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Abstract

Swift	performance	assessment	of	dehumidification	systems,	in	design	stage	and	while	operation	of	the	system	is	of	substantial	importance	for	commercialization	and	wide	implementation	of	this	technology.	This	paper

presents	a	novel	statistical	model,	employing	Gaussian	Process	Regression	(GPR)	 to	 investigate	performance	of	a	solar/waste	energy	driven	dehumidification/regeneration	cycle	with	a	solid	adsorbent	bed.	The	statistical

model	 takes	 thousands	 of	 operating	 conditions	 derived	 from	 a	 numerical	model	 to	 predict	 the	 performance	 of	 the	 system.	 This	 predictive	 tool	 directly	 correlates	 the	main	 operating	 parameters	 with	 the	 performance

parameters	of	the	system.	The	operating	parameters	considered	 in	this	study	are:	temperature,	relative	humidity	and	flow	rate	of	process	air,	 temperature	of	regeneration	air,	 length	of	the	desiccant	bed,	solar	radiation

intensity	and	operating	time,	and	the	selected	performance	parameters	are:	moisture	extraction	efficiency	for	the	dehumidification	cycle	and	moisture	removal	efficiency	for	the	regeneration	cycle.	The	model	is	evaluated	by

three	metrics,	namely:	root	mean	square	error	(RSME),	mean	absolute	percentage	error	(MAPE),	and	coefficient	of	determination	(R2).	The	maximum	RSME	and	MAPE	for	moisture	extraction	are	only	0.045,	0.21%,	and	for

moisture	removal	efficiencies	are	0.082	and	0.39%,	respectively,	while	the	R2	value	is	derived	as	0.97.	The	developed	model	is	used	to	investigate	the	impact	of	four	selected	operating	parameters	on	system	performance.

Additionally,	the	system	performance	is	predicted	for	randomly	generated	operating	conditions	as	well	as	warm	and	humid	climates.	The	developed	GPR	model	provides	a	swift	and	highly	accurate	predictive	tool	for	design	of

the	dehumidification	systems	and	for	commercialization	of	the	investigated	dehumidification	systems.
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mr

Moisture	removal

r

Regeneration

v

Vapor

t

Training

d

Desiccant
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Heat	transfer	coefficient,	kW/m2K
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Signal	variance

1	Introduction
Air	with	a	relative	humidity	(RH)	between	40%	and	60%	is	the	most	convenient	indoor	air	[1].	Due	to	high	energy	consumption	and	low	COP	[2–4]	of	conventional	mechanical	vapor	compression	refrigeration	air	conditioning



systems	[2],	energy	efficient	desiccant	cooling	and	air-conditioning	systems	have	attracted	more	attention	in	past	decades	[3].	Numerous	research	has	suggested	that	the	desiccant	cooling	and	air-conditioning	systems	with	solid	or

liquid	desiccants	are	the	potential	substitutes	to	electrically	driven	vapor	compression	cooling	systems	[4-6].

Desiccant	systems	have	been	investigated	by	a	number	of	experimental	and	numerical	studies.	Through	experimental	studies,	Chen	et	al.	[7]	presented	a	novel	polymer	hollow	fiber	liquid	desiccant	dehumidification	system

with	latent	effectiveness	of	0.25-–0.43	and	the	sensible	effectiveness	of	0.31-–0.52.	Cho	et	al.	[8]	conducted	a	series	of	experiments	and	found	that	the	cross-flow	liquid	desiccant	dehumidifier	has	stable	dehumidification	performance

regardless	 of	 the	 variations	 in	 operating	 parameters,	 but	 the	 cross-flow	 dehumidifier	 performance	 is	 effected	 by	 temperature	 and	 humid	 process	 air	 conditions.	 Bai	 et	 al.	 [9]	 experimentally	 investigated	 the	 performance	 of	 the

membrane-based	liquid	desiccant	dehumidification	system	with	calcium	chloride.	The	sensible,	latent	and	total	effectiveness	in	their	study	were	recorded	as	0.49,	0.55,	and	0.53,	respectively.	Yang	et	al.	[10]	studied	a	novel	solar	solid

dehumidification	and	regeneration	bed	with	three	regeneration	methods.	The	results	showed	that	the	combined	regeneration	methods	i.e.,	simulated	solar	radiation	regeneration,	microwave	regeneration,	and	combined	regeneration

of	the	microwave	and	simulated	solar	radiation	had	higher	regeneration	efficiencies.

