more effective transformation of β- and γ- HBCDD to 210 

α-HBCDD through increased metabolic rate, combined with preferential accumulation of the 211 

α-stereoisomer (Fonnum and Mariussen, 2009). 212 

 213 

PBDEs were detected in measurable concentrations in 56 out of 59 samples with a ΣPBDE 214 

(sum of BDEs -28, 47, -99, -100, -153, -154 and -183) concentration range of <0.4 – 15 ng/g 215 

lipid. The average concentration was 2.4 ng/g lipid, the geometric mean was 1.4 ng/g lipid and 216 

the median was 1.9 ng/g lipid (Table 3). BDEs -153 and -47 were the dominant congeners, 217 

contributing an average of 40% and 37% respectively, to the average ΣPBDE congener profile. 218 

The remaining PBDE content came from BDEs -100, -99 and -28 with average contributions 219 
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of 12%, 8.5% and 2.6% respectively. BDEs -154 and -183 were not detected in any of the 220 

samples. The dominance of BDEs -47 and -153 in human serum is consistent with much of the 221 

previous literature including previous measurements of serum from the UK, USA (Sjödin et 222 

al., 2004, Sjödin et al., 2008), Japan (Akutsu et al., 2008), Greece (Kalantzi et al., 2011), 223 

Romania (Dirtu et al., 2006) and France (Brasseur et al., 2014). 224 

3.1 Demographic trends: Age, Weight and BMI 225 

Despite the narrow age range of participants (23-42 years), Figure 1 suggests that there is a 226 

decrease in HBCDD levels with age (R2 = 0.105). However, a linear regression analysis shows 227 

this to be insignificant (p = 0.08). There were no observed associations between PBDE levels 228 

of participants and their age. This may be due to the limited sample size and age range of 229 

participants in the study. Previous studies have demonstrated higher levels of PBDEs in 230 

children and infants (Toms et al. 2009), however this study only investigated mothers of child-231 

bearing age. 232 

A linear regression suggested a weak positive association between HBCDD levels and 233 

bodyweight of the participant (R2 = 0.075, p = 0.036; Figure S1a). However, when corrected 234 

for height by using BMI instead of weight (Figure S1b), this association was no longer 235 

significant (R2 = 0.057, p = 0.068). There were no observed associations between bodyweight 236 

or BMI and PBDE levels in participants from this study. 237 

3.2 Temporal Trends: Exposure in the United Kingdom 238 

Data on human exposure to HBCDDs in the UK is scarce, with only two previous studies 239 

measuring breast milk concentrations from samples collected between 2008 and 2011 (Harrad 240 

and Abdallah, 2015, Abdallah and Harrad, 2011), and prior to legislative ban. Median 241 

ΣHBCDD concentrations from this study (1.8 ng/g lipid, 2014) were significantly  lower 242 

(ANOVA, p<0.0001) than samples from 2008-2010 and 2010-2011 (3.8  and 5.2 ng/g lipid, 243 

respectively) (Abdallah and Harrad, 2011, Harrad and Abdallah, 2015). A recent study of 244 
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breastmilk from 10 women in UK collected in 2014-2015 by Tao et al. (2017) reported similar 245 

HBCDD levels as the serum measures in our study (median: 2.9 ng/g lipid, range: 0.7-7.1 ng/g 246 

lipid) (Figure 2). This is suggestive of a temporal trend to decreasing HBCDD exposure in UK 247 

women. While there is some precedent for comparing serum and breast milk biomarker 248 

concentrations as indicative of overall body burden, the samples were collected over a 249 

relatively short period of time (2008 to 2015, across the 4 different studies), for a 250 

comprehensive temporal assessment of exposure. Furthermore, HBCDDs were only subject to 251 

legislative bans in 2013 – one year before samples were collected for this study (Health and 252 

Environment Alliance, 2013), meaning that it is too early to assess the impact of legislative 253 

action on HBCDD exposures in the UK population.  254 

 255 

The range of ΣPBDE concentrations in this study are similar to those found in Newcastle-256 

Upon-Tyne, UK in the same year (1.0-16 ng/g lipid (Bramwell et al., 2014)) and from 257 

Birmingham in 2010, 2010-11 and 2014-15 (Abdallah and Harrad, 2014, Harrad and Abdallah, 258 

2015, Tao et al., 2017). Median ∑PBDE concentrations are approximately 3 times lower than 259 

those found in serum (5.6 ng/g lipid (Thomas et al., 2006)) and breast milk (6.3 ng/g lipid 260 

