IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 7, 2019, accepted July 30, 2019, date of publication August 9, 2019, date of current version August 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934128

Ensemble MultiBoost Based on RIPPER
Classifier for Prediction of Imbalanced
Software Defect Data

HAITAO HE!, XU ZHANG!, QIAN WANG "1, JIADONG REN""1, JIAXIN LIU’,
XIAOLIN ZHAO“2, AND YONGQIANG CHENG 3

Computer Virtual Technology and System Integration Laboratory of Hebei Province, College of Information Science and Engineering, Yanshan University,
Qinhuangdao 066000, China

2Beijing Key Laboratory of Software Security Engineering Technology, School of Computer Science and Technology, Beijing Institute of Technology,
Beijing 100081, China

3Department of Computer Science, University of Hull, Hull HU6 7RX, U.K.

Corresponding author: Qian Wang (wangqianysu@ 163.com)
This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFB0800700, and in

part by the National Natural Science Foundation of China under Grant 61472341, Grant 61772449, Grant 61572420, Grant 61807028, and
Grant 61802332.

ABSTRACT Identifying defective software entities is essential to ensure software quality during software
development. However, the high dimensionality and class distribution imbalance of software defect data
seriously affect software defect prediction performance. In order to solve this problem, this paper proposes
an Ensemble MultiBoost based on RIPPER classifier for prediction of imbalanced Software Defect data,
called EMR_SD. Firstly, the algorithm uses principal component analysis (PCA) method to find out the most
effective features from the original features of the data set, so as to achieve the purpose of dimensionality
reduction and redundancy removal. Furthermore, the combined sampling method of adaptive synthetic
sampling (ADASYN) and random sampling without replacement is performed to solve the problem of data
class imbalance. This classifier establishes association rules based on attributes and classes, using MultiBoost
to reduce deviation and variance, so as to achieve the purpose of reducing classification error. The proposed
prediction model is evaluated experimentally on the NASA MDP public datasets and compared with existing
similar algorithms. The results show that EMR_SD algorithm is superior to DNC, CEL and other defect
prediction techniques in most evaluation indicators, which proves the effectiveness of the algorithm.

INDEX TERMS Software defect prediction, class imbalance, combined sampling, rule learning, MultiBoost.

I. INTRODUCTION
Software quality [1] is considered to be extremely important

In the actual software defect prediction, there are 2 main
challenges, namely the high dimensionality and the class

in the field of software engineering. With the expansion
of software scale, software defect repair is often time-
consuming and laborious, and it accounts for a large propor-
tion of maintenance costs. Software test is to detect as many
potential defects as possible before software release. There-
fore, accurate and efficient prediction of software defects
is of great significance for improving software quality and
reliability. Software defect prediction can be seen as a
2-classification problem, that is, software modules can be
divided into defective modules and non-defective modules
based on historical data. Historical data can reflect attributes
such as software module complexity, operands, and operators.

The associate editor coordinating the review of this article and approving
it for publication was Xiaobing Sun.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

distribution imbalance of the software defect data. However,
some of these features may be more relevant to classes
(defects or no-defects), and some may be redundant or irrel-
evant, which sometimes obscure the real important features
for classification, and over-dimensionality leads to dimen-
sionality disaster, so high correlation features need to be
selected. Therefore, the introduction of feature selection and
feature extraction in software defect prediction can not only
improve the efficiency, but also improve the accuracy [2].
At the same time, the proportion of normal module is far
more than the defective module, and the hidden character-
istics of defect module make it more difficult to be tested
out, which leads to the class distribution imbalance The non-
defective module is considered as the majority class and the
defective module is the minority class. Highly imbalanced

110333

https://orcid.org/0000-0001-7159-1424
https://orcid.org/0000-0002-2245-9133
https://orcid.org/0000-0002-9741-2954
https://orcid.org/0000-0001-7282-7638

IEEE Access

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

data sets reduce the ability of machine learning algorithms
to predict minority class [3]. At present, there are 2 common
methods to solve the problem of class distribution imbalance:
at the data view, the application of sampling technology to
the data set is mainly to balance the class distribution by
reducing most samples (i.e. under-sampling) or increasing a
few samples (i.e. oversampling), this method has been widely
studied [4]-[6]. At the algorithm view, the problem of class
imbalance is solved by directly modifying its training mech-
anism, with the aim of improving the accuracy of minority
groups. The traditional cost learning algorithm considers the
overall misclassification cost, while the cost sensitive learn-
ing algorithm pays more attention to the misclassification
cost of minority class samples, and believes that minority
class samples have larger misclassification cost. In addition,
the voting mechanism in ensemble learning reduces the resid-
ual effect caused by feature independence and redundancy.

In this paper, considering both data and algorithm views,
First of all, data are processed by the PCA feature processing
method and the combined sampling method of ADASYN
and the random sampling without replacement, so as to solve
software defect data redundancy and class distribution imbal-
ance, and then, the rule-based RIPPER algorithm is used as
the base classifier of MultiBoost ensemble learning, and the
software defect prediction model is constructed to improve
the prediction performance and efficiency.

The rest of this paper is organized as follows: Section 2
summarizes the relevant work. Section 3 describes the
proposed learning model of software defect prediction.
Section 4 presents the performance of EMR_SD algorithm.
Section 5 concludes the paper and future work with conclud-
ing remarks.

Il. RELATED WORK
Software defect prediction technology is to design software
metrics related to software defects by analyzing software
code, software development process, etc., and then estab-
lish the relationship between software metrics and software
defects by using historical defect data. Many technologies
based on machine learning have been used to predict soft-
ware defects, including artificial neural network [7], bayesian
network [8], SVM [9], dictionary learning [10], association
rule [11], naive bayes [12], tree-based methods [13], evolu-
tionary algorithm [14], etc. However, these algorithms ignore
the high dimension and class distribution imbalance of the
defect data set, which have a great impact on classification
performance [15]. For example, for a given data set with less
defective modules, you can achieve very high classification
accuracy by simply classifying all modules into non-defective
class. Obviously, the false alarm of defective modules is
ignored, which proves that it is not enough to simply take the
accuracy rate as the evaluation standard. And other indicators
such as AUC value [16] based on the ROC curve can make
further evaluation.

