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Abstract 

1. Maximising the detection of a target species reduces uncertainty of survey results and can improve 

management outcomes. Deer (Cervidae) populations are managed worldwide due to their impacts on 

anthropocentric interests. In the UK, deer can only lawfully be shot during the daytime, from one hour 

before sunrise to one hour after sunset, when deer activity is at its lowest. We evaluated performance of 

a thermal imager relative to binoculars for their ability to detect deer during the daytime and at twilight 

(one hour either side of dawn and dusk). 

2. Transect surveys on Thorne Moors, UK, revealed that more roe and red deer were observed using a 

thermal imager than when using binoculars. More deer and in much larger groups were observed at 

twilight than during the other daylight hours. 

3. Variation in animal detectability at different times of the day must be considered during wildlife 

surveys if their outputs are to be as accurate and precise as possible. 

4. The results support the continued focus of deer culling efforts during the hours of twilight. They also 

highlight the potential utility of thermal imagers for maximising detection probability at twilight. 
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Introduction 

Accurate estimates of animal occupancy and population size depend on high detection probability (MacKenzie 

et al. 2002; Field et al. 2007; Petrovan et al. 2011), yet many wildlife surveys suffer low detection rates (Legg 

and Nagy 2006), leading to elevated uncertainty (Nichols 2019). Detection can be impacted by animal 

behaviour; animals that are crepuscular or nocturnal can be more difficult to detect than those active during the 

daytime (Jiang et al. 2008). Consequently, technology, including artificial light, night vision and thermal 

imagery, has been employed to improve the detection of wild animals at night, (Gill et al. 1997; Allison and 

Destefano 2006), resulting in significant improvements in the accuracy and precision of population estimates 

derived from field surveys (Smart et al. 2004). However, daytime surveys have been used (Fragoso et al. 2016) 

and even advocated by some researchers (Vincent et al. 1991; Trenkel et al 1997), and in our experience, such 

surveys are often preferred by land managers. Nevertheless, the relative performance of technologically-

supported surveys during the hours of daylight and the hours of darkness has not, to our knowledge, been 

evaluated. 

Much of the focus of surveys for wild deer (Cervidae) has been to support their management (Smart et al. 2004). 

Deer populations are often culled to control their impacts on anthropocentric interests (Putman and Moore 

1998). Thermal imagery has been used extensively to survey wild deer at night (Gill et al. 1997; Focardi et al. 

2001; Wäber et al. 2013) since hunted populations tend to be crepuscular or nocturnal (Beier and McCullough 

1990; Meng et al. 2002). However, its use for management by most hunters has only recently become feasible 

due to declining costs and improving functionality. Nevertheless, costs of hand-held thermal imagers suitable 

for hunting are currently comparable to the costs of high-end rifle telescopic sights, so substantial enhancement 

of deer detection, leading to improved culling efficiency, is required to justify investment. 

Across much of Europe deer may be hunted at night (Putman et al. 2011a), but in the UK primary legislation 

limits their lawful shooting to the daytime only. The Deer Act 1991 requires that no deer may be shot between 

one hour after sunset until one hour before sunrise. To control or reverse the continuing growth and spread of 

British deer populations (Ward 2005; Matthews et al. 2018) and hence their impacts on anthropocentric 

interests, deer managers may benefit from enhanced deer detection rates during the daytime. 

We sought to identify times of day when deer detection rates were at their highest and compared the daytime 

deer detection performance of a thermal imager with the more traditional use of binoculars so that researchers 

and managers alike can make informed choices about technological aids and times of day when planning deer 

surveys.  
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Materials and Methods 

Transect surveys for red deer (Cervus elaphus) and roe deer (Capreolus capreolus) took place on Thorne Moors, 

UK (53.636654, -0.898764) from 21/02/2018 to 14/03/2018 between the hours of 05.00 and 19.00. The site is a 

National Nature Reserve of approximately 19km2, managed for its nationally and seasonally important 

populations of water birds, but with significant areas of scrub and deciduous woodland. 

Transects were approximately 500m in length, with at least 1km between the end of one and the start of the next 

to avoid double-counting deer fleeing between transects and hence to avoid pseudo-replication (Focardi et al. 