(Kalantzi et al., 2004))  collected from Lancaster and London from 2001 to 2003 (Figure 3). 261 

This would suggest PBDE levels have fallen since the 2004 bans of Penta- and Octa- BDE in 262 

the EU (Birnbaum and Staskal, 2004). However, breastmilk samples collected in 2014-15 by 263 

Tao et al. (2017) contradict this finding with median concentrations of 5.8 ng/g lipid. This is 264 

likely due to small sample size (n=10), and high variability both between-individuals, and 265 

between geographical regions of the UK.  However, it is pertinent to note that in our study, 266 

there was a 95% detection rate of PBDEs in UK human serum 8 years after these bans, and 267 

Tao et al. (2017) had a 100% detection rate in human milk more than a decade later. This 268 

demonstrates that UK populations are still continuously exposed to PBDEs despite legislative 269 
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bans, and further action may be required to reduce body burden at the population level. Similar 270 

temporal declines over a period of 10 years have also been suggested for HBCDDs in Australia 271 

(Drage et al., 2017), (Toms et al., 2012), and Canada (Ryan and Rawn, 2014), however both 272 

compounds are still regularly detected in humans highlighting the need for constant monitoing 273 

of their concentrations in humans and the environment. 274 

 275 

3.3 Comparison with global biomonitoring data 276 

Literature of serum measures of HBCDD is scarce, however there are a number of studies 277 

reporting HBCDDs in milk from various countries (Table 1). The average concentration of 278 

HBCDDs from this study (2.2 ng/g lipid) is at the lower end of the range of concentrations 279 

found across the world (not detected – 43 ng/g lipid) and half the average concentration 280 

worldwide (4.6 ng/g lipid). Concentrations were similar to breast milk collected in Canada in 281 

1992-2005 (Ryan and Rawn, 2014) and serum from Belgium in 2007 (Roosens et al. 2009), 282 

whilst they were 3-10 times higher than milk collected from the Philippines in 2008 283 

(Malarvannan et al. 2013b), and India in 2009 (Devanathan et al. 2012). Furthermore, 284 

Sahlström et al. (2014) did not detect HBCDD in any serum collected from 48 individuals in 285 

Sweden between 2009 and 2010. Average HBCDD concentrations in serum collected in South 286 

Korea from 2009-2010 (Kim and Oh, 2014) was approximately 4 times higher than serum from 287 

this study, whilst milk collected in Spain from 2006-2007 was almost 20 times higher (Eljarrat 288 

et al 2009).  289 

 290 

Human biomonitoring studies for PBDEs are more prevalent in the literature than for 291 

HBCDDs. The mean ∑PBDE (2.4 ng/g lipid) concentration from this study was at the lower 292 

end of the range of ∑PBDE levels measured between 2009 and 2015 internationally (Table 2), 293 

but similar to (lipid normalised) ∑PBDE concentrations of breastmilk and serum from other 294 
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regions of the UK ((Bramwell et al., 2014, Tao et al., 2017, Harrad and Abdallah, 2015), 295 

Norway (Cequier et al., 2015), Denmark  (Vorkamp et al., 2014), and some regions of China 296 

(Wu et al., 2017, Wang et al., 2016). Serum levels of ∑PBDEs in this study were approximately 297 

2.5 times higher than breastmilk from Sweden (Darnerud et al., 2015), but between 3 and 20 298 

times lower than serum collected across USA (Watkins et al., 2011, Butt et al., 2016, Makey 299 

et al., 2014, Zota et al., 2013, Hurley et al., 2017). Furthermore, serum from 6 individuals in 300 

Laizhou Bay, China, with no known occupational exposure were  up to 300 times higher than 301 

from this study (Wang et al., 2014). 302 

 303 

Major strengths of this study include relatively large sample size (59) as well as the the pairing 304 

of BFR body burdens with demographic data such as age, weight and height. A potential 305 

weakness of the  study is the fact that all participants were undergoing in vitro fertilisation. 306 

