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Abstract Finding methods that fight bacterial infection or contamination, while minimising 

our reliance on antibiotics is one of the most pressing needs of this century. Although the 

utilisation of UV-C light and strong oxidising agents, such as bleach, are still efficacious 

methods for eliminating bacterial surface contamination, both methods present severe health 
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and/or environmental hazards. Materials with intrinsic photodynamic activity (i.e. a 

material’s ability upon photoexcitation to convert molecular oxygen into reactive oxygen 

species such as singlet oxygen), which work with light within the visible photomagnetic 

spectrum could offer a significantly safer alternative. Here we present a new, bespoke 

molybdenum cluster (Bu4N)2[Mo6I8(n-C7F15COO)6], which is both efficient in the generation 

of singlet oxygen upon photoirradiation and compatible with the fluoropolymer (F23-L) 

known for its good oxygen permeability. Thus, (Bu4N)2[Mo6I8(n-C7F15COO)6]/F23-L 

mixtures have been solution-processed to give homogenous films of smooth and fibrous 

morphologies and which displayed high photoinduced antibacterial activity against four 

common pathogens under visible light irradiation. These materials thus have potential in 

applications ranging from antibacterial coatings to filtration membranes and air conditioners 

to prevent spread of bacterial infections. 

Introduction 

The massive overuse and inappropriate use of antibiotics by healthcare organisations, 

consumer healthcare industries and agriculture have resulted in the selection of 

microorganisms resistant to all existing classes of antibiotics [1]. The World Health 

Organisation (WHO) has named antimicrobial resistance as a grand challenge and called for 

action to safe-guard existing antibacterial agents, develop new antibacterial and reduce the 

incidence of infection [2]. The development of new antibiotics is a long and costly process 

with only few new classes of antibiotics been developed over the last 30 years and the 

likelihood of a new class appearing any time soon is slim [3]. 

Therefore, alternative strategies to treat bacterial infections or contaminations need to be 

developed, if not to substitute existing antibiotic-based technologies, then at least to slow 

down the spread of resistant bacteria. One alternative method that is currently being explored 

is based on photodynamic-based inactivation (PDI) [4]. The great benefit of PDI is that it 

works well on the antibiotic resistant bacteria and (so far) has not been shown to give rise to 

resistance [5-7]. This approach uses a photoactive compound (a photosensitiser) which, when 

activated by light, transfers energy to molecular oxygen (3O2) to generate reactive oxygen 

species (ROSs), in particular singlet oxygen (1O2), which is highly reactive and oxidises a 

broad range of biological molecules resulting in bacterial death. 

Highly photoluminescent complexes of the general formula [{Mo6I8}L6]
2-, where L is an 

electron-withdrawing ligand, in particular perfluorinated carboxylic acid and organic 

sulfonate, demonstrate the ability to efficiently generate singlet oxygen upon excitation with 

UV or blue light [8-11], and thus they are good candidates as photosensitisers for materials 



with photoinduced antibacterial activity. In a proof-of-concept studies it was demonstrated 

that compounds based on {Mo6I8}
4+ had antibacterial activity against S. aureus [12,13] and E. 

faecalis [14], while in our recent study, silica nanoparticles doped with molybdenum clusters 

demonstrated pronounced photodynamic activity against larynx carcinoma (Hep2) cells [15]. 

In developing a new PDI photosensitiser the matrix within which it is supported needs to be 

considered, needing to be inert to oxidation as well as highly oxygen permeable. Therefore, 

in this work we challenged ourselves to develop materials based on non-oxidisable 

fluorinated polymers and the luminescent molybdenum clusters. Importantly fluorinated 

polymers are well known to have good oxygen permeability and have been used for example, 

in oxygen sensing applications [16-18] and as an oxygen carrier in artificial blood [19]. 

Moreover, singlet oxygen tends to have longer lifetimes in fluorinated polymers, since the 

paucity of C–H and O–H bonds limits unwanted vibrational relaxation of 1O2 to 3O2 [20,21]. 

The fluoroplastic, F-32L, that was targeted in this work is a copolymer of 

trifluorochloroethylene and vinylidenedifluoride [–(CF2-CFCl)n-(CH2-CF2)m–], and is 

typically used for coating applications. Unlike many other highly fluorinated organic 

polymers, F-32L can be dissolved in solvents, such as organic esters, and thus can be easily 

processed by a number of solution-based techniques, including dip-coating, spin-coating, 

electrospinning and electrospraying. The polymer is also relatively transparent in the UV and 

blue regions, chemically and thermally stable and hydrophobic. Hydrophobic polymers are 

being actively used for the development of materials for self-cleaning coatings, as they may 

have reduced bacterial adhesion [22,23]. Moreover, its poor wettability would ensure 

protection for the molybdenum cluster complex against hydrolysis a tendency that is well 

documented [24-28]. 