For the high dimensionality, previous studies on software
defect prediction have shown [17] that feature selection and

110334

feature extraction methods can make great help. For example,
Liu Shuyi et al. [18] propose a feature selection method
based on multi-strategy. Firstly, a variety of feature evalua-
tion algorithms are used to rank the features of defect data.
Under different methods, the same features are divided into
different grades according to its occurrence frequency, and
the highest grade of each feature is chosen as the final rank.
This method effectively avoids the loss of potentially effec-
tive information by just using a single algorithm for feature
evaluation. In order to fully measure the correlation between
different features and classes, Qiao Yu et al. [19] propose a
software defect prediction feature selection algorithm based
on similarity measure (SM). This algorithm first updates the
feature weights based on the similarity of the different classes
of samples. Secondly, the features are sorted in descending
order according to the weights, so as to generate a feature sort-
ing list, and all the feature subsets are sequentially selected
from the sorted feature list. In order to further improve the
performance of feature selection for software defect predic-
tion, Gao et al. [20] combine the advantages of different fea-
ture selection, proposed a hybrid feature selection algorithm,
combining feature sorting and feature subset selection. The
results show that this algorithm is superior to other feature
subset selection methods in software defect prediction. At the
same time, Laradji ef al. [21] combine feature selection and
ensemble learning to improve the accuracy of software defect
prediction considering the imbalanced class distribution of
the software defect data set.

In order to solve the imbalance problem of the defect
data set, at the data view, Chawla et al. [22] propose the
SMOTE algorithm, which increases the number of samples
by interpolating between minority class samples that are
close together. However, due to the large number of large
class of samples in the original data set, in order to achieve
a relative balance of the overall data sample distribution,
a large number of minority class of samples need to be
synthesized, resulting in a large increase in the number of
data sets compared with previous one, which will reduce
the prediction efficiency to a certain extent. Following the
SMOTE algorithm, Wang Shuo et al. [23] use re-sampling,
threshold shifting and other methods to further deal with the
data distribution and solve the class imbalance of software
defect data. In addition, Menzies T and Turhan B [24] achieve
a balance by taking a SMOTE oversampling of the minority
class and performing a simple random under-sampling (RUS)
on the majority class. Existing studies have shown that [25],
RUS and RUS-bal (under-sampling and over-sampling) are
superior to SMOTE and random oversampling, and have
achieved good classification results. At the algorithm view,
one class learning [26], cost sensitive learning [27], ensemble
learning and improved SVM are adopted to improve the
classification performance of the minority class. Ensemble
learning can combine the advantages of individual single
classifiers to improve overall classification performance. For
example, Seliya et al. [28] propose an early extension of bag-
ging ensemble learning algorithm, known as rough balanced

VOLUME 7, 2019

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

IEEE Access

bagging (RBBAG) algorithm. They also make empirical eval-
uation of two basic classifiers, naive bayes and C4.5 deci-
sion tree, the experimental results show that the performance
based on naive bayes is better than those based on C4.5 deci-
sion tree. In order to further improve the accuracy of the
model, Chawla N V et al. [29] not only study the imbalance
in the data view, but also process it from the algorithm view,
and integrate the SMOTE oversampling method and boosting
technology. Sampling techniques can balance the distribu-
tion of data, but there still exist the incorrect classification
of defective modules. Therefore, Khoshgoftaar et al. [30]
propose a cost sensitive enhancement technique combining
enhanced ensemble learning algorithm and cost sensitive fea-
tures, with a focus on the cost of misclassification. At present,
there are some rule-based classification techniques, such as
CBA2 used by Ma et al. [16] and DPRAR algorithm pro-
posed by Gabriela Czibula [11], which are used to predict the
defects of software modules and have achieved good results
in most evaluation indicators. In summary, feature selection
or feature extraction, combined sampling and ensemble learn-
ing have their own advantages in the prediction of software
defects. And combining the three is expected to achieve better
classification performance.

e
Software
defect data

S

Training Data

Feature
extraction

Combined
sampling

Random sampling
without replacement

S

RIPPER 1 RIPPER 2

Combination Rule
Trained Model

Performance Report

FIGURE 1. Software defect prediction model of EMR_SD.

MultiBoost
ensemble

RIPPER N

Ill. MODEL OF OUR APPROACH EMR_SD

EMR_SD is a software defect imbalance data prediction
model based on RIPPER classifier for MultiBoost ensemble.
The main framework is shown in Figure 1. When making
software defect prediction, first consider data pre-processing
phase for the input training sample, this is by PCA feature
extraction and combined sampling. And then, selecting a base

VOLUME 7, 2019

classifier for the preprocessed data, and MultiBoost is used to
integrate multiple base classifiers to obtain a higher accuracy
of diagnosis result.

A. DATA PRE-PROCESSING

In data pre-processing, there are always missing values in the
data sets, the average calculation mode is used for filling the
missing ones to reduce the influence of the prediction effect.
Then, statistical analysis is carried out on the defective mod-
ules so as to select the appropriate features to process the data,
which retains the features with strong dependence the to the
target output class, and achieves the purpose of dimension-
ality reduction and denoising. In this paper, principal com-
ponent analysis (PCA) is used for feature extraction. Each
module in the software defect data set is marked as defective
or non-defective, and the number of defects is far less than
that of no-defects, which shows a high degree of imbalance.
Therefore, a new combined sampling method is proposed to
balance the training data after dimension reduction, that is,
the combination of ADASYN and random sampling with-
out replacement. This combined sampling method not only
provides a balanced data distribution, but also enables the
learning algorithm to focus on samples that are difficult to
learn in minority class.

1) FEATURE EXTRACTION

In software defect data, excessive dimensionality may
degrade the performance of the algorithm and reduce the
effectiveness of the model. Removing the irrelevant and
redundant features of the software defect data to achieve the
purpose of data dimensionality reduction is an effective way
to improve the performance of the learning algorithm, and is
also key to the training model.

EMR_SD uses the principal component analysis (PCA)
feature extraction method [31], which achieves dimension-
ality reduction. Suppose a data set consists of tuples
or vectors with n features, the PCA searches for the
d-dimensional (d < n) orthogonal vectors which represent
the data best. PCA makes the original data projected from an
n—dimensional space into a small d-dimensional and it can
always be able to reveal previously undetected connections.
The PCA algorithm is described as follows:

Algorithm 1 PCA Feature Extraction Algorithm

Input: Data Sets D = {x1, x2, ..., Xp}.
Output: Projection Matrix w* = (w1, @y,wg).
1. Centralize all samples: x; < x; —% Yo i

2. Calculate the covariance matrix of the sample: XX T;

3. Decompose the covariance matrix XX " into ei genvalues,
and sort the eigenvalues A1 > Ay > ... > Ay;

4. Set value d to make its contribution rate more than p:

d
Doimi ki

ST = M

i=1M

5. Take the eigenvector corresponding to the largest d
eigenvalues w, w3, ..., w4.

110335

IEEE Access

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

The PCA algorithm can perform simple vector subtraction
and linear mapping by preserving the vector of W* and the
mean vector of samples, which projects the sample from
the original high-dimensional space to the low-dimensional
space. The eigenvector corresponding to the smallest eigen-
value is often correlated with noise. When the data are
affected by noise, the PCA algorithm discards the eigenvector
corresponding to the smallest (n — d) eigenvalues. Therefore,
achieve denoising effect and guarantee the quality of the
sampled data.