Among	the	numerical	studies,	Su	et	al.	[11]	presented	a	two-stage	liquid-desiccant	dehumidification	system	with	30.63%	lower	power	consumption	compared	to	the	conventional	systems.	Park	et	al.	[12]	compared	a	 liquid

desiccant	and	evaporative	cooling-assisted	system	to	a	single	stage	one	and	found	that	 the	primary	energy	consumption	 is	17.4%	lower	while	thermal	and	primary	coefficients	are	41%	and	20%	higher	 in	the	 liquid	desiccant	and

evaporative	cooling-assisted	system.	Guo	et	al.	[13]	performed	a	hybrid	method	combining	the	electrodialysis	and	thermal	regeneration	method	for	liquid	desiccant	dehumidification	and	found	electrodialysis	accounted	for	85%	of	the

total	energy	consumption	of	liquid	desiccant	regeneration.	Song	et	al.	[14]	detected	the	hidden	relationship	between	the	heating	and	cooling	sources	and	the	air	states.	Ali	et	al.	[15]	simulated	different	components	of	a	liquid	desiccant

based	 dehumidification	 system	 for	 greenhouse	 cultivation.	 The	model	 is	 found	 out	 to	 be	 effective	 in	 removing	 the	moisture	 created	 by	 the	 crops	 inside	 the	 greenhouse.	 Das	 and	 Jai	 [16]	 developed	 a	model	 for	 liquid	 desiccant

dehumidification	applications	in	which	the	maximum	deviations	of	±20%	was	observed.

Study	of	literature	revealed	that	the	current	numerical	and	experimental	data	are	limited	to	the	narrow	data	scales.	Such	limitation	obstructs	implementation	of	solar/waste	energy	driven	dehumidification/regeneration	cycle	in

real-life	 scenarios	where	multiple	 parameters	 vary	 simultaneously.	 The	 substantially	 high	 cost	 of	 constructing	 the	 experimental	 rigs	 for	 testing	 and	 analysis	 of	 these	 systems	 brings	 up	 further	 obstacles	 in	 exploring	 the	 system.

Numerical	models	are	one	alternative	 to	experimental	 studies.	However,	despite	being	cost	effective,	numerical	models	often	 require	extensive	 input	parameters	and	complicated	equations	 to	be	solved	which	are	extremely	 time

consuming.

Therefore,	to	overcome	the	above-mentioned	issues,	a	number	of	studies	have	proposed	statistical	methods.	The	comparative	summary	of	these	literatures	and	their	achievements	are	listed	in	Table	1.

Table	1	Summary	of	related	studies.

alt-text:	Table	1

Study System Method Remarks

Park	et	al.	[26] Liquid	desiccant	system Response	Surface	Methodology	(RSM) A	model	was	derived	based	on	the	operating	parameters	that	significantly	affected	the
dehumidification	effectiveness.

Ou	et	al.	[27] Liquid	desiccant	cooling	and	dehumidification
system

Effectiveness-NTU,	Levenberg–Marquardt
and	unscented	Kalman	filter	algorithm

Experimental	tests	on	a	pilot	plant	revealed	that	the	model	can	accurately	predict	the	system
performance	under	different	operating	conditions.

Gandhidasan
and	Mohandes
[28]

Liquid	desiccant	dehumidification Artificial	Neural	Network	(ANN) This	study	showed	that	the	ANN	can	be	used	as	a	predictive	tool	with	a	reasonable	degree	of
accuracy.

Jani	et	al.	[29] Rotary	desiccant	dehumidifier Artificial	Neural	Network	(ANN) Performance	predictions	through	ANN	are	compared	with	the	experiments	and	a	close	agreement	is
observed.

Current	study A	solar/waste	energy	driven
dehumidification/regeneration	cycle	with	a
solid	adsorbent	bed

Gaussian	Process	Regression	(GPR) The	developed	GPR	model	provides	a	swift	and	highly	accurate	predictive	tool	for	design	of	the
dehumidification	systems	and	for	commercialization	of	the	investigated	dehumidification	systems.

Detailed	investigation	of	the	literature	revealed	a	research	gap	in	utilizing	full	capacities	of	statistical	modeling	to	predict	performance	of	dehumidification	systems	by	considering	the	commercialization	of	the	this	technology.

Lack	of	a	swift,	accurate	and	easily	done	predictive	tool,	which	can	directly	correlate	the	main	parameters	of	this	technology	and	predict	the	efficiencies	of	the	system	based	on	main	parameters	only,	was	an	essence	need.	This	paper

pioneers	in	bringing	the	Gaussian	Process	Regression	(GPR),	which	has	been	applied	to	a	wide	range	of	fields	[17-25],	as	a	predictive	tool	to	investigate	the	performance	of	a	solar/waste	energy	driven	dehumidification/regeneration



cycle,	as	well	as,	to	introduce	a	new	application	for	GPR.	This,	to	the	authors’	knowledge,	is	the	first	statistical	modeling	study	that	applies	GPR	to	investigate	the	performance	of	dehumidification	systems.	The	developed	GPR	model

directly	 correlates	 the	main	 operating	 parameters	 i.e.	 temperature,	 relative	 humidity	 and	 flow	 rate	 of	 process	 air,	 temperature	 of	 regeneration	 air,	 length	 of	 the	 desiccant	 bed,	 solar	 radiation	 intensity	 and	 operating	 time	with

performance	parameters	i.e.	moisture	extraction	efficiency	for	the	dehumidification	cycle	and	moisture	removal	efficiency	for	the	regeneration	cycle.