To match the solubility of the cluster complexes with those of F-32L within the fluorinated 

polymer, we designed, synthesised and characterised a new cluster complex 

(Bu4N)2[{Mo6I8}(CF3(CF2)6COO)6] that bears long perfluorinated apical ligands to also 

allow good homogenisation in the fluoroplastic. In combination, these were used to prepare 

both smooth and fibrous films and evaluated for PDI of both Gram-positive and Gram-

negative bacteria. 

Experimental section 

Materials 

(Bu4N)2[{Mo6I8}I6] was synthesised according to earlier reported procedures [29]. F-32L 

(butylacetate solution) was purchased from HaloPolymer (Russia). The solvent was 



evaporated and the polymer was used without further purification. Other chemical reagents 

were purchased from Fisher, Aldrich or Alfa Aesar and used as received. 

Methods 

NMR spectra were recorded on a Bruker 400 MHz Av III spectrometer at 298K. Elemental 

analyses were performed using a EuroVector EA3000 Elemental Analyser. FTIR spectra 

were recorded on a Bruker Vertex 80 as KBr disks. Energy-dispersive X-ray spectroscopy 

(EDS) was performed on a Hitachi TM3000 TableTop SEM with a Bruker QUANTAX 70 

EDS equipment with results reported as the ratio of the heavy elements: Mo and I. The 

relative error of the method was about 5%. Mass spectrometric (MS) detection was 

performed in negative mode within the 500–4000 m/z range on an electrospray ionization 

quadrupole time-of-flight (ESI-q-TOF) high-resolution mass spectrometer Maxis 4G (Bruker 

Daltonics, Germany). The size and morphology of the fibres were characterised by scanning 

electron microscopy (SEM) using a Zeiss EVO60 Scanning Electron Microscope. The unity 

of the emission from the fibrous films was characterised using a Zeiss LSM710 Laser 

Scanning Confocal Microscope equipped with a laser diode (405 nm) for fluorescence and 

with an APOCHROMAT 63x/1.4 Oil DIC LD Plan objective. 

Synthesis of AgOOC(CF2)6CF3 

Ag2CO3 (167 mg, 0.61 mmol) was added to 20 mL of a (1:1) solution of CH3OH/CH3CN and 

n-perflurooctanoic acid (550 mg, 1.3 mmol). The mixture was sonicated until CO2 ceased 

evolving. The solution was then filtered and the volume of the solution was reduced down to 

1 ml on a rotary evaporator. Diethyl ether (20 mL) was added to the oil-like residue and the 

mixture was kept in a spark free fridge for several hours. The diethyl ether was evaporated 

leaving white plate-like crystals. Yield: 455 mg (72%). For C8AgF15O2: calcd: C 18.4. Found: 

C 18.3; NMR 19F: 95.90-95.71 (3F), 57.85-57.68 (2F), 54.38-55.06 (2F), 55.06-54.72 (2F), 

54.3-54.05 (2F), 54.05-53.84 (2F), 50.82-50.59 (2F), IR (KBr, cm−1): 3458 (wk, brd), 3030 

(wk), 2964 (wk), 2935 (wk), 2862 (wk), 1614 (str), 1421 (med), 1365 (med), 1325 (med), 

1240 (str), 1203 (str), 1145 (str), 1105 (med), 1020 (med), 889 (wk), 821 (med), 771 (wk), 

734 (med), 667 (med), 634 (med), 611 (wk), 561 (med), 530 (wk). 

Synthesis of (Bu4N)2[{Mo6I8}(CF3(CF2)6COO)6] (1) 

AgOOC(CF2)6CH3 (300 mg, 0.57 mmol) was added to the solution of (Bu4N)2[{Mo6I8}I6] 

(259 mg, 0.09 mmol) in acetone (20 mL). The reaction mixture was covered in aluminium 

foil and left to stir for 4 days. The precipitate of AgI formed was removed by filtration and 

the acetone removed on a rotary evaporator to give an oil-like residue. To obtain clean 

product, the residue was mixed with ethanol (20 mL), decanted and dried in air. Crystals 



suitable for single crystal X-ray structural analysis were obtained by reverse diffusion of 

diethyl ether from diethyl ether/ethanol solution (1/10) of 1 to pure ethanol. Specifically, they 

always had small sizes and were shaped as thin plates growing in the form of mille-feuille 

cake. Yield: 272 mg (66%). For C80H72F90I8Mo6N2O12: calcd: C 21.1; H 1.6; N 0.6. Found: C 