2) COMBINED SAMPLING

Class imbalance distribution, that is, the number of samples
of one class in the data set is significantly less than the
number of samples of other classes, for a 2-classification
problem, the classes are named as the majority class and the
minority class. Class imbalance will decline classification
performance, which makes it difficult to meet the accuracy
requirements in the classification process. Therefore, consid-
ering combined sampling method of adaptive synthetic sam-
pling (ADASYN) and random sampling without replacement
to solve the problem of data class imbalance.

ADASYN is an adaptive synthetic sampling method pro-
posed in Literature [32]. This method adaptively synthesizes
the minority samples according to its distribution in the train-
ing data set, which focuses on more of the samples difficult
to learn and less of the samples easy to learn. The key of
the ADASYN method is to find a probability distribution,
it will be used as the criterion for the number of samples to
be synthesized for each minority samples, and finally obtain
the new sample set. The specific algorithm is as shown in
Algorithm 2.

By using ADASYN sampling, the synthesized samples of
the minority class are added to the original sample set to
achieve a balance of the data set. Then random sampling with-
out replacement method can be further used to process the
data to extract a smaller data set with a balanced guarantee.
Therefore, the data quality is improved, and a data set with
reasonable scale and distribution is ready for the classification
and the prediction performance of EMR_SD is improved.

B. BASE CLASSIFIER OF RIPPER

EMR_SD applies rule learning RIPPER as the base classifier
to classify software defect data sets. There are two phases,
the first is to summarize the correlation between features and
classes by the induction and learning of training samples,
so as to form if-then rules. The second phase is to use the
formed rules to perform matching detection on the unknown
sample to achieve the purpose of classification. The general
rule generation is as Format (1).

n
ii\l(xi =a;) —> Y (H

The left of the arrow is called the rule antecedent, x; rep-
resents feature, the right of the arrow is called the rule
postscript, y; is a conclusion, which represents the class.

110336

Algorithm 2 ADASYN Algorithm
Input: Data set D1, which includes m samples {x;, Y;},
i=1,2,...,m,x;is a sample of n-dimensional
space, y; € {0, 1} is label, y; = O represents minority
class and y; = 1 is majority class. Where mq and m
represent the number of samples of few and many
classes respectively.

Output: New composite samples.

1. Calculate the class imbalance I = mg/m;, where
[€(0,1];

2. Calculate the total amount of samples to be synthesized:
G = (m; — mg) x B, where B € [0, 1] is a coefficient.
G is the number of samples of the minority class to be
synthesized;

3. For each of the minority samples x;, find the K-nearest
neighbor points and calculate: I'; = A;/K,
i=1,2,...,m ,where A; is the number of multi-class
samples in the K-nearest neighbor, therefore,

[e (0, 1];
A mo A
4. Accordingto " = I';/ > Ty, regularization T';, T'; is the
i i=1

probability distribution, and (3 IQ =1);

5. Calculate the number of sampleslthat need to be
synthesized for each of the minority class of samples x;:

gi= IA‘,- x G where G is the total number of samples that
need to be synthesized;

6. For each minority class sample x;, the following samples
g; are synthesized;

T.forj=1:g;

8. Select a minority class of samples x; randomly from the
K nearest neighbors of x;;

9. According to neighbors of §; = x; + (xj — x;) X A;
synthesis sample neighbors of S, A € [0, 1] is a random
number;

10. end

For the binary classification problem in software defect
prediction, RIPPER algorithm firstly carries out ascending
ranking according to the frequency of class occurrence.
Because there are relatively few non-defective modules in
the software defect data set, defect class is ahead of the
non-defective modules. In this way, the RIPPER algorithm
can first deal with the least frequent class, and finally deal
with the most frequent class. It is the particularity of the
rule of RIPPER that makes a good performance in handing
unbalanced data. The flow chart of RIPPER algorithm is
shown in Figure 2.

RIPPER algorithm mainly includes rule generation and
rule pruning. When generating rules, firstly empty the rule set
and then add antecedents to the rule set until the rule set can
be extended to cover the entire data set. During rule pruning,
rules and antecedents are continually deleted. Finally, use
Format (2) to determine whether the most streamlined rule

VOLUME 7, 2019

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

IEEE Access

Initialize the rule set
v
Sort by the frequency of the classes

— Determine whether there is a positive example

Growthing
v
pruning
v

Delete the sample
covered by the rule

12

Generating rule set

A

End

FIGURE 2. RIPPER algorithm flow chart.

is reached.
. hi — hy
e+ hy

(©))

hi is the number of samples covered by the rule, A, is
the number of samples not covered by the rule. Stop pruning
when function C no longer grows.

C. MULTIBOOST ENSEMBLE CLASSIFICATION

When constructing the prediction model, the smaller the vari-
ance, deviation and mean square error are, the more stable
the model is. Therefore, EMR_SD considers the MultiBoost
ensemble learning method, which combines wagging (a tech-
nique for variance reduction) and AdaBoost (a technique for
both bias and variance reduction) [33]. EMR_SD achieves
a good perform by wagging a set of base classifier groups,
and the base classifiers use the AdaBoost strategy inside each
group.

Let T be the number of base classifiers combined using
the MultiBoost method, k is the number of base classifier
groups and /; is an iterative termination flag variable. /; can
be obtained as Formula (3).

k= |VT]
L=[ixT/k], i=1,...,k—1 3)
Ii:T7 izk,...,oo

As scholars have proved that the base classifier trained by
each iteration improves the performance of the whole com-
bined model less than its previous iteration [34]. The Multi-
Boost method improves AdaBoost, AdaBoost always makes
T iterations according to the number of base classifiers, and

VOLUME 7, 2019

MultiBoost uses the iterative termination flag variable for
iteration rounds. The MultiBoost algorithm is as follows

Algorithm 3 MultiBoost Ensemble Algorithm
Input: Data set D: data set of m training samples;
Cycle number T': number of base classifiers;
Integer /;: base classifier group iteration terminates
marker variable.
Output: Composite model
M*(x) =argmax »_ log ﬁlt
ye¥ t:M;(x)=y

1. First, the weights w(x;),j = 1,2, ...m of each
sample assigned to be 1/m in the data set
D = {(x1,Y1), (%2, Y2), ..., (m, Ym)}, where y; € Y';

2. Seti = 1; //The initial value of i is 1

3. For t = 1 to T {//Set the maximum number of cycles
toT

4. calculate the value of I; according to (3).

5.If Ir = t then rest D to random weights drawn from
the continuous Poisson distribution, and each weight
value needs to be normalized;

6. i + +; //After each base classifier group terminates,
wagging iteration is conducted once.