2002). Each transect was surveyed on foot eight times; twice with binoculars (10x50 magnification, SkyGenius, 

Massachusetts, USA) and twice with the thermal imager (FLIR BHS-XR, FLIR Systems, Inc., Oregon, USA) 

during each of the hours of daylight (between sunrise and sunset) and at twilight (the hour before sunrise and 

after sunset). The thermal imager was chosen since it is an older model with a lower specification than many 

more recent products, but which nevertheless had a sensitivity of 30mK. The choice to start a survey with 

binoculars or thermal imager was decided by a coin toss, with the subsequent survey of the same transect 

conducted with the other detection method. A period of at least 24 hours was maintained between surveys of the 

same transect. Data collected were species, number of groups detected, number of animals per group and time of 

day. 

To compare the detection of deer between detection methods (1 = binoculars and 2 = thermal imager) and time 

of day (either as a covariate: the absolute number of hours from 07.00 or the signed number of hours from 

07.00, or as a binary factor: 1 = daylight and 2 = twilight), general linear mixed models (GLMMs) with a 

Poisson distribution and a log link function were fitted to the count data (Zuur et al. 2007) using R package 

“lme4” (Bates et al., 2014). Separate models were built for each deer species and when detections were 

summarised as number of deer groups per transect and number of individuals per transect. ‘Transect’ and ‘date 

sampled’ were fitted as random effects and ‘detection method’ and ‘time of day’ as fixed effects, including an 

interaction effect. Model fit was evaluated by visual examination of residuals versus fitted values, which is one 

of many accepted quality assurance procedures (Zuur et al. 2007; Harrison et al. 2018). All statistical analysis 

was performed in R 3.4.4 (R Core Team, 2018). 

 

Results 

In total, 63 roe deer and 463 red deer were observed in groups of 1-6 (median = 1) and 5-187 (median = 12) 

respectively at a mean of 1.64 roe deer and 7.68 red deer per km surveyed. Air temperature varied little during 

the study, from -0.4oC to 7.7oC. Sunrise occurred at approximately 07.00 and sunset at approximately 17.30.  

In no model was time of day, when entered as a covariate, associated with the number of deer detected (P<0.001 

in all cases), so it was included as a binary variable only during subsequent models. However, the total number 

of deer and number of deer groups detected was considerably higher during twilight than during the hours of 

daylight for both species (Fig 1 and Table 1), but was of marginal significance (p = 0.069) for red deer groups. 

Time of day and detection method had an interaction effect, with number of deer and number of groups detected 

higher at twilight using the thermal imager than using binoculars, apart from detection of red deer groups, which 
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was not discernibly different, whether using binoculars or thermal imager. More roe deer were detected with the 

thermal imager than with binoculars during daylight hours, but this result did not extend to red deer (Table 1). 

 

Discussion 

More deer were observed using the thermal imager than with binoculars, especially at twilight. This is 

unsurprising, since this technology was developed to enhance detection rates of heat-emitting objects. However, 

while thermal imagery has traditionally been used to survey deer at night (Gill et al. 1997; Wäber et al. 2013), 

we have demonstrated that deer may be more easily detected during the daytime, particularly around dawn and 

dusk, but also that roe deer may be more easily detected during the hours of daylight. 

Higher detection rates at twilight was somewhat surprising because deer are actively culled on farmland around 

the study site at this time, but there is currently no culling of deer on the nature reserve. It is nevertheless 

consistent with the crepuscular/nocturnal behaviours expressed by deer in hunted populations, and those 

exposed to high predation pressure (Hewison, et al. 2001; Benhaiem, et al. 2008; Jiang et al. 2008). 

Variation in gregarious behaviours across different times of the day by red deer, as observed in Scotland 

(Mitchell et al. 1977) caused the lack of difference in the number of red deer groups detected despite the higher 

number of individual deer observed at twilight. Red deer simply formed fewer, larger groups at twilight.  

Differences in behaviour and hence detectability at different times of day have important implications for 

wildlife surveys, since high detectability is required for accurate estimates of a species’ occurrence and 

population size (MacKenzie et al. 2002; Nichols 2019). Moreover, users of the results of wildlife surveys should 

also consider the consequences of these sources of variability in detection. Increasingly, researchers seeking to 

estimate wildlife distribution and abundance patterns use third party data, often produced during surveys 

undertaken by amateur surveyors (Horns et al. 2018; Massimino et al. 2018). Surveys that are not designed to 

account for, or take advantage of, variation in detectability within and between species risk mis-estimating 

species occurrence and abundance, with errors being perpetuated or amplified in modelled outputs (Legg and 

Nagy 2006). 