21.0; H 1.7; N 0.6. EDS: Mo: I ratio of 6 : 8.2; NMR 19F: 95.8-95.6 (3F), 60.25-60.05 (2F), 

55.82-55.53 (2F), 55.06-54.72 (2F), 54.55-54.28 (2F), 54.28-53.95 (2F), 50.77-50.55 (2F), IR 

(KBr, cm−1): 3437 (med, brd), 2974 (med), 2941 (med), 2883 (wk), 2058 (wk), 1695 (srt), 

1614 (wk), 1489 (med), 1465 (wk), 1357 (str), 1317 (med), 1240 (str), 1203 (str), 1147 (str), 

1014 (med), 885 (wk), 839 (wk), 808 (med), 734 (med), 665 (med), 561 (med), 530 (wk), 

ESI-MS: M/z For [{Mo6I8}(CF3(CF2)6COO)6]
2–: – 2034.73 (found), 2034.6192 (calculated). 

Preparation of (Bu4N)2[{Mo6I8}(CF3(CF2)6COO)6]@F-32L (1@F-32L) materials 

Smooth films – To prepare bulk samples containing 0, 0.1, 0.5, 1.0, 5.0 %wt of the cluster, 

compound 1 was dissolved in butyl acetate (3 ml) under sonication for 30 min and mixed 

with 3 ml of a butyl acetate solution containing 500 mg of F-32L. The final solution was 

poured into a Petri dish and left to evaporate under ambient conditions leaving the bulk 

polymers. Thin films were also prepared by spin-coating. The cluster concentration was 50 

mg mL-1 with 100 µL of an ethyl acetate solution containing F32-L (50 mg mL-1) layered 

onto a piece of pre-cleaned glass slide of 1 cm × 1.5 cm and spin coated at 1500 rpm for 2 

min using an Ossila spin-coater. The thickness of the films was in the range 40-50 nm as 

measured by a DektakXT Profiler (Bruker). 

Fibrous films - Fibrous films containing 0.1-5 %wt of 1 were obtained by electrospinning. F-

32L and compound 1 were separately dissolved in ethyl acetate and the solutions were mixed 

to give 22 %wt solution of F-32L. A high voltage power supply (Genvolt, 0–30 kV voltage 

power source, UK) was used to generate the electric field. Flow rates were controlled by a 

syringe pump (model no. Alladin-8000, World Precision Instruments, UK). Solutions were 

spun using a blunt steel syringe tip gauge 16 (1.194 mm internal diameter, 36 mm length), 

which was used as the anode. An aluminium foil flat plate collector (210 mm × 210 mm) was 

used as the cathode and a target. The prepared solutions were electrospun at constant 

conditions of 22 kV potential difference, 1.6 mL/h flow rate, and 15 cm distance between the 

spinning tip and collector plate. The apparatus was enclosed in a Perspex box, and the 

spinning was performed at approximately 19 ℃ and ambient humidity. The fibrous films 

were removed from the collector, and stored under dry nitrogen to enable residual solvent 

evaporation. 

Crystallography 



Single-crystal X-ray diffraction data were collected at 150 K on a Bruker Nonius X8 Apex 4 

K CCD diffractometer fitted with graphite monochromatised MoKα radiation (λ = 0.71073 

Å). Absorption corrections were made empirically using the SADABS program [30]. The 

structures were solved by the direct methods and further refined by the full-matrix least-

squares method using the SHELXTL program package [30]. The crystallographic data and 

details of the structure refinements are summarized in Table S1. CCDC 1896955 contain the 

supplementary crystallographic data for this paper. These data can be obtained free of charge 

from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

As described above, small thin plate shaped single-crystals grew in stacks leading to 

difficulty in their separation despite our efforts. Thus, the X-ray diffraction data collection 

was performed on a twin crystal. The quality of the data did not enable us to reach high 

quality structural resolution with low values of the reliability factors. The refined formula 

agrees with the chemical formula determined by several other techniques. Namely, as 

discussed below, the chemical composition has been determined by the combined use of 

chemical analyses, NMR and UV-vis spectroscopies. Despite high values of the reliability 

factors induced by the twinning, the refined X-ray diffraction data afforded a reliable 

structural model of the cluster complex including the local coordination geometry of the 

{Mo6I8}-cluster core, the conformation of the perfluorooctanoic terminal ligands, as well as 

the presence of tetrabutylammonium cations. Moreover bond-lengths and bond-angles of the 

different groups agree with those already reported in the literature [8,9,11,31]. 