7. M; = Cj(D); //Use the classification model to get each
base classifier.

8. The egror of each base classifier is calculated
g = X €D:M; ()Y wiyj :

9.Ifg; > 0.5 th’gn rest D to random weights drawn from
the continuous Poisson distribution;

10.i 4+ +;

11. go to Step 7,

12. else If &, = O then

13.set B, = 10719,

14. reset D to random weights drawn from the continuous
Poisson distribution;

15.i++;

16. else

17. 8, = lf—’st;

18. For each x; € D

19. divide w(x;) by 2, if M;(x;) # Y; and 2 (1 — &,)
otherwise;

20. If o(x;) < 1078, set w(x;) to 1078,

21.}

IV. EXPERIMENTS AND RESULTS

A. DATA SETS

The data set used in this experiment is the MDP dataset from
NASA, which is widely used in software defect prediction
research [35]. This data set consists of 13 data sets, each of
which is collected from an actual software system project and
consists by the class label and static code features based on
Loc, McCabe, Halstead, and so on. Loc line measurement is a
measure of program complexity based on the number of lines

110337

IEEE Access

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

TABLE 1. NASA MDP dataset.

Proportion of

Data set Defect No-defect Features)
defective modules
CM1 48 457 40 9.50%
MC2 52 109 40 32.30%
PC5 516 16670 39 3.00%
PC1 76 1031 40 6.87%
MWI1 31 372 40 7.69%
PC2 23 5566 40 0.41%
JM1 2102 8776 21 19.32%
KC1 325 1782 21 15.42%
KC3 43 415 40 9.40%
KC4 61 64 40 48.80%
PC3 160 1403 40 10.24%
PC4 178 1280 40 12.21%
MCl1 68 9398 39 0.72%
Defect rate
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%

MC2 PC5 PCI MWI PC2 JM1 KCl KC3 KC4 PC3 PC4 MCI

FIGURE 3. Defect rate.

of source code. McCabe loop complexity measurement is a
method based on the complexity of program control flow. It is
believed that the more loops, the more complex the program
is. The Halstead science metric calculates the complexity of
a program based on the number of operators and operands in
the executable lines of code in the program. Table 1 shows
the basic information of all NASA MDP data sets. From the
Table 1, it can be seen that the proportion of defective mod-
ules is extremely low, which shows the imbalance of class
distribution of data. The distribution of the imbalance rate
of the data set is shown in Figure 3. As shown in Figure 3,
the proportion of defective modules in all data sets is less
than 50%, and most of them are concentrated below 20%,
which again presents a serious imbalance in the NASA MDP
data set. This paper selects some representative data sets for
experiments. In order to prove the validity of the constructed
prediction model, the proposed algorithm is compared with
other similar algorithms.

B. EVALUATION MEASUREMENTS

The software defect prediction data has a class imbalance
distribution, and when the classifier performance is evaluated
only from the overall perspective, the classification effect
of majority class will overshadow the minority class. For
the evaluation of the classifier performance, it is necessary
to take into account the defect detection rate while paying

110338

attention to the overall performance. Therefore, a variety
of performance indicators are usually adopted to evaluate
the prediction model, such as Accuracy, Recall, F-measure
and AUC. These indicators are based on the definition of
confusion matrix, as shown in Table 2.

TABLE 2. Confusion matrix.

Actual Predicted
Positive Negative
Positive TP (true positive) FN (false negative)
Negative FP (false positive) TN (true negative)

Accuracy is represented by the ratio of the number of
correctly predicted modules to the total number of modules.
Recall is the ratio of the number of defective modules cor-
rectly predicted to the actual number of defective modules.
F-measure is the combination of Recall and Precision for
evaluation. Precision is the ratio of the number of modules
correctly predicted to be defective modules to the total num-
ber of defective modules. AUC (Area Under the Curve) is
defined as the ROC Curve (Receiver Operating Characteris-
tic) of the Area. AUC means that given a defective sample
and a non-defective sample randomly, the probability value
that the classifier outputs the defective sample as defect is
greater than the probability value that the classifier outputs
the non-defective sample as defect. AUC value can effectively
evaluate the classification effect of 2- classification problem.
The larger the value, the better the performance of the soft-
ware defect prediction model. The calculation formula is as
follows

TP + TN
Accuracy = 4
TP +TN + FP + FN
TP
Recall = ———— (5)
(TP + FN)
. TP
Precision = ——— (6)
(TP + FP)
2 x Recall x Precision
F — measure = (7)

Recall + Precision
The ROC curve is shown in Figure 4.

true positive rate

falze positive rate
FIGURE 4. ROC curve.

For a specific prediction model and training data set,
the prediction result corresponds to a point on the ROC curve,
AUC, varying in [0, 1], measures the area under the ROC

VOLUME 7, 2019

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

IEEE Access

TABLE 3. Experimental results.

Data Acc Re PF Pre AUC Bal

CM1 90.99% 095 0.13 0.88 0.91 097 0.90
MC2 82.05% 08 022 079 0.82 089 082
PC1 95.74% 097 0.06 094 0.95 098 095
MW1 93.72% 097 010 091 0.93 097 093
KClI 84.35% 088 0.19 082 0.85 0.91 0.84
KC3 92.10% 095 0.11 0.89 0.92 097 091
PC3 91.36% 096 013 0.87 0.91 097 0.90
PC4 94.48% 090 0.02 0.98 0.94 098 093

F-mea

curve which describes the trade-off between Recall (true
positive rate) and PF (false positive rate). The larger AUC,
the better the performance of the classifier is [36]. A new
evaluation indicator Balance can be introduced by calculating
the Euclidean distance from the (PF, Recall) point to the (0,1)
point. The definition of Balance is as follows

V(0 — PF)? + (1 — Recall)?
V2
where PF represents the proportion of defect modules mis-

classified in non-defective class.
FP

= —
FP+1TN

®)

Balance =1 —

©))

C. EXPERIMENTAL DESIGN AND ANALYSIS OF RESULT

In order to verify the prediction performance of the model,
the experiment is based on the WEKA and Matlab platform,
and the final results are verified by the 10-fold cross vali-
dation method. The sampling rate of the random sampling
without replacement and the number of iterations of Multi-
Boost ensemble learning are set to empirically experimental
values of 0.9 and 20. The sampling rate is originally set to
[0.7, 1.0], the step size is 0.1, and the number of iterations is
set to [10], [30], the step size is 10. The experimental results
achieve the best when the sampling rate is 0.9 and the number
of iterations is 20.

The experimental results are shown in Table 3.

TABLE 4. Results of each stage.

Table 3 summarizes the experimental results of EMR_SD.
The corresponding values of the evaluation indicators Accu-
racy, Recall, Precision, F-measure, and Balance are obtained
based on the confusion matrix.