In	Section	2,	solar/waste	energy	driven	dehumidification/regeneration	cycle,	GPR	methodology	and	dataset	development	are	explained.	Then	the	model	results	 including	verification	and	applications	are	given	in	Section	3.

Eventually,	the	conclusion	is	presented	in	section	4.

2	Methods
2.1	Description	of	a	dehumidification	system

Schematic	of	the	solar/waste	energy	driven	dehumidification/regeneration	cycle	to	be	investigated	in	this	study	is	shown	in	Fig.	1.	A	desiccant	bed	is	located	inside	a	channel	that	is	constructed	by	a	porous	and	visible-light	LiCl-

Sillicon-Gels	material	[2].	The	bed	specifications	such	as	 its	dimensions	and	material	play	a	key	role	 in	performance	of	both	dehumidification	and	regeneration	cycles.	 In	the	dehumidification	process,	 the	humid	air	 (also	called	as

process	air),	flows	inside	the	channel	and	passes	through	the	bed.	The	moisture	of	the	process	air	is	absorbed	by	the	absorbent	material	in	the	desiccant	bed	owing	to	the	partial	vapor	pressure	difference	between	the	solid	absorbent

surface	of	the	bed	and	the	process	air.	By	flowing	the	process	air	through	the	desiccant	bed,	the	absorbent	material	will	gradually	reach	its	saturation	state.	The	regeneration	process	starts	to	regenerate	the	saturated	absorbent

material	 for	the	next	dehumidification	cycle.	During	the	regeneration	process,	either	a	high	temperature	regeneration	air	with	a	temperature	more	than	70ᵒC	or	a	 low	temperature	regeneration	air	heated	with	the	solar	radiation

passes	through	the	saturated	absorbent.	As	the	regeneration	air	passes	through	the	channel,	the	heat	is	transferred	from	the	regeneration	air	to	the	water	inside	the	absorbent	voids	and	evaporates	water.	Eventually,	the	regeneration

air	transports	the	evaporated	water	out	of	system	and	the	regenerated	absorbent	is	ready	for	another	dehumidification	cycle.	When	the	solar	radiation	is	not	available,	the	regeneration	air	is	initially	heated	by	an	available	waste	heat.

The	system's	performance	is	identified	by	two	main	parameters:	moisture	extraction	efficiency	and	moisture	removal	efficiency.	Moisture	extraction	efficiency	is	the	ratio	of	difference	in	inlet	and	outlet	moisture	content	of

Fig.	1	Solar/waste	energy	driven	dehumidification	and	regeneration	cycle.

alt-text:	Fig	1



process	air	to	inlet	moisture	content	of	process	air	[2]:

where	dp,	in	is	moisture	content	of	inlet	air	and	dp,	out	is	the	moisture	content	of	outlet	air.

And	and	the	moisture	removal	efficiency	for	the	regeneration	cycle	is	ratio	of	difference	in	initial	and	final	water	content	to	initial	water	content	of	desiccant:

where	Wi	is	initial	water	content	of	desiccant	and	W	is	the	final	water	content	of	desiccant.

2.2	Statistical	model:	gaussian	Gaussian	process	regression
Gaussian	process	regression	(GPR)	is	a	vigorous	predictive	tool	which	is	capable	of	providing	a	predictive	posterior	distribution	of	outputs.	This	is	a	distinctive	feature	of	GPR	compared	to	the	general	regression	models,	such

as	linear	or	polynomial	regressions	which	only	estimate	the	value	of	the	outputs.	The	GPR	predicts	the	posterior	probability	distribution	by	a	prior	probability	and	then	updates	the	prior	probability	distribution	by	training	set.	This

means	that	the	posterior	distribution	includes	the	full	 information	of	the	prediction	such	as	confidence	level	and	prediction	mean.	A	detailed	description	of	the	GPR	has	been	presented	in	[30].	The	main	advantage	of	the	Gaussian

regression	process	is	the	way	it	defines	the	model.	The	GPR	determines	the	structure	of	the	covariance	matrix	of	the	independent	variables	as	backbone	of	the	model,	while	other	regression	techniques	use	the	algebraic	relationships	of

the	independent	and	dependent	variables	[31].