Photoluminescence measurements 

The absolute quantum yields were measured using a C9920–03 Hamamatsu system equipped 

with a 150 W xenon lamp, a monochromator, an integrating sphere and a red-NIR sensitive 

PMA-12 detector. Lifetime measurements and TRPL mapping were performed using a 

picosecond laser diode (Jobin Yvon deltadiode, 375 nm) and a Hamamatsu C10910-25 streak 

camera mounted with a slow single sweep unit. Signals were integrated on a 30 nm 

bandwidth. Fits were obtained using ORIGIN software and the goodness of fit was judged by 

the reduced χ2 value and residual plot shape. Steady state O2 (1Δg) measurements were 

realised with a Hamamatsu H12397-75 NIR-PMT unit mounted on an IHR3 spectrometer. 

Excitation of a powder sample deposited on quartz substrates or CH2Cl2 solution was realised 

with a 375 nm laser pulsed diode (Jobin Yvon deltadiode). The system was also equipped 

with a TCSPC unit to measure the emission lifetime. 

Stern-Volmer Dependence measurements 



The facet of a large-core plastic optical fibre (02-534, Edmund Optics) with a 980 μm core 

was dip-coated with 1(5%)@F32-L by dipping into ethyl acetate solutions containing 

1(5%)@F32-L in concentration 4.1 mg/ml and then dried in air for 2 h. The probe was placed 

into a gas chamber, where the concentration of oxygen in the mixture was controlled by 

adjusting the partial pressures of O2 with an additional gas (CO2), and was calibrated using a 

commercial paramagnetic oxygen gas analyser (Cardiocap 5, Datex-Ohmeda). The excitation 

light from a laser source with an emission wavelength of λ = 405 nm (56RCS002, Melles 

Griot) used at 60 μW was coupled to the opposite, with the proximal fibre facet after being 

reflected by an angled dichroic mirror. The edge-pass dichroic mirror was chosen such that it 

was highly transmissive at the emission wavelengths, but highly reflective at the excitation 

wavelength used. The emission spectra at different concentration of oxygen in the mixtures 

was measured using a fibre-coupled CCD spectrometer (QE Pro. Ocean Optics). Ten 

replicates were made for each oxygen concentration point and the average value of integrated 

intensity between 600 and 800 nm were calculated. 

Study of bacterial adhesion on 1@F-32L spin-coated and fibrous films 

The bacteria suspension was incubated in 0.1 M carbonate buffer (pH 9.5) containing 1 

mg/mL of Fluorescein isothiocyanate (FITC). After 30 min of incubation at 37℃, the FITC-

labelled bacteria were washed thoroughly with phosphate-buffered saline (PBS) [32]. 50 μL 

portions of the bacterial suspensions were then dropped on glass slides (as a control), on 

glass-slides spin-coated with the polymer sample or on a glass slide covered by a 1010 mm 

piece of the fibrous mat and incubated for 30 min at room temperature in a wet chamber. 

Thereafter, the suspension was carefully decanted. To fix the bacteria, the substrates were 

immersed into 4% neutral buffered formalin for 10 min. Then the glass slides were imaged 

and analysed using a standard algorithm in the CellProfiler to determine the number of 

adhered bacteria [33]. All experiments were performed in triplicate with a confidence interval 

for P=0.95. 

Study of antibacterial activity of 1@F-32L 

The antibacterial activity of the materials was tested on E. coli (ATCC25922), S. aureus 

(ATCC25923), S. typhimurium (ATCC14028) and P. aeruginosa (ATCC27853). The 

bacteria were cultivated in Lysogeny broth (LB) medium at 37℃. The number of viable 

bacteria was estimated via counting of the colony-forming units (CFU) after 24 h of 

cultivation. All bacteria cultures had initial concentration of bacteria1-1.2×103 in saline. All 

experiments were performed in triplicate with a confidence interval for P=0.95. 



Smooth films – 2.4 ml of the bacterial cultures diluted in saline was evenly distributed in Petri 

dishes coated with the smooth films of 1(1%)@F-32L or F-32L. The total thickness of the 

culture medium with bacteria was about 1 mm. The Petri dishes were irradiated with a UV-

lamp OSRAM Germicidal HNS 30W G13 (200-280 nm, 0.12 mW/cm2) at a distance of 90 

cm for 20 min and with a spot light source L8253 (Hamamatsu) at a distance of 20 cm for 10 

min (400-800 nm, 220 mW/cm2). Petri dishes coated with 1(1%)F-32L were prepared in a 

similar way but stored in dark for the same time as a negative control. Thereafter the culture 

media was collected from the Petri dish and cultivated in LB agar culture media. The number 

of colonies were counted after 24 h. 