However, this was overcome by the fact that they were an otherwise normal population, and 307 

patients with any known conditions were excluded from the study, making it an otherwise 308 

normal population. 309 

 310 

4.0 Conclusions 311 

Here we present data confirming that reproductive aged women from the UK continue to be 312 

exposed to both HBCDDs and PBDEs. Data from this study suggests that HBCDD levels 313 

decrease with age, however further sampling of a wider age range would be required to further 314 

investigate this. It also suggests a positive association between bodyweight and HBCDD levels, 315 

which likewise requires a large-scale study to confirm this. The data suggests that 10 years 316 

after their European ban, PBDE body burden has begun to decrease in the UK. Whilst it is too 317 

early draw any firm conclusions for HBCDDs, they appear to be following a similar pattern to 318 

PBDEs, with levels decreasing by a factor of >2.5 since 2010, a trend that has also been 319 
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observed in Australia. Whilst human body burdens appear to be decreasing, both PBDEs and 320 

HBCDD are still consistently detected in human serum, despite legislative action limiting their 321 

production and use, and highlighting the need to continuously assess human exposure and the 322 

effectiveness of policy aimed at reducing exposure.   323 
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Figures and Tables 622 

Table 1: Summary population characteristics 623 

  
Number of participants 59 
Age (years) 32 

23-42 
Height (cm) 165 

148-191 
Weight (kg) 70 

(50-108) 
BMI 
Normal (18.5-24.9) 
Overweight (25-29.9) 
Obese (30-34.9) 

  
22 
32 
5 

Pregnancy status 
Nulliparous 
Primiparas 
Miscarried/terminated 

  
42 
6 
11 

Smoking status 
Regular smoker 
Non-smoker 

  
6 
53 

  624 
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Table 2 ∑HBCDD concentrations (ng/g lipid) in humans from this study and other studies internationally from 2002-2015 

Country Matrix n Mean Range Ref 
Europe      

UK Serum 59 individuals 2.2 <0.3 -  12.6 This Study 
UK Milk 10 individuals 3.2 0.7 - 7.1 Tao et al. (2017) 

UK Milk 25 individuals 5.95 1 - 22 Abdallah and Harrad 
(2011) 

UK Milk 10 individuals 6.5 0.3 - 21 Harrad and Abdallah 
(2015) 

Belgium Serum 16 individuals 2.9 <0.5 - 11 Roosens et al. (2009) 

Belgium Milk 1 pooled 
sample 1.5 n/a Colles et al. (2008)  

Czech 
Republic Adipose 98 individuals 1.2 <0.5-7.5 Pulkrabova et al. (2009) 

France Milk 26 n/a <1-5 Antignac et al. (2006) 
France Adipose 26 n/a 1-3 Antignac et al. (2006) 
Greece Serum 61 individuals 3.39 0.49-39 Kalantzi et al. (2011) 
Ireland Milk 11 pools 3.5 1.7-5.9 Pratt et al. (2013) 

Netherlands Cord Serum 12 0.2 0.2-4.3 Meijer et al. (2008) 
Netherlands Serum 91 0.2 0.1-0.36 Peters (2004) 

Norway Milk 10 individuals n/a nd-0.13 Polder et al. (2008a,b) 

Norway Milk 393 
individuals 1.7 <0.2-31 Thomsen et al. (2009a) 

Norway Milk 12 individuals n/a 0.25-2 Thomsen et al. (2003) 
Norway Milk 85 individuals n/a 0.4-20 Thomsen et al. (2005) 
Norway Milk 67 Individuals n/a nd-3 Thomsen etal. (2009b) 

Norway Milk 193 
individuals 1.1 0.1-31 Eggesbø et al. (2011) 

Russia Milk 23 individuals 0.71 nd-1.67 Polder et al. (2008a) 
Russia Milk 14 individuals 0.47 nd-1.15 Polder et al. (2008a) 
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Spain Milk 33 individuals 43 <LOQ-190 Eljarrat et al. (2009) 
Sweden Milk 14 pools n/a 0.1-0.6 Fangstrom et al. (2008) 

Sweden Milk 204 
individuals n/a 0.09-10 Glynn et al. (2011) 

Sweden Serum 50 individuals 0.46 <0.24-3.4 Weiss et al. (2006) 
Sweden Serum 48 individuals 0 not detected Sahlström et al. (2014) 

Asia           
India Milk 55 individuals 0.53 <0.05 - 13 Devanathan et al. (2012) 

China Milk 103 
individuals 4.29 <LOQ-78 Shi et al. (2013a) 

China Serum 42 pools 0.86 <LOQ - 7.2 Shi et al. (2013b) 
China Milk 12 individuals 2.2 <LOQ - 5.5 Shi et al. (2013b) 