For	any	training	set	as	{D=	(xi,	yi);	i =	= 1,2,3,	…	n}	where	xi	∊	ℝd	and	yi	∊	ℝ.	The	Gaussian	process	is	a	prior	over	a	function,	f,	based	on	the	Bayesian	theorem:

The	general	regression	model	is	given	as:

Where	where	β	is	a	regression	coefficient	calculated	from	the	training	data	and	ε	∼	N (0,	σ2).	The	error	variance	σ2	is	also	calculated	using	the	training	data.	Simply	for	a	Gaussian	process	with	n	observations,	{xi;	i =	= 1,2,3,	…	n,

xi	∊	ℝd}	and	corresponding	function	variables,	{	f(xi);	i=	1,2,3,	…	n},	the	joint	(zero	mean)	Gaussian	observation	is:

The	Gaussian	process	describes	the	distribution	over	functions	and	it	needs	a	covariance	or	kernel	function	and	mean	function	to	be	fully	specified.

The	covariance	function,	defines	the	degree	of	correlation	between	the	outputs	of	two	input	sets	(x	and	x′),	and	is	the	backbone	of	the	relationships	between	input	variables.	The	mean	covariance	and	the	kernel	functions	can	be

defined	as	Eqs.	(7)	and	8,	respectively:

Selection	of	the	proper	kernel	function	is	important	as	estimation	of	the	posterior	distribution	is	significantly	influenced	by	the	prior	distribution.	An	appropriate	kernel	is	chosen	on	basis	of	the	assumptions	such	as	smoothness

and	likely	patterns	to	be	expected	in	the	data.	There	are	a	number	of	different	kernel	functions	such	as:	Matern,	exponential,	power-exponential,	linear,	intersection	exist.	In	this	study,	one	common	kernel	function,	radial	basis	kernel

function	is	used:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)



Where	 is	 the	signal	variance	and	θ	 is	 the	 length-scale.	Once	the	prior	kernel	and	mean	functions	are	chosen,	 the	GPR	can	be	 implemented	to	update	the	kernel	and	mean	functions	using	the	observed	new	dependent

variable,	y′,	for	the	given	new	independent	variable,	x′,	by	a	new	function,	f′,	to	obtain	the	posterior	estimation	function	as	below:

The	posterior	distribution	is	only	Gaussian	subject	to	the	hyperparameters.	It	means	that	all	of	the	kernel	function	parameters	are	assumed	to	be	constant.	In	this	study,	the	GPR	analysis	is	carried	out	in	R	programing	language

3.5.1	using	the	DiceKriging	package.	The	detailed	information	about	the	DiceKriging	package	can	be	found	in	[32].

2.3	Numerical	model
The	numerical	model	used	for	data	collection	and	GPR	model	testing,	is	based	on	energy	and	mass	balance	equations	for	two	specified	control	volumes	i.e.:	flowing	air	and	desiccant	bed	particles.	A	number	of	assumptions	had

to	be	made	in	order	to	simplify	the	calculations	such	as:	the	heat	and	mass	transfer	is	a	one	dimensional;	heat	conduction	in	flow	direction	is	ignored;	heat	and	mass	transfer	coefficients	between	air	and	desiccant	are	assumed	to	be

constant;	the	solar	radiation	in	regeneration	process	is	uniform;	the	heat	and	mass	transfer	coefficients	between	the	air	and	the	desiccant	are	constant	and;	any	air	state	change	at	inlet	and	outlet	of	the	system	is	ignored.

The	dehumidification	system	operation	is	modelled	by	the	following	equations	which	are	solved	using	finite	element	method	in	Matlab	[2].	The	mass	balance	for	the	flowing	air	stream	is	given	as:

Wherewhere,	ρa	is	density	of	the	air,	f	is	volume	ratio	of	the	air	space	to	the	whole	channel,	A	is	the	Cross-sectional	area	of	the	channel,	da	and	dd	are	absolute	humidity	ratios	of	the	air	and	desiccant	respectively,	u	is	flow	rate,

Ky is	Coefficient	of	mass	convection,	C	is	the	perimeter	of	air	flow	passage,	t	is	time	and	z	indicates	the	flow	direction.

The	mass	balance	within	the	absorbent	bed	is	given	as:

Where	where	ɛ	is	porosity,	ρd	is	density	of	desiccant,	ϕ	is	Volume	ratio	of	desiccant,	W	is	dry	base	water	content,	DG	is	gas	phase	diffusivity	and	Ds	is	surface	diffusivity.

The	energy	balance	within	the	flowing	air	stream	is	given	as:

Wherewhere,	cp,	a	and	cp,	v	are	specific	heat	capacities	of	air	and	water	vapor	respectively,	α	is	convective	heat	transfer	coefficient,	Ta	and	Td	are	the	temperature	of	the	air	and	desiccant	bed	respectively.