Fibrous films – 15 µL of bacteria diluted in saline was placed as a single drop on the fibrous 

films (0.5−1×0.5−1 cm2) placed on a glass slide or spin coated pieces of glass. The slides 

were irradiated with a spot light source L8253 (Hamamatsu) at a distance of 10 cm for 20 

min. Thereafter the culture media was collected from the films, by placing the film together 

with the culture media into test tubes and suspending with 400 saline µL for 1 min. Saline 

with bacteria cultures was used as a negative control. 400 µL of the culture media was 

collected from the test tube and cultivated in LB agar culture media. The number of colonies 

were counted after 24 h. 

Results and discussion 

Synthesis and characterisation of photoactive compound 1 

To allow homogenous dispersion of the molybdenum cluster complex in a fluorinated 

polymer, the cluster complex and the perfluorinated polymer needed to have similar polarity 

and be soluble in the esters which are typical solvents for F-32L. This match of properties 

could be achieved by furnishing the molybdenum cluster with long-chain perfluorinated 

apical ligands. Indeed, experiments with the Bu4N
+ salts of the known complexes, where L 

contains only 2 and 3 carbon atoms [9,11,31], have shown that these complexes have rather 

poor solubility in ester-based solvents. Therefore, to increase the solubility of the cluster a 

complex with a perfluorooctanoic acid ligand was synthesised following a standard procedure 

as reported in [9-11,31,34], i.e. the reaction of a silver salt of the corresponding acid (6 eq.) 

with (Bu4N)2[{Mo6I8}I6]. Unlike other molybdenum cluster complexes, compound 1 was 

soluble in both esters and ethers, for example compound 1 was soluble in ethyl acetate and 

butyl acetate at 40 mg/ml. 

The substitution of all apical iodide ligands [{Mo6I8}I6]
2– by perfluorooctanate ligands was 

confirmed by NMR spectroscopy: indeed the 19F NMR spectrum demonstrates only one set 



of the signals from the CF3(CF2)6COO– anion, which is in agreement with the high symmetry 

of the hexa-substituted complex (Fig. 1). Moreover, there is a significant downfield shift for 

signals close to carboxylate group in comparison with the free acid, in particular for the 

fluorine atoms in the α position. These shifts indicate the displacement of the electronic 

density towards the positively charged metal centre i.e. coordination. FTIR spectroscopy 

further confirms the monodentate mode of the ligand coordination in compound 1. The 

vibrations associated with the COO– group coincide with those for the related compound 

(Bu4N)2[{Mo6I8}(n-C3F7COO)6] [11,31] (Fig. S1). Finally, the ESI-MS also indicates a 

molecular peak that corresponds to [{Mo6I8}(CF3(CF2)6COO)6]
2– (Fig. S2). 

 
Fig. 1. 19F NMR spectrum of CF3(CF2)6COOH and 1. 

The crystal structure proposal that we obtained agreed well with the formation of cluster 

compound (Bu4N)2[{Mo6I8}(CF3(CF2)6COO)6] in the solid state. According to the proposed 

structure, six CF3(CF2)6COO– ligands were coordinated to the molybdenum atoms of the 

cluster core {Mo6I8}
2+ through the carboxylic group with bond lengths of about 2.10 Å, 

similar to those found in related compounds [8,9,11,31]. The perfluorooctanoic ligands 

orientate along the idealized 3-fold axis as shown in Fig. 2. The anions and 

tetrabutylammonium cations were packed with the formation of layers containing charged 

parts of the compound (i.e. the cluster cores and tetrabutylammonium cations) interlayered 

with interpenetrating perfluroheptyl tails from the ligands. Similar packing was found earlier 

in the structures of liquid crystal phases based on molybdenum clusters (Fig. 2) [35]. 



 

Fig. 2. Structure proposal of the cluster anion [{Mo6I8}(CF3(CF2)6COO)6]2– (left) and packing of 

molecules in crystal (right) (Bu4N+ cations are omitted). Colour code: Mo (black), C (charcoal), O 

(red), I (magenta), F (light blue), octahedron Mo6 (blue) 

Photoluminescent properties 

Similar to other molybdenum cluster complexes coordinated by residues of strong electron 

withdrawing apical ligands [8-11,31,36,37], compound 1 is a good red emitter and is capable 

of generating singlet oxygen [8-11]. Specifically, according to the emission-excitation map 

(Fig. 3), 1 can be excited by wavelengths up to ~475 nm to emit in the region between 600 

and 750 nm, with maximum of emission does being invariant to the excitation wavelength. 

The photophysical characteristics (maximum intensity of the emission, quantum yields and 

lifetimes) of powdered and dissolved compound 1 were collected using an excitation 

wavelength of 375 nm and are summarised in Table 1. Compound 1 demonstrated 

exceptionally high luminescence quantum yield (0.88) in a deaerated solution, which is 

similar to other complexes with fluorinated carboxylate ligands [8,11,31]. 