In countries where the shooting of wildlife at night is lawful and considered acceptable by society (see Putman 

et al. 2011a), thermal imagers offer the clear advantage of detecting animals while the observer remains 

concealed by darkness. However, even in more restrictive countries such as the UK, thermal imagers offer 

tactical advantages over binoculars. We have demonstrated that during twilight, when deer can lawfully be shot, 

the number of deer and roe deer groups detected was significantly higher using the thermal imager. In a 

management context, this could translate as more shooting opportunities per day, or a higher probability of at 

least one successful shooting opportunity per day. While it is illegal to use thermal imaging telescopic rifle 

sights to shoot deer in the UK, a hand-held thermal imager can lawfully be used at any time of the day or night. 

It is thus conceivable that thermal surveillance of land for deer during the hours immediately before they can 

lawfully be shot could inform the deer manager on whether they should remain in position to await twilight or 

should move to a different location where deer are detected. Either way, thermal imagers offer significant 

potential for improving the culling efficiency of deer populations, at a time when their distributions and 
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abundances (Matthews et al. 2018) and hence probably their impacts too (Putman et al. 2011b) have never been 

greater.  



7 
 

References 

Allison NL, Destefano S (2006) Equipment and techniques for nocturnal wildlife studies. Wildlife Society 
Bulletin, 34(4), pp 1036-1044 

Bates D, Maechler M, Bolker B, Walker S (2014). lme4: linear mixed-effects models using Eigen and S4. R 
Package Version 1, 1–23 

Beier P, McCullough DR (1990) Factors influencing white-tailed deer activity patterns and habitat use. Wildlife 
Monographs, 109(1), pp 3-51 

Benhaiem S, Delon M, Lourtet B, Cargnelutti B, Aulagnier S, Hewison AJM, Morellet N, Verheyden H (2008) 
Hunting increases vigilance levels in roe deer and modifies feeding site selection. Animal Behaviour, 76(3), pp 
611-618 

Field SA, O'Connor PJ, Tyre AJ, Possingham HP (2007) Making monitoring meaningful. Austral Ecology, 
32(5), pp 485-491 

Focardi S, De Marinis AM, Rizzotto M,  Pucci A (2001) Comparative evaluation of thermal infrared imaging 
and spotlighting to survey wildlife. Wildlife Society Bulletin, 29(1) pp 133-139 

Focardi S, Isotti R, Tinelli A (2002) Line transect estimates of ungulate populations in a Mediterranean forest. 
The Journal of Wildlife Management, 66(1) pp 48-58 

Fragoso JM, Levi T, Oliveira LF, Luzar JB, Overman H, Read JM, Silvius KM (2016) Line transect surveys 
underdetect terrestrial mammals: Implications for the sustainability of subsistence hunting. PloS one, 11(4), 
p.e0152659 

Gill RMA, Thomas ML, Stocker D (1997) The use of portable thermal imaging for estimating deer population 
density in forest habitats. Journal of Applied Ecology, 34(5), pp 1273-1286 

Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin C, Robinson BS, Hodgson DJ, 
Inger R (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6, 
e4794. doi:10.7717/peerj.4794 

Hewison AJM, Vincent JP, Joachim J, Angibault JM, Cargnelutti B, Cibien C (2001) The effects of woodland 
fragmentation and human activity on roe deer distribution in agricultural landscapes. Canadian Journal of 
Zoology, 79(4), pp 679-689 

Horns JJ, Adler FR, Şekercioğlu ÇH (2018) Using opportunistic citizen science data to estimate avian 
population trends. Biological Conservation, 221, pp 151-159 

Jiang G, Zhang M, Ma J, (2008) Habitat use and separation between red deer (Cervus elaphus xanthopygus) and 
roe deer (Capreolus pygargus bedfordi) in relation to human disturbance in the Wandashan Mountains, 
northeastern China. Wildlife Biology, 14(1), pp 92-100 

Legg CJ, Nagy L (2006) Why most conservation monitoring is, but need not be, a waste of time. Journal of 
Environmental Management, 78(2), pp 194-199 

MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site 
occupancy rates when detection probabilities are less than one. Ecology, 83(8), pp 2248-2255 

Massimino D, Harris SJ, Gillings S (2018) Evaluating spatiotemporal trends in terrestrial mammal abundance 
using data collected during bird surveys. Biological conservation, 226, pp 153-167 