The	energy	balance	within	the	absorbent	bed	is	given	as:

Where,	cp,	d	is	specific	heat	capacity	of	desiccant	bed,	kd	is	thermal	conductivity	of	desiccant,	I	is	solar	radiation	intensity	and	l	is	the	thickness	of	the	absorbent	bed.

The	initial	temperature	of	flowing	air	and	desiccant	are	constant	and	identical	to	the	initial	temperature	of	inlet	air	and,	the	corresponding	humidity	ratios	are	also	assumed	to	get	the	humidity	ratio	of	the	inlet	air.	The	initial

water	content	of	desiccant	is	assumed	to	be	0.015	[kg/kg].	The	boundary	temperature	and	humidity	ratios	at	inlet	for	dehumidification	and	regeneration	process	are	assumed	constant	for	every	time	step.	Moreover,	the	temperature

		 	

(10)

(11)

(12)

(13)

(14)

(15)

(16)



and	moisture	content	gradient	at	desiccant	boundaries	are	zero.

The	heat	transfer	coefficient	is	given	as:

Where	Nu	is	nusselt	number,	k	is	thermal	conductivity.	The	mass	transfer	coefficient	is	presented	as:

Where	where	Sh	is	Sherwood	number	and	D0	is	Ordinary	diffusivity.

2.4	Model	evaluation
Three	common	metrics	are	used	to	evaluate	the	prediction	accuracy	of	the	GPR	model:	RMSE	(root	mean	square	error),	MAPE	(mean	absolute	percentage	error)	and	R2	(coefficient	of	determination).	Generally,	RMSE	measures

deviation	between	the	actual	values	and	predicted	values	of	the	dependent	variables,	MAPE,	is	used	to	indicate	the	accuracy	of	the	model	for	small	changes	in	data	and	R2	is	selected	to	measure	the	quality	of	the	model	by	measuring

the	proportion	of	the	total	variations.	These	metrics	are	defined	as:

Where	where	N	represents	the	number	of	observations,	yi	and	ypi	are	the	actual	and	predicted	values	of	the	dependent	variables,	and	 is	the	mean	value	of	the	actual	measured	dependent	variables	in	training	set.

2.5	Dataset	development
A	comprehensive	dataset	comprising	the	selected	key	operating	parameters,	and	corresponding	performance	parameters	is	generated	using	the	numerical	model.	It	is	vital	to	mention	that	the	operating	parameters	in	current

dehumidification	system	represent	the	input	data	for	statistical	model.	In	this	study,	seven	main	operating	parameters	(input	data)	and	two	performance	parameters,	based	on	a	two-dimensional	numerical	and	an	experimental	models

[2,10],	were	selected.	Temperature,	relative	humidity	and	 flow	rate	of	process	air,	 temperature	of	regeneration	air,	 length	of	 the	desiccant	bed,	solar	radiation	 intensity	and	operating	time	are	operating	parameters;	and	moisture

extraction	efficiency	as	the	performance	factor	of	dehumidification	process	and	moisture	removal	efficiency	as	the	performance	factor	of	regeneration	process	are	the	selected	performance	parameters.	To	concentrate	the	model	on

real	 operating	 conditions	 of	 the	 system,	 and	 to	 avoid	 unrealistic	 operating	 conditions,	 suitable	 ranges	 for	 each	 operating	 parameters	 are	 determined	 by	 a	meticulous	 investigation	 of	 real	 operating	 conditions	 in	 numerical	 and

experimental	literatures	as	listed	in	Table	2	[2,10].	Flow	rate	and	relative	humidity	of	the	air	stream	in	both	cycles	are	considered	to	be	same	[2].

Table	2	Operating	parameters	and	corresponding	operation	ranges.

alt-text:	Table	2

Operating	parameters Ranges

Temperature	of	the	process	air,	ᵒC 25	–	–40

Relative	humidity	of	the	both	air,	- 0.6	–	–0.9

Temperature	of	the	regeneration	air,	ᵒC 70	–	–80

Flow	rate	air	stream,	m/s 1	–	–4

(17)

(18)

(19)

(20)

(21)

		 	



Length	of	the	desiccant	bed,	m 1	–	–5

Solar	radiation	intensity,	W/m2 0	–	–1800

Operating	time	of	each	cycle,	hr 1	–	–5

The	comprehensive	dataset	is	divided	into	two	parts:	1)	training	set,	and	2)	testing	set.	Training	set	is	used	to	train	and	develop	the	model,	and	testing	set	is	used	to	test	the	developed	GPR	model.	Discrete	values	of	operating

parameters	are	needed	to	generate	the	comprehensive	dataset.	The	values	are	randomly	chosen	to	construct	the	datasets	only,	and	validity	of	the	model	is	not	limited	to	these	values.	Having	identified	the	discrete	values,	as	listed	in

Table	3,	all	possible	combinations	of	the	discrete	values	are	created	to	introduce	all	possible	operating	conditions	of	the	system	to	the	GPR	model.	Fig.	2	illustrates	three	operating	conditions	out	of	n	(6480)	possible	conditions	in	which

4320	are	taken	as	training	set	and	2160	of	them	are	specified	as	testing	set.	To	build	the	dependent	part	of	the	datasets,	performance	parameters	for	each	created	operating	conditions	were	calculated	through	the	numerical	model	[2].