From Table 1, one can also note that the values of the photoluminescence quantum yield and 

the lifetimes for compound 1 in both powdered and dissolved state are significantly higher in 

nitrogen than in air. This is a common feature of octahedral molybdenum cluster complexes 

and it signifies efficient quenching of the cluster photoluminescence [8-11,31,38,39]. The 

energy transfer from the excited state of compound 1 to oxygen results in the generation of 

singlet oxygen (1O2), as confirmed by the emission spectrum recorded in the region of 1260 

nm, i.e. at the emission wavelength of 1Δg term of molecular oxygen (Fig. 4). 

The lifetime of the singlet oxygen emission was found to be 100 µs when the measurements 

were taken in a CH2Cl2 solution containing compound 1 (Fig. S3). This lifetime is similar to 



the value reported earlier for pure CH2Cl2 and signifies that the relaxation of singlet oxygen 

is predominantly due to the interaction with the solvent molecules [21]. The lifetime of 

singlet oxygen measured in the solid sample of 1 was found to be 46.7 µs, which is the same 

order of magnitude as for other solid samples [40,41] (Fig. S4). 

Fig. 3. Emission vs excitation map for deaerated solutions of 1 in CH2Cl2. The emission intensity 

increases from black to red. 

Table 1. Photophysical characteristics of compound 1 with an excitation wavelength of 375 nm: λmax 

– maximum of emission, Φ – photoluminescence quantum yield, τ – luminescence lifetime. The 

emission intensity increases from black to red. 

  

Fig. 4. 1Δg O2 emission spectra recorded upon irradiating of 1 with an excitation wavelength of 375 

nm as a powdered sample (red) or in CH2Cl2 solution (black). 

 

  

 λmax, nm 
Φ: in air; in 

nitrogen 

τ, μs: in air; in 

nitrogen 
τ(1O2), μs in air 

1, powder ~660 nm 0.033; 0.59 10.7; - 100 

1, CH2Cl2 solution ~660 nm 0.019; 0.88 5.41; 210 46.7 



To demonstrate that compound 1 still interacts with oxygen while it is within the matrix of F-

32L, i.e. diffusion of oxygen through the polymer does not limit the energy transfer to oxygen 

molecules, luminescence measurements were performed at different concentrations of oxygen 

in the gas phase. Accordingly, the tip of an unjacketed 980 μm wide core optical fibre was 

dip-coated in a solution containing 5% of 1 in respect to F-32L. The luminescence spectrum 

from the coated probe was then recorded in a gas camera at various oxygen concentrations in 

the mixture. Fig. 5 illustrates a Stern-Volmer plot for the coated optical fibre, i.e. I0/I vs. 

oxygen concentration, where I0 is the integrated intensity of emission in oxygen-free 

atmosphere, while I is the intensity at the given oxygen percentage [O2]. The Stern-Volmer 

plot has an ideal linear dependence with the Stern-Volmer constant KSV = 0.0752 %-1. The 

linear shape of the Stern-Volmer plot confirms that the quenching by oxygen was not 

diffusion limited [42]. 

 

Fig. 5. Normalised inverse intensity signal I0/I (I0 is the intensity signal in the absence of oxygen) as 

function of the oxygen concentration and linear fit to the Stern-Volmer equation, yielding a value of 

KSV = 0.0752 %-1 of the Stern-Volmer constant. 

Preparation of materials 1@F-32L with different morphology 

In general, the areas of application of PDI are myriad and include healthcare (infection cure, 

medical equipment sterilisation, wound care) as well as water/air treatment, packaging, 

coatings and floor coverings, hygiene products etc. Each application does, however, require a 

certain formulation and material morphology containing a photosensitiser. Indeed, when 

preparing materials with antibacterial activity both the surface wettability and the surface 

texture can affect the adhesion of bacteria. From one side, a rough texture can lead to reduced 

wettability due to entrapped air and thus reduces the contact area of a water drop that contains 



bacterial cultures with the surface and as a consequence a reduced bacterial adhesion [22,23]. 

On the other hand, a rough surface may allow bacteria to be trapped in the cavities of the 

material and tallow faster inactivation by the action of singlet oxygen. To demonstrate the 

appropriateness of the material design to polymer processing and to evaluate the effect of 

morphology on the antibacterial properties and bacterial adhesion, films of various 

morphologies were prepared. Owing to the good solubility of both F-32L and compound 1 in 

esters smooth films and fibrous films (mats) were readily produced. 