Because Accuracy is an indicator of overall evaluation,
it represents the proportion of the number of modules cor-
rectly predicted in the total number of modules, and the
number of correctly predicted modules includes the correct
prediction of the defective module and the total number of
correct predictions of the non-defective module. In the case
of imbalanced software defect data, due to the relatively small
number of defective modules, there may be case where all
defective modules are misclassified and the accuracy is still
high. Therefore, simply using Accuracy as an indicator for
evaluating the performance of a model is not comprehensive.
Further combining F-measure and AUC value Table 3 shows
the prediction performance on F-measure and AUC. Except
that the F-measure and the AUC on MC2 data set are slightly
lower than other data sets, the remaining values are all
above 0.9, indicating that the preprocessing method proposed
in this paper can conduct more effective data processing for
imbalanced data and that the integrated model can better
adapt to the software defect data set. For each data set, When
the point (PF, Recall) is closer to the (0, 1) point, the perfor-
mance of the prediction model is better, according to which,
the indicator Balance can be calculated, and it is frequently
used by software engineers in practice [37].

Firstly, in order to explain how EMR_SD improves the
prediction performance, we carry out the experiments stage
by stage. The experimental results are shown in Table 4 Sec-
ondly, in comparison with baseline methods, in order to make
the comparison fair, preprocessing should also be performed
on baseline methods. In addition, three classical algorithms
widely accepted by the public in the field of software defect
prediction, namely naive bayes, J48 and SVM are selected
for comparative experiments to prove the effectiveness of
EMR_SD. NB is a simple probabilistic classifier, which

Measure Stage CMl1 MC2 PC1 MWI KC1 KC3 PC3 PC4 Average
Multboost 8891 7205 9350 9231 8533 89.08 89.70 90.88 87.72
Accuracy PCA-+Multboost 90.10 7578 9322 9256 8538 90.83 90.02 9136 88.66
(%) . .
PCA+Combined sampling 9099 8205 9574 9372 8435 9210 9136 9448 90.99
Multboost
Multboost 0.10 0.53 0.38 0.28 039 0.24 032 0.56 035
Fomeasure PCA-+Multboost 0.17 0.54 0.51 0.54 0.40 030 036 0.54 0.42
PCA+Combined sampling 0.91 0.82 0.95 0.93 0.85 0.92 0.91 0.94 0.90
Multboost
Multboost 0.76 0.73 0.84 0.79 0.79 0.76 0.84 0.93 0.81
AUC PCA+Multboost 0.77 0.78 0.85 0.76 0.79 0.81 0.82 0.90 0.81
PCA+Combined sampling* 0.97 0.89 0.98 0.97 0.91 0.97 0.97 0.98 0.96
Multboost
Multboost 034 0.61 0.50 0.43 0.50 0.43 0.46 0.62 0.49
Balance PCA-+Multboost 0.36 0.60 0.52 0.46 0.51 0.44 0.49 0.59 0.50
PCA+Combined sampling* 0.90 0.82 0.95 0.93 0.84 0.91 0.90 0.93 0.90
Multboost
VOLUME 7, 2019 110339

IEEE Access

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

TABLE 5. Results of comparison with baseline algorithms.

Measure Algorithm CM1 MC2 PC1 MWI KC1 KC3 PC3 PC4 Average
data processingtnaive bayes 73.24 69.74 6.0.54 73.24 62.77 70.15 70.65 76.30 70.87
Accuracy data processing+J48 86.74 71.94 89.87 89.39 81.57 89.02 87.01 91.06 85.83
(%) data processing+SVM 76.52 62.05 68.03 69.96 88.90 74.83 74.65 76.04 73.87
EMR _SD 90.99 82.05 95.74 93.72 84.35 92.10 91.36 94.48 90.99
data processing+naive bayes 0.72 0.65 0.44 0.77 0.67 0.62 0.73 0.79 0.67
F data processing+J48 0.87 0.72 0.90 0.99 0.83 0.89 0.88 0.91 0.87
-measure
data processing+SVM 0.79 0.55 0.61 0.67 0.89 0.76 0.74 0.78 0.72
EMR_SD 0.95 0.86 0.97 0.97 0.88 0.95 0.96 0.90 0.95
data processing+naive bayes 0.80 0.62 0.76 0.81 0.90 0.80 0.77 0.88 0.79
AUC data processing+J48 0.88 0.76 0.91 0.92 0.85 0.92 0.88 0.92 0.88
data processing+SVM 0.77 0.70 0.68 0.70 0.89 0.75 0.75 0.76 0.85
EMR_SD 0.97 0.89 0.98 0.97 0.91 0.97 0.97 0.98 0.96
data processing+naive bayes 0.73 0.64 0.50 0.72 0.56 0.67 0.68 0.75 0.66
Bal data processing+J48 0.86 0.72 0.89 0.89 0.80 0.88 0.85 0.91 0.85
alance
data processing+SVM 0.74 0.59 0.63 0.69 0.89 0.74 0.74 0.74 0.72
EMR_SD 0.90 0.82 0.95 0.93 0.84 0.91 0.90 0.93 0.90
TABLE 6. Comparisons of different algorithms on Accuracy, F-measure, AUC and Balance.
Measure Algorithm CM1 MC2 PC1 MW1 KCl1 KC3 PC3 PC4
Accuracy DNC 75.04 62.86 78.30 82.22 74.61 76.14 78.35 84.22
(%) CEL 79.58 59.89 83.48 82.22 73.83 77.05 81.26 87.67
AKPCC 76.55 65.38 86.45 80.39 71.78 76.24 80.38 83.91
MEKL 68.03 74.76 69.00 77.41 65.48 66.63 69.13 73.96
DPRAR 87.16 89.60 95.60 94.10 82.30 83.00 96.70 96.10
CBA2 80.36 69.81 91.78 91.04 83.71 91.91 86.48 83.96
ACAR 73.68 76.36 68.17 79.56 72.77 76.72 69.97 76.21
EMR SD 90.99 82.05 95.74 93.72 84.35 92.10 91.36 94.48
DNC 0.32 0.48 0.38 0.31 0.47 0.33 0.40 0.16
CEL 0.27 0.49 0.32 0.27 0.36 0.33 0.36 0.48
AKPCC 0.21 0.49 0.35 0.33 0.35 0.29 0.39 0.43
Fomeasure MEKL 0.40 0.63 0.50 0.49 0.50 0.44 0.46 0.55
DPRAR 0.65 0.84 0.78 0.76 0.71 0.66 0.86 0.85
CBA2 0.16 0.41 0.43 0.46 0.47 0.41 0.29 0.52
ACAR 0.39 0.63 0.27 0.43 0.48 0.45 0.36 0.52
EMR SD 091 0.82 0.95 0.93 0.85 0.92 0.91 0.94
DNC 0.79 0.65 0.87 0.71 0.82 0.80 0.82 0.92
CEL 0.70 0.91 0.83 0.71 0.81 0.82 0.80 0.89
AKPCC 0.71 0.86 0.78 0.69 0.77 0.78 0.79 0.91
AUC MEKL 0.71 0.76 0.71 0.72 0.70 0.66 0.64 0.77
DPRAR 0.90 0.87 0.92 0.92 0.82 0.85 0.92 0.90
CBA2 0.60 0.67 0.83 0.86 0.84 0.70 0.82 0.89
ACAR 0.80 0.73 0.74 0.89 0.75 0.87 0.75 0.86
EMR SD 0.97 0.89 0.98 0.97 0.91 0.97 0.97 0.98
DNC 0.65 0.57 0.68 0.62 0.73 0.66 0.74 0.85
CEL 0.54 0.60 0.61 0.46 0.55 0.49 0.57 0.63
AKPCC 0.49 0.57 0.56 0.52 0.51 0.49 0.52 0.65
Bal MEKL 0.71 0.75 0.70 0.71 0.68 0.66 0.63 0.76
alance DPRAR 0.90 0.84 0.92 0.91 0.82 0.85 0.89 0.87
CBA2 0.43 0.52 0.60 0.64 0.60 0.53 0.47 0.73
ACAR 0.79 0.70 0.73 0.84 0.75 0.82 0.74 0.81
EMR _SD 0.90 0.82 0.95 0.93 0.84 0.91 0.90 0.93