Table	3	Discrete	values	of	operating	parameters.

alt-text:	Table	3

Tp	[ᵒC] RHp	[-] Tr	[ᵒC] u	[m/s] Ld	[m] I	[W/m2] th	[hr]

25 0.6 20 1 1 0 1

27.5 0.678 70 1.5 2 600 2

30 0.75 75 2 3 1200 3

32.5 0.825 80 2.5 4 1800 4

35 0.9 85 3 5 5

37.5 90 3.5

40 4

The	flow	diagram	of	the	processes	to	develop	the	GPR	model	is	shown	in	Fig.	3	and	the	detailed	process	steps	are	summarized	as	below:

Fig.	2	Illustration	of	three	operating	conditions	out	of	a	total	of	N	operating	conditions.

alt-text:	Fig	2



I. Creation	of	operating	conditions	using	the	selected	operating	parameters	(input	data).

II. Generating	the	comprehensive	dataset	by	the	numerical	model.

III. Classifying	the	comprehensive	dataset	into	training	and	testing	sets

IV. Training	the	GPR	model	employing	the	training	set	in	R	software	package.

V. Testing	the	developed	GPR	model	using	the	testing	set.

VI. Model	evaluations	by	RMSE,	MAPE	and	R2	metrics.

VII. System	performance	prediction	using	the	new	inputs.

3	Results	and	discussion
This	 section	 presents	 the	 generated	mathematical	 equation	 with	 corresponding	 coefficients	 for	 both	 dehumidification	 and	 regeneration	 processes.	 The	model	 evaluation	 by	 specified	 metrics	 and	model	 testing	 are	 also

discussed.	Finally,	the	three	main	applications	of	the	produced	GPR	model	are	explained	and	investigated.

3.1	Produced	engineering	equations
The	GPR	model	is	presented	in	the	form	of	an	exponential	equation	for	both	dehumidification	and	regeneration	cycles.	The	equation	is	purely	constructed	based	on	the	selected	operating	parameters	only,	and	is	used	to	predict

the	moisture	extraction	and	moisture	removal	efficiencies.	The	equation	is	represented	as:

where	a	and	b	are	constant	coefficients,	α	is	a	vector	specified	in	Table	3,	Nt	is	the	number	of	operating	conditions	in	training	set	and	y	represents:

Fig.	3	Flow	diagram	of	the	GPR	model	development.

alt-text:	Fig	3
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And	the	exponential	power,	β,	is	given	in	equation	is	calculated	as:

where,	θ	 is	a	vector	specified	 in	Table	3,	and	x1,	x2,	x3, x4, x5,	x6	and	x7	 represent	any	new	operating	parameters	 i.e.,	 temperature,	 relative	humidity	and	 flow	rate	of	 the	process	air,	 length	of	 the	desiccant	bed,	 temperature	of	 the

regeneration	air	and	hourly	operating	time	of	the	system,	respectively.	Table	4	gives	all	the	coefficients	and	vector	parameters	for	both	dehumidification	and	regeneration	cycles.

Table	4	The	coefficient	and	vector	values	of	the	GPR	based	model.

alt-text:	Table	4

Nt Dehumidification	cycle Regeneration	cycle

α θ a b α θ a b

1 −4763.82 13.7 0.23 0.0024 −25,253.13 19.4 0.91 0.003

2 3456.32 0.6 –- –- 47,221.24 0.6 –- –-

3 −12,140.8 2.36 –- –- −16,611.46 4.78 –- –-

4 −5001.25 3.61 –- –- 12,841.15 1.00E-10 –- –-

5 2408.33 96.7 –- –- −15,837.75 11.38 –- –-

6 −6672.55 1319.62 –- –- 8161.87 896.72 –- –-

7 −2705.09 1.74 575.37 0.86

⋮ ⋮ –- –- ⋮ –- –- –-

4319 6695.32 –- –- 1325.65 –- –- –-

4320 −10,506 –- –- 2624.53 –- –- –-

3.2	Model	testing
The	model	testing	is	performed	to	test	the	developed	GPR	model.	The	predicted	performance	parameters	from	GPR	model	and	from	the	numerical	model	[2]	are	compared.	The	comparison	was	performed	under	2160	operating