Philippines Milk 33 individuals 0.86 0.13 - 3.2 Malarvannan et al. (2009) 
Philippines Milk 30 individuals 0.21 <0.01-0.91 Malarvannan et al. (2013b) 

South Korea Serum 76 individuals 8.6 <dl-166 Kim and Oh (2014) 
Vietnam Milk 9 individuals n/a 0.07 - 1.4 Tue et al. (2010) 
Vietnam Milk 4 individuals n/a 0.11 - 0.97 Tue et al. (2010) 

Africa           
South Africa Milk 28 individuals 0.55 <0.23 - 1.4 Darnerud et al. (2011) 

North America         
Canada Milk 8 3.8 0.4-19 Ryan et al. (2006) 
Canada Serum 59 pools 1 0.33 - 8.9 Rawn et al. (2014) 
Canada Milk 34 individuals 1.8 0.1-28 Ryan and Rawn (2014) 

USA Milk 9 0.5 0.2-0.9 Ryan et al. (2006) 
Oceania           

Australia Serum 63 pools 3.1 <0.5-36 Drage et al. 2017 
Australia Milk 12 pools 6.6 <LOQ - 19 Toms et al. (2012a) 
Australia Serum 40 pools 0.45 <0.1-1.9 Drage et al. 2019 
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Table 3 ∑PBDE concentrations (ng/g lipid) in humans from this study and other studies 

internationally from 2009-2015 

 

Country Year Matrix n Mean Median Range Ref 
Europe        

UK 2014 Serum 59 individuals 2.4 1.9 <0.2 - 15 This Study 
UK 2012 Serum 20 individuals N/A 2.4 42370 Bramwell et al. 20  
UK 2012 Milk 8 individuals N/A 4.8 46753 Bramwell et al. 20  

UK 2010 Milk 25 individuals 5.9 5 0.2 - 26 Abdallah & Harra  
2014 

UK 2010-11 Milk 10 individuals 5.1 3.7 1.3 - 13 Harrad & Abdalla  
2015 

UK 2014-
2015 Milk 10 individuals 6.5 5.8 1.7 - 14 Tao et al. 2017 

Denmark 2011 Serum 100 
individuals 7.7 7.7 <LOQ - 

18 Vorkamp et al. 20  

Norway 2012 Serum 46 individuals 3.6 2.3 0.1 - 23 Cequier et al. 201  

Sweden 2010 Milk 3 pools 0.73 0.77 0.58 - 
0.84 Darnerud et al. 20  

Asia        
China 2011 Serum 12 pools 190 N/A 80-780 Wang et al. 2014 
China 2012 Serum 6 individuals N/A 13 4.3 - 42 Chen et al. (2014  
China 2013 Serum 10 pools 25 26 13 - 41 Li et al. 2017 
China 2014 Serum 32 individuals 7.8 5.6 1.1 - 39 Wang et al. 2016 
China 2014 Serum 9 individuals 5.6 N/A 0.42 - 27 Wu et al. 2017 

North America        
USA 2009 Serum 31 individuals 28 N/A 3.5 - 350 Watkins et al. 201  

USA 2008-
2010 Serum 43 individuals 28 N/A 0.71 - 

250 Butt et al. 2016 

USA 2010-
2011 Serum 52 individuals 6.2 N/A 0.25 - 97 Makey et al. 201  

USA 2011-
2012 Serum 36 individuals 52 N/A N/A Zota et al. 2013 

USA 2011-
2015 Serum 1253 

individuals 23 N/A N/A Hurley et al. 201  
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Figure 1 Individual Concentrations (ng/g lipid) of (a) ΣHBCDD and (b) ΣPBDEs vs their 
age (years) 
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Figure 2 Temporal variation of mean HBCDD concentrations of serum and breast milk 

from UK women. Error bar denotes maximum concentration. 

 

 

 

 

  

0 5 10 15 20 25

2014/15 (This Study)

2014/15 (Tao et al 2017)

2008-2010 Abdallah & Harrad 2011)

2010-2011 (Harrad & Abdallah 2015)

∑HBCDD Concentration (ng/g lipid)

Sa
m

pl
in

g 
Ye

ar
 (S

tu
dy

)



This accepted manuscript is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. The 
published version is at https://www.sciencedirect.com/science/article/pii/S0013935119304281?via%3Dihub 

Figure 3 Temporal variation of mean PBDE concentrations of serum from UK adults 

from this study and previous studies. Error bar denotes maxium concentration. 
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