assumes that the features are statistically independent of each
other. It can provide good classification results, even though
some of the features are inter-related. J48 is a decision tree
based classifier. Decision trees use feature values for the clas-
sification of instances. Each feature is represented by a node
in the decision tree, while the assumption values of each node
is represented as branches. The classification of instances is

110340

performed by following a path through the tree from the root
node to the leaf nodes by checking feature values against
rules. The basic idea of SVM is solving sum functions and
quadratic programming, and solving the nonlinear separa-
ble problem by mapping data to high-order feature space
through sum function. The experimental results are shown
in Table 5.

VOLUME 7, 2019

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

IEEE Access

At last, this paper compare with other similar algorithms
to further verify the effectiveness of EMR_SD, including
Dynamic version of Adaboost.NC (DNC) [23], Coding based
Ensemble Learning (CEL) [39], Asymmetric Kernel Prin-
cipal Component Classification (AKPCC) [40], Multi-core
kernel ensemble learning (MEKL) [41], Relational associ-
ation rule mining (DPRAR) [11], Classification based on
Association rules (CBA2) [16] Mining based on Atomic
Association rules (ACAR) [42]. The performance evaluation
of classifier with class imbalance data needs to be analyzed
by using multiple evaluation indicators. The results are shown
in Table 6.

It can be seen from Table 4, on the whole, the Accuracy,
F-measure and Balance with PCA dimension reduction and
denoising are improved comparing with those without any
preprocessing. In particular, the values of F-measure on data
set PC1 and MW are significantly improved. And the predic-
tion performance is improved due to the dimension reduction.
When the combined sampling method is further used to pre-
process the data, the prediction performance improves more,
all indicators are above 0.9. This indicates that each stage of
EMR_SD has a certain effect on prediction performance.

As can be seen from Table 5, among the three classical
algorithms, J48 has the best prediction performance, but
still inferior to EMR_SD. Compared with J48 classifier,
EMR_SD algorithm improves at least 5.9% in each indicator.
This also proved the superiority of MultiBoost classifier.

It can be seen from Table 6 that EMR_SD has a mean
value of 0.9 on the F-measure indicator, which is at least
18.42% higher than that of the similar algorithms. Among
the similar algorithms, the performance of the DPRAR algo-
rithm on the F-measure indicator is only to EMR_SD. The
F-measure value of the CM1 data set is only 0.65, and the
EMR_SD achieves the F-measure value of 0.91. The predic-
tion performance of this data set is greatly improved, which
makes up the shortcomings of the DPRAR algorithm for the
prediction of the CM1 data set. From the comparison of the
AUC values, it can be seen that compared with the similar
algorithms, the AUC value of EMR_SD is at least 7.87%
higher than the similar algorithms, up to 0.96, especially in
the PC1 and PC4 data sets. The performance on AUC value
is relatively high and reaches 0.98, because the EMR_SD
algorithm considers both the correct classification of the non-
defective modules and defective modules, and the goal of
comprehensively improving the classification performance
of the prediction model is achieved. It can be seen that the
EMR_SD algorithm in the mean of Balance is higher than
other similar algorithms and achieves 0.9. Although the Bal-
ance is slightly lower for the individual data set MC?2, it still
achieves 0.82. It can be clearly seen from Fig.5 that in the
column diagram of F-measure, the column corresponding to
EMR_SD algorithm is higher than other similar algorithms.
From the comparison of the Balance value, it can be seen
that the Balance curve of EMR_SD algorithm is located at
the top. It can be seen from the radar diagram of AUC that
the circle representing EMR_SD is almost located outside all

VOLUME 7, 2019

F-measure

09

0.7
0.6
0.5
0.4
0.3
0.2
0.1

CMI MC2 PClI MWI KCl KC3 PC3 PC4
H DNCH CELE AKPCCH MEKLE DPRARE CBA2i ACAR™ EMR_SD
(a)

Balance
1
09 F 3% _— .
0.7 — /0\‘,
0.6 &
05 F
04 I
03 F
02 I
0.1
0 1 1 1 1 1 1 1
CM1 MC2 PCl1 MWI1 KClI KC3 PC3 PC4
—&— DNC —— CEL A AKPCC
MEKL —%— DPRAR —@— CBA2
—+—ACAR ——EMR SD
(b)
PC3
KC3

(c)

FIGURE 5. Compare other algorithms on F-measure, balance and AUC.

circles, which indicates that EMR_SD algorithm has better
prediction performance. However, since this paper adopts
the same dimensionality reduction and combined sampling
method for all data sets, it does not consider the charac-
teristics of each data set itself, resulting in the prediction
performance is not obvious for the MC2 dataset with less data
and the KC1 dataset with fewer attributes. Combined with all
evaluation indicators, EMR_SD algorithm can achieve better

110341

IEEE Access

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

prediction result in software defect prediction, and has strong
theoretical and experimental basis for further research.