Mathews F, Kubasiewicz LM, Gurnell J, Harrower CA, McDonald RA, Shore RF (2018) A review of the 
population and conservation status of British mammals. Natural England, Peterborough 

Meng X, Yang Q, Feng Z, Xia L, Wang P, Jiang Y, Bai Z, Li G (2002) Preliminary studies on active patterns 
during summer, autumn and winter seasons in captive alpine musk deer. Acta Theriologica Sinica, 22(2), pp 87-
97 

Mitchell B, Staines BW, Welch D (1977) Ecology of Red Deer, Cambridge: Institute of Terrestrial Ecology 



8 
 

Nichols JD (2019) Confronting uncertainty: Contributions of the wildlife profession to the broader scientific 
community. The Journal of Wildlife Management. https://doi.org/10.1002/jwmg.21630 

Petrovan SO, Ward AI, Wheeler P (2011) Detectability counts when assessing populations for biodiversity 
targets. PloS one, 6(9), pe24206 

Putman R, Apollonio M, Andersen R. (2011a) Ungulate management in Europe. Problems and practices. 
Cambridge University Press 

Putman RJ, Moore NP (1998) Impact of deer in lowland Britain on agriculture, forestry and conservation 
habitats. Mammal Review, 28(4), pp141-164 

Putman R, Langbein J, Green P, Watson P (2011b) Identifying threshold densities for wild deer in the UK above 
which negative impacts may occur. Mammal Review, 41(3), pp 175-196 

Smart JC, Ward AI, White PCL (2004) Monitoring woodland deer populations in the UK: an imprecise science. 
Mammal Review, 34(1-2), pp 99-114 

Trenkel VM, Buckland ST, McLean C, Elston DA (1997) Evaluation of aerial line transect methodology for 
estimating red deer (Cervus elaphus) abundance in Scotland. Journal of Environmental Management, 50(1), pp 
39-50 

Vincent JP, Gaillard JM, Bideau E (1991) Kilometric index as biological indicator for monitoring forest roe deer 
populations. Acta Theriologica, 36(3-4), pp 315-328 

Wäber K, Spencer J, Dolman PM (2013) Achieving landscape‐scale deer management for biodiversity 
conservation: The need to consider sources and sinks. The Journal of Wildlife Management, 77(4), pp 726-736 

Ward AI (2005) Expanding ranges of wild and feral deer in Great Britain. Mammal Review, 35(2), pp 165-173 

Zuur A, Ieno EN, Smith GM (2007) Analyzing ecological data. Springer Science & Business Media. 

  



9 
 

 

Fig 1 Number of deer detection events per transect, for groups of red and roe deer and total individuals, using 

binoculars and thermal imaging cameras. Mean values are in red with bars showing the standard deviation. 
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Table 1 GLMM outputs. Number of deer or groups of deer as response variables with sampling time and method as fixed effects including an interaction effect denoted by *. All means are 

relative to the intercept (Day and binoculars) and p-values denote statistical significance (<0.05) in bold. Confidence intervals are presented to 2 decimal places, so their limits may appear no 

different for coefficient estimates with low uncertainty. 

  Total red deer Red groups Total roe deer Roe groups 

Predictors Coefficient 
(log-mean) 95% CI p Coefficient 

(log-mean) 95% CI p Coefficient 
(log-mean) 95% CI p Coefficient 

(log-mean) 95% CI p 

Day/binoculars 
(intercept) 

-10.80 -16.05 – -5.55 <0.001 -4.40 -6.81 – -1.99 <0.001 -1.95 -1.95 – -1.94 <0.001 -2.91 -4.35 – -1.46 <0.001 

twilight 2.20 1.32 – 3.07 <0.001 1.95 -0.15 – 4.04 0.069 0.59 0.58 – 0.59 <0.001 1.79 0.29 – 3.29 0.019 

Thermal imager -1.17 -2.35 – 0.01 0.053 -0.00 -2.77 – 2.77 1.000 0.76 0.76 – 0.76 <0.001 1.50 -0.03 – 3.04 0.054 

Twilight*thermal 2.56 1.33 – 3.79 <0.001 0.54 -2.38 – 3.46 0.718 0.29 0.29 – 0.30 <0.001 -0.73 -2.41 – 0.95 0.393 
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