conditions	in	testing	set.	The	comparison	results	are	presented	in	Fig.	4	for	first	100	operating	conditions	out	of	2160	conditions.	As	it	is	seen	in	Fig.	3 (The	Fig	3	should	be	replaced	by	Fig	4.),	there	is	a	close	agreement	between	the

predicted	performance	parameters	by	GPR	and	the	numerical	model	results.	The	testing	set	contributes	to	the	generalization	of	the	GPR	model	and	indicates	that	the	GPR	model	is	adequately	trained.	This	feature	also	indicated	that

the	model	is	not	restricted	to	the	training	set	and	thus	simultaneously	controlled	the	model	overfitting	and	complexity.	The	comparison	between	numerical	model	and	GPR	predictions	for	training	set	are	also	illustrated	in	Fig.	4 (This	Fig

4	should	be	replaced	by	Fig	5.	)	 (This	Fig	4	should	be	replaced	by	Fig	5.	)for	the	first	100	operating	conditions	out	of	4320	conditions.	The	overall	comparison	results	were	evaluated	by	the	selected	metrics	given	in	Table	5.	The	maximum

RSME	and	MAPE	for	moisture	extraction	were	found	to	be	0.045	and	0.21,	and	for	moisture	removal	efficiencies	to	be	0.082	and	0.39,	respectively;	and	the	lowest	R2	was	recorded	as	0.97.	The	close	agreement	of	results	between	the

two	models	and	also	the	very	small	error	values	proved	the	GPR	model	to	be	reliable	and	validated	its	results.	Therefore,	it	can	be	concluded	with	high	certainty	that	the	model	results	are	valid	for	any	operating	conditions	constructed

by	the	predefined	ranges.	Detailed	comparison	between	different	statistical	approaches	e.g.,	Artificial	Neural	Network	(ANN),	Support	Vector	Regression	(SVR)	and	Kriging	can	be	found	in	literatures	[33,	34].

(23)



Table	5	Comparison	of	the	metric	values	between	the	GPR	and	numerical	model.

alt-text:	Table	5

Set Moisture	extraction	efficiency Moisture	removal	efficiency

RSME MAPE R2 RSME MAPE R2

Training 0.012 0.11 1 0.03 0.25 0.98

Testing 0.045 0.21 0.98 0.082 0.39 0.97

3.3	Application	of	the	gpr	GPR	based	model
This	 section	 presents	 three	main	 applications	 of	 the	GPR	model.	 The	 impact	 of	 four	main	 parameters	 on	 the	 performance	 of	 solar/waste	 energy	 driven	 dehumidification/regeneration	 cycle	 are	 analysed	 and	 discussed	 to

demonstrate	the	model	capability	in	investigating	the	effect	of	different	parameters.	Additionally,	the	moisture	extraction	and	moisture	removal	efficiencies	of	the	system	are	predicted	for	a	number	of	randomly	generated	operating

conditions	to	prove	model's	applicability	in	any	random	operating	conditions.	Eventually,	the	system's	performance	is	predicted	in	two	warm	and	humid	climates	to	show	the	applicability	of	the	model	in	real	conditions.

Fig.	5.

Fig.	4	Comparison	of	the	GPR	model	and	numerical	model	results	based	on	testing	set	(a):	moisture	extraction	efficiency	comparison,	(b):	moisture	removal	efficiency	comparison.

alt-text:	Fig	4



3.3.1	Impact	of	the	operating	parameters	on	system's	performance
Effect	 of	 four	 selected	 operating	parameters,	 namely:	 hourly	 operating	 time,	 relative	 humidity	 of	 the	process	 air,	 solar	 intensity	 and	 temperature	 of	 regeneration	 air	 on	performance	 of	 the	 system	are	 shown	 in	Fig.	6.	 In	 analysis	 of	 system

performance	based	on	specified	operating	parameters,	other	operating	parameters	were	held	constant	to	observe	the	impact	of	the	selected	parameters	only.

Fig.	5	Comparison	of	the	GPR	and	numerical	model	results	based	on	training	set	(a):	moisture	extraction	efficiency,	(b):	moisture	removal	efficiency.

alt-text:	Fig	5



To	study	the	effect	of	operation	time,	the	performance	of	the	system	was	predicted	in	three	hours	of	the	operation.	As	can	be	seen	in	Fig.	6	(a),	moisture	extraction	efficiency	decreases	from	0.31	to	0.15	as	time	of	operation	increases.	This	is	due	to

the	fact	that	an	increase	in	operation	time	leads	to	more	saturated	desiccant	bed	which	leads	to	less	heat	and	mass	transfer	from	process	air	to	the	desiccant	bed.	Contrarily,	the	moisture	removal	efficiency	increases	over	the	same	period.	This	is	simply

because	an	increase	in	operation	time	contributes	to	more	water	evaporation	from	the	saturated	desiccant	bed.	However,	a	slight	decrease	in	slope	of	the	moisture	removal	efficiency	is	visible	as	the	regeneration	cycle	eventually	reaches	the	steady	state.