Smooth films (~0.3 mm thick) were prepared by slow evaporation of butyl-acetate from 

solutions containing both 1 and F-32L, where the percentage of 1 was set as 0.1, 0.5, 1 and 

5 %wt with respect to the polymer matrix. The films appeared as clear yellow transparent 

plastic materials without any sign of phase separation. Glass-slides coated by films of 1@F-

32L at a thickness of between 40-50 nm were also prepared by spin-coating ethyl acetate 

solutions at 50 mg mL-1 onto pre-cleaned glass slides. The fibrous mats were prepared by 

electrospinning the ethyl acetate solutions with representative SEM images of the fibrous 

mats given in Fig. 6. The fibres generally had uneven thickness varying from 0.5-2 μm and 

also contained some beads with the thickness up to 10 μm. The backscatter SEM images did 

not reveal any noticeable agglomerates of the cluster within the fibres. Confocal images also 

confirmed the even distribution of the cluster within the fibres (Fig. S5). 

As wettability of the films can be crucial for bacterial adhesion, we compared the contact 

angles between spin-coated films and electrospun fibres (Fig. S6, Table S2). According to our 

data the fibres were somewhat more hydrophobic with an average water contact angle of 

99.6º (SD=3.74) vs. 124º (SD=8.41). This is most likely due to the roughness of the surface 

that leads to the entrapment of air [22,23]. Notably, the presence of the cluster did not 

significantly affect the wettability of the materials. 

 

Fig. 6. SEM images of fibrous films 1(1%)@F-32L. 



Bacterial study of the materials 

To study the antibacterial potential of both smooth and fibrous materials we evaluated the 

adhesion of bacteria and their PDI ability. Studies were undertaken on Gram-negative E. coli, 

S. typhimurium and P. aeruginosa and on Gram-positive S. aureus bacteria on the surface of 

the films. The adhesion of bacterial cultures was studied on both spin-coated films and 

fibrous mats and compared to adhesion on a glass slide following the method reported earlier. 

Suspensions of fluorescein-labelled bacteria were placed on the samples of the polymer films 

or polymer fibres for 30 minutes and then decanted. The polymer samples were imaged by 

confocal microscopy to estimate the number of remaining (adhered) bacteria. The confocal 

images (Fig. S7) indicated that bacteria adhered randomly onto the smooth films, while in the 

case of fibrous materials they adhered (got entrapped) predominantly on the surface of the 

fibres rather than between the fibres. According to our results (Fig. S8) the bacteria adhesion 

on the smooth films was comparable with that of glass. In contrast, the adhesion of all types 

of bacteria, apart from E.coli to the fibres was significantly higher than on glass: for example, 

P. aeruginosa and S. aureus were up to 12 times more efficient than that on the glass. 

Notably in both type of materials, fibrous and smooth there seem to be a tendency for the 

materials with the cluster concentration of 0.1-1 to have slightly higher ability to adhere 

bacteria for the reasons that are currently not well understood. 

PDI activity of the materials was studied for the same bacterial cultures (Fig. S9). Initially, 

we evaluated the PDI activity of the bulk polymer under a standard UV-C light source 

irradiation, used for medical sterilisation. (Table 2) Namely, we determined the effect of the 

presence of the cluster on bacterial growth following photoirradiation, as a percentage 

reduction of colony-forming units (CFU) in the presence of 1 (1%) in comparison with 

pristine F-32L for each bacterial culture (𝐺𝐼𝑒𝑓𝑓). The presence of 1 reduced CFU of all 

cultures by 98-99.4%. To confirm that the effect is indeed associated specifically with the 

PDI activity of the cluster, we also determined the PDI effect (𝑃𝐷𝐼𝑒𝑓𝑓 ) as a percentage 

reduction of CFU on 1(1%)@F-32L with and without light irradiation. For all cultures, UV-C 

irradiation of the material lead to a reduction of CFU by at least 97% or more, which 

confirms that the antibacterial effect of the cluster is predominantly (if not solely) due to the 

PDI activity of the cluster. 

Table 2. The date on the effect the presence of 1 in the quantity of 1% on bacteria growth upon 

photoirradiation with UV-C light source and the PDI effect of UV-C light on bacteria growth on bulk 

1(1%)@F32-L. 



 
Effect of cluster 1 in F-32L on 

bacteria growth inhibition (𝐺𝐼𝑒𝑓𝑓), % 

PDI effect of 1(1%)@F-32L 

(𝑃𝐷𝐼𝑒𝑓𝑓), % 

E. coli 98.1±0.8 97.5±1.0 

S. aureus 97.9±3.8 99.7±0.2 

S. typhimurium 99.4±0.2 99.4±0.3 

P. aeruginosa 98.5±0.9 98.5±0.9 
#𝐺𝐼𝑒𝑓𝑓 =

𝐶𝐹𝑈0−𝐶𝐹𝑈1

𝐶𝐹𝑈0
× 100%  , where 𝐶𝐹𝑈0 is CFU amount on bulk pristine F-32L under light irradiation; 𝐶𝐹𝑈1 is CFU 

amount on bulk 1(1%)@F-32L under light irradiation. 