V. THREATS OF VALIDATION

In conducting empirical research, it is important to be aware
of potential threats to the validity of the results and conclu-
sions. Moreover, these potential threats exist in most studies.
The potential threats for this paper include two aspects. First,
sampling bias. Since EMR_SD algorithm has randomness
to create different instances during the combined sampling,
we mitigate this potential bias with 10 runs of the experiment
for EMR_SD. Second, threats to construct validity are about
whether the performance indicators are comprehensive for
evaluation. To minimize the threads, we use multiple evalu-
ation indicators to evaluate the prediction performance, such
as Accuracy, F-measure, AUC and Balance, which are widely
used in current software defect prediction research.

VI. CONCLUSION

This paper proposes an ensemble classification algorithm,
EMR_SD, for software defect prediction. The main challenge
affects the overall performance of the predictor is that there
are high-dimension and imbalanced class distribution prob-
lems in the defect data sets. Therefore, EMR_SD uses PCA
method to reduce the dimension of data set and combined
sampling method to balance the class distribution. Moreover,
EMR_SD uses the MultiBoost ensemble learning method
as the classifier, which combines wagging (a technique for
variance reduction) and AdaBoost (a technique for both bias
and variance reduction), as the smaller the variance, deviation
and mean square error are, the more stable the classifier is.
To illustrate the prediction performance of the EMR_SD,
the experiments are carried out stage by stage, and prove
that each stage has contributions to the performance. Then,
EMR_SD is contrasted with relative algorithms and performs
the best on the indicators of Accuracy, F-measure, AUC,
and Balance, which further shows great potential for soft-
ware defect prediction. Because this paper adopts a unified
data processing method for all data sets, and does not con-
sider the unique characteristics of each data set. Therefore,
in the future, targeted dimensionality reduction and combined
sampling method will be used for different data set.

ACKNOWLEDGMENT
The authors are grateful to valuable comments and sugges-
tions of the reviewers.

REFERENCES

[1] N. J. Pizzi, “A fuzzy classifier approach to estimating software quality,”
Inf. Sci., vol. 241, pp. 1-11, Aug. 2013.

[2] T. M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, “A comparative
study of iterative and non-iterative feature selection techniques for software
defect prediction,” Inf. Syst. Frontiers, vol. 16, no. 5, pp. 801-822, 2014.

[3] Z. Mahmood, D. Bowes, P. C. R. Lane, and T. Hall, “What is the impact
of imbalance on software defect prediction performance?”” in Proc. 11th
Int. Conf. Predictive Models Data Anal. Softw. Eng., Beijing, China, 2015,
Art. no. 4.

110342

[4]

[5]

[6]

[71

[8]
[9]

[10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]
(27]

(28]

Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Trans. Softw. Eng., vol. 39, no. 6, pp. 757-773, Jun. 2013.
Y. Kamei, T. Fukushima, S. Mclntosh, K. Yamashita, N. Ubayashi, and
A. E. Hassan, “Studying just-in-time defect prediction using cross-project
models,” Empirical Softw. Eng., vol. 21, no. 5, pp. 2072-2106, 2016.

Y. Ma, W. Pan, S. Zhu, H. Yin, and J. Luo, “An improved semi-supervised
learning method for software defect prediction,” J. Intell. Fuzzy Syst.,
vol. 27, no. 5, pp. 2473-2480, 2016.

V. Vashisht, M. Lal, and G. S. Sureshchandar, “Framework for software
defect prediction using neural networks,” J. Eng. Appl., vol. 2015, no. 8,
pp. 384-394, 2015.

A. Okutan and O. T. Yildiz, “Software defect prediction using Bayesian
networks,” Empirical Softw. Eng., vol. 19, no. 1, pp. 154-181, 2014.

M. Y. Ricky, B. Yulianto, and F. Purnomo, “Mobile application soft-
ware defect prediction,” in Proc. IEEE Symp. Service-Oriented Syst.
Eng. (SOSE), Oxford, U.K., Mar./Apr. 2016, pp. 307-313.

X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictionary
learning based software defect prediction,” in Proc. 36th Int. Conf. Softw.
Eng. (ICSE), Hyderabad, India, 2014, pp. 414-423.

G. Czibula, Z. Marian, and 1. G. Czibula, “Software defect prediction
using relational association rule mining,” Inf. Sci., vol. 264, pp. 260-278,
Apr. 2014.

A. Soleimani and F. Asdaghi, “An AIS based feature selection method
for software fault prediction,” in Proc. Iranian Conf. Intell. Syst. (LCIS),
Feb. 2014, pp. 1-5.

B.Li, B. Shen, J. Wang, Y. Chen, T. Zhang, and J. Wang, ““A scenario-based
approach to predicting software defects using compressed C4.5 model,”
in Proc. IEEE 38th Annu. Int. Comput., Softw. Appl. Conf., Jul. 2014,
pp. 406-415.

S. S. Rathore and S. Kumar, “Predicting number of faults in software
system using genetic programming,” in Proc. Int. Conf. Soft Comput.
Softw. Eng., vol. 62, 2015, pp. 303-311.

Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, “Cost-sensitive
boosting for classification of imbalanced data,” Pattern Recognit., vol. 40,
no. 12, pp. 3358-3378, 2007.

B. Ma, K. Dejaeger, J. Vanthienen, and B. Baesens, ““Software defect pre-
diction based on association rule classification,” Katholieke Univ. Leuven,
Leuven, Belgium, Tech. Rep., 2011, vol. 14, pp. 396-402.

J. Chen, S. Liu, W. Liu, X. Chen, Q. Gu, and D. Chen, “A two-stage data
preprocessing approach for software fault prediction,” in Proc. 8th Int.
Conf. Softw. Secur. Rel. (SERE), Jun./Jul. 2014, pp. 20-29.

S. Y. Liu, Y. Zhai, and D. S. Liu, *“Cross-project software
defect prediction with multi-strategy feature fifiltering,” Comput.
Eng. Appl, pp. 1002-8331, Nov. 2018. [Online]. Available:

http://kns.cnki.net/kcms/detail/11.2127.tp.20181101.1808.051.html

Q. Yu, S.-J. Jiang, R.-C. Wang, and H.-Y. Wang, “A feature selection
approach based on a similarity measure for software defect prediction,”
Front. Inf. Technol. Elect. Eng., vol. 18, no. 11, pp. 1744-1753, 2017.

K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, ““Choosing software
metrics for defect prediction: An investigation on feature selection tech-
niques,” Softw.-Pract. Exper., vol. 41, no. 5, pp. 579-606, 2011.

I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction
using ensemble learning on selected features,” Inf. Softw. Technol., vol. 58,
pp. 388-402, Feb. 2015.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
pp. 321-357, Jun. 2002.

S. Wang and X. Yao, “Using class imbalance learning for software defect
prediction,” IEEE Trans. Rel., vol. 62, no. 2, pp. 434-443, Jun. 2013.

T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, “Impli-
cations of ceiling effects in defect predictors,” in Proc. 4th Int. Workshop
Predictor Models Softw. Eng., 2008, pp. 47-54.