##𝑃𝐷𝐼𝑒𝑓𝑓 =
𝐶𝐹𝑈1

𝑙𝑖𝑔ℎ𝑡 𝑜𝑓𝑓
−𝐶𝐹𝑈1

𝑙𝑖𝑔ℎ𝑡 𝑜𝑛

𝐶𝐹𝑈1
𝑙𝑖𝑔ℎ𝑡 𝑜𝑓𝑓 × 100%, where 𝐶𝐹𝑈1

𝑙𝑖𝑔ℎ𝑡 𝑜𝑛
 is CFU amount on bulk 1(1%)@F32-L after light irradiation; 

𝐶𝐹𝑈1
𝑙𝑖𝑔ℎ𝑡 𝑜𝑓𝑓

 is CFU amount on bulk 1(1%)@F32-L without light irradiation. 

Having demonstrated the significant PDI activity of the cluster in F-32L polymer, we were 

keen to evaluate whether light irradiation in the visible range could be used for these 

purposes as well as the effect that morphology has on the PDI activity. Therefore, the 

experiments with spin-coated films and electrospun films were undertaken using a white 

spot-light source (400-800 nm). Our data (Table 3) shows that 0.1% of the cluster in the 

smooth film was not enough to inactivate any of the cultures, while 0.5% of the cluster in the 

material inactivates growth of P. aeruginosa significantly and E.coli and S. aureus 

moderately. 1% of the cluster in the film was sufficient to significantly reduce proliferation of 

all studied cultures. In regards to the fibrous coatings, 0.1% of the cluster were already 

sufficient to noticeably inactivate the growth of P. aeruginosa and S aureus, while 0.5% 

affected noticeably the growth of all bacteria cultures.  

Table 3. The percentage of CFU in comparison to control for spin-coated and fibrous films after 

irradiation with a white light source. The confidence interval is calculated for P=0.95. 

 

Content 

of 1 in 

F32-L 

E. coli S. aureus S. typhimurium P. aeruginosa 

Spin-

coated 

films 

0% 99±9 103±9 101±23 98±15 

0.1% 99±10 102±10 105±20 100±11 

0.5% 61±17 41±7 98±18 15±9 

1% 0.6±0.3 21±3 13±4 3±1 

5% 0.3±0.2 3±2 3±2 0.6±0.3 

Fibre 

films 

0% 100±9 99±5 99±13 90±45 

0.1% 100±8 34±3 97±15 19±8 

0.5% 5±1 43±3 10.0±0.9 20±8 

1% 5.7±0.8 43±5 13±1 22±8 

5% 7.7±0.7 34±2 10±1 25±10 

To summarise, our bacterial studies demonstrated that the morphology of F-32L was crucial 

for both adhesion of bacteria and PDI activity. Specifically, bacteria did not have 

significantly increased adhesion onto smooth films of F-32L, while fibrous films were 



capable of entrapping bacteria. On the other hand, the fibrous films required smaller 

concentration of 1 than smooth films to demonstrate PDI. This is likely due to increased 

surface area. Thus, smooth 1@F-32L films have potential for applications as photoactive 

antibacterial coatings, while fibrous mats may be interesting for applications in water/air 

purification systems, where such a polymer mesh could be used as a self-sterilising media on 

exposure to light as a membrane, which is capable of entrapping bacteria. Moreover, 

polymeric micro/nanofibrous mesh with anti-bacterial activity are also of interest for wound 

care as the fibrous morphology of the material promote haemostasis, cell respiration, and gas 

permeation [40,41] 

Conclusion 

In conclusion, we have developed the first ester/ether soluble, highly phosphorescent 

molybdenum cluster based compound (Bu4N)2[{Mo6I8}(CF3(CF2)6COO)6] and demonstrated 

that it could be used as an additive into fluoropolymer F-32L. Importantly, the hybrid was 

compatible with solution-based processing/coating techniques including dip-coating, 

electrospinning and spin-coating. The materials demonstrated a range of useful properties, 

including good luminescence properties with emission intensities sensitive to oxygen 

concentration following a linear Stern-Volmer dependence and high PDI activity to all four 

tested pathogens including P. aeruginosa and S. aureus, labelled by WHO as of critical 

priority due to their exceptional antibiotics resistance and importance. Notably, fibrous films 

have demonstrated significant adhesion of bacteria. Thus, the materials have high potential 

for numerous applications including optical oxygen sensors, antibacterial coatings and air 

conditioners as well as reusable self-sterilizing membranes for air, wound and water 

treatment. 
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