L. Pelayo and S. Dick, “Evaluating stratification alternatives to improve
software defect prediction,” IEEE Trans. Rel., vol. 61, no. 2, pp. 516-525,
Jun. 2012.

N. Japkowicz, C. Myers, and M. Gluck, “A novelty detection approach to
classification,” IJCAIL, vol. 1, pp. 518-523, Aug. 1995.

H. He and E. A. Garcia, “‘Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.

N. Seliya, T. M. Khoshgoftaar, and J. Van Hulse, ‘‘Predicting faults in high
assurance software,” in Proc. IEEE 12th Int. Symp. High-Assurance Syst.
Eng. (HASE), Nov. 2010, pp. 26-34.

VOLUME 7, 2019

H. He et al.: Ensemble MultiBoost Based on RIPPER Classifier for Prediction of Imbalanced Software Defect Data

IEEE Access

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTEBoost:
Improving prediction of the minority class in boosting,” in Proc. Eur. Conf.
Knowl. Discovery Databases (PKDD), 2003, pp. 107-119.

T. M. Khoshgoftaar, E. Geleyn, L. Nguyen, and L. Bullard, “Cost-sensitive
boosting in software quality modeling,” in Proc. 7th IEEE Int. Symp. High
Assurance Syst. Eng., Oct. 2002, pp. 51-60.

C. Y. Zhu, X. Z. Chen, L. Yan, and X. M. Zhang, “Research on defect
prediction model of artifificial immune recognition software based on
principal component analysis,” Comput. Sci., vol. 44, no. 6A, pp. 483-518,
2017.

H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in Proc. Int. Joint Conf.
Neural Netw., New York, NY, USA, Jun. 2008, pp. 1322-1328.

E. Bauer and R. Kohavi, “An empirical comparison of voting classifica-
tion algorithms: Bagging, boosting, and variants,” Mach. Learn., vol. 36,
pp. 105-139, Jul. 1999.

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the margin:
A new explanation for the effectiveness of voting methods,” Ann. Statist.,
vol. 26, no. 5, pp. 1651-1686, 1998.

T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, and
B. Turhans, “The promise repository of empirical software engineering
data,” Dept. Comput. Sci., West Virginia Univ., Beckley, WV, USA, Tech.
Rep., 2012.

H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning,” Inf. Softw.
Technol., vol. 96, pp. 94-111, Apr. 2018.

T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2-13, Jan. 2007.

C. Ni, X. Chen, F. Wu, Y. Shen, and Q. Gu, “An empirical study on Pareto
based multi-objective feature selection for software defect prediction,”
J. Syst. Softw., vol. 152, pp. 215-238, Jun. 2019.

Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learning to
improve software defect prediction,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 42, no. 6, pp. 1806—1817, Nov. 2012.

Y. Ma, G. Luo, and H. Chen, “Kernel based asymmetric learning for
software defect prediction,” IEICE Trans. Inf. Syst., vol. E95.D, no. 1,
pp. 267-270, 2012.

T. Wang, Z. Zhang, X. Jing, and L. Zhang, “Multiple kernel ensemble
learning for software defect prediction,” Automated Softw. Eng., vol. 23,
no. 4, pp. 569-590, 2016.

Y. Shao, B. Liu, S. Wang, and G. Li, “A novel software defect predic-
tion based on atomic class-association rule mining,” Expert Syst. Appl.,
vol. 114, pp. 237-254, Dec. 2018.

HAITAO HE received the Ph.D. degree in
mechanical design and manufacturing from
Yanshan University, China, where she is currently
a Professor with the School of Information Science
and Engineering. Her research interests include
data mining network information security and
artificial intelligence.

XU ZHANG received the B.S. degree in mathe-
matics and applied mathematics from the Hebei
Normal University of Science and Technology,
China, in 2017. She is currently pursuing the mas-
ter’s degree with the School of Information Sci-
ence and Engineering, Yanshan University, China.
L] Her major is computer science and technology. Her
research interests include data mining and machine
learning.

VOLUME 7, 2019

QIAN WANG received the B.S., M.S., and Ph.D.
degrees from the School of Information Sci-
ence and Engineering, Yanshan University, China,
in 2009, 2012, and 2016, respectively, where she
has been a Lecturer, since 2016.

She was a Visiting Scholar with the University
of Hull, from 2015 to 2016. Her research interests
include data mining, machine learning, software
security, and digital health.

JIADONG REN received the B.S. and M.S.
degrees from the Northeast Heavy Machinery
Institute, in 1989 and 1994, respectively, and the
Ph.D. degree from the Harbin Institute of Technol-
ogy, in 1999.

He is currently a Professor with the School
of Information Science and Engineering, Yanshan
University, China. His research interests include
data mining, complex networks, and software
security. He is a Senior Member of the Chinese

Computer Society and a member of IEEE SMC Society and ACM.

JIAXIN LIU received the B.S., M.S., and Ph.D.
degrees from the School of Information Sci-
ence and Engineering, Yanshan University, China,
in 1997, 2001, and 2008, respectively, where she
has been a Senior Experimentalist, since 2013. Her
research interest includes data mining.

XIAOLIN ZHAO received the B.S., M.S., and
Ph.D. degree from the School of Computer Sci-
ence, Beijing Institute of Technology, Beijing,
China, in 1993 and 2000, where he is currently
an Associate Professor with the School of Soft-
ware. His research interests include software secu-
rity, complex networks, and software engineering
theory.

YONGQIANG CHENG received the B.S. and
M.S. degrees in control theory and control engi-
neering from Tongji University, Shanghai, China,
in 2001 and 2004, respectively, and the Ph.D.
degree from the School of Engineering, Design
and Technology, University of Brad-ford, UK.,
in 2010.

He is currently a Senior Lecturer with the
Department of Computer Science, University of
Hull, U.K. His current research interests include

smart systems and digital health, including ambient living robotics and non-
invasive healthcare devices with predictive analysis on the collected data.

110343

	INTRODUCTION
	RELATED WORK
	MODEL OF OUR APPROACH EMR_SD
	DATA PRE-PROCESSING
	FEATURE EXTRACTION
	COMBINED SAMPLING

	BASE CLASSIFIER OF RIPPER
	MULTIBOOST ENSEMBLE CLASSIFICATION

	EXPERIMENTS AND RESULTS
	DATA SETS
	EVALUATION MEASUREMENTS
	EXPERIMENTAL DESIGN AND ANALYSIS OF RESULT

	THREATS OF VALIDATION
	CONCLUSION
	REFERENCES
	Biographies
	HAITAO HE
	XU ZHANG
	QIAN WANG
	JIADONG REN
	JIAXIN LIU
	XIAOLIN ZHAO
	YONGQIANG CHENG