It	can	be	observed	in	Fig.	6	(b)	that	both	moisture	extraction	and	moisture	removal	efficiencies	decrease	when	relative	humidity	of	the	process	air	is	increased	from	60%	to	90%.	However,	this	trend	is	more	visible	in	the	dehumidification	cycle.

This	was	expected	as	the	performance	of	the	dehumidification	cycle	is	highly	dependent	on	humidity	of	the	process	air.	The	operating	time	in	this	case	was	1	h	during	which	the	greater	relative	humidity	causes	the	desiccant	bed	to	reach	its	saturation	level

faster.	This	seriously	obstructs	the	water	absorption	phenomena	during	the	dehumidification	process	and	eventually	leads	to	the	decrease	in	moisture	extraction	efficiency.

In	Fig.	6	(c),	when	solar	intensity	increases	from	600 W/m2	to	1800 W/m2,	the	moisture	removal	efficiency	increases	from	0.32	to	0.74	whereas	the	dehumidification	process	remains	constant.	This	trend	was	expected	as	in	this	particular	case,

temperature	of	the	regeneration	air	was	kept	at	20 °°C	and	thus	the	solar	radiation	plays	the	key	role	in	water	evaporation	phenomena	during	the	regeneration	process.

Fig.	6	(d)	illustrates	the	effect	of	regeneration	temperature	on	system	performance.	An	increase	in	regeneration	temperature	from	70 °°C	to	90 °°C	leads	to	an	increase	in	moisture	removal	efficiency	from	0.83	to	0.98.	Whereas	it	does	not	have	a

significant	effect	on	the	dehumidification	efficiency.	The	reason	for	this	is	that	the	solar	radiation	in	this	case	was	ignored	and	the	warm	regeneration	air	was	the	main	factor	in	water	evaporation	phenomena.	Thus	temperature	of	the	regeneration	air

directly	influences	the	regeneration	cycle	as	the	greater	regeneration	temperature	contributes	to	more	heat	and	mass	transfer	from	the	saturated	desiccant	bed.

3.3.2	Prediction	of	the	system	performance	under	randomly	generated	operating	conditions
In	 this	section,	sixteen	conditions	were	generated	randomly	 to	simulate	 the	performance	of	system.	The	moisture	extraction	and	moisture	removal	efficiencies	of	 the	system	were	predicted	by	GPR	model.	The	model	was	run	 for	one	hour	of

operation	and	the	discrete	values	of	the	operating	parameters	that	were	used	to	generate	the	operating	conditions	are	listed	in	Table	6.	As	can	be	seen	in	Fig.	7(a),	the	moisture	extraction	efficiency	was	predicted	to	vary	between	0.15	and	0.38	where	the

maximum	and	minimum	levels	occur	 in	operating	conditions	1	and	16	respectively.	Comparing	these	two	conditions	reveals	that	the	first	condition	is	drier	than	the	16th	condition,	which	has	the	most	humid	conditions	among	the	randomly	generated

Fig.	6	Impact	of	four	operating	conditions	on	system's	performance	(a)	Operating	time	(hr);	(b)	Relative	humidity	of	process	air	(-);	(c)	Solar	intensity	(W/m2);	(d)	Temperature	of	regeneration	air	(	°C).

alt-text:	Fig	6



operating	conditions.	This	simply	has	led	the	system	to	reach	its	lowest	moisture	extraction	efficiency.	For	the	regeneration	cycle,	as	can	be	seen	from	Fig.	7	(b),	the	system	shows	the	best	performance	in	operating	conditions	3,	8,	11	and	14.	The	reason	for

this	performance	lies	in	the	fact	that	in	the	above-mentioned	conditions,	the	solar	radiation	has	the	highest	allowable	amount,	1800 W/m,	which	is	the	main	parameter	responsible	for	water	evaporation.	In	contrary,	the	regeneration	cycle	has	the	lowest

moisture	removal	efficiency	in	operating	condition	1.	Similarly,	solar	radiation	in	this	condition,	which	is	600 W/m2,	is	also	the	main	effective	factor	in	regeneration	cycle.	Among	conditions	4,	5	and	6,	where	warm	air	is	responsible	for	the	water	evaporation

from	the	saturated	desiccant	bed,	the	moisture	removal	efficiency	increase	from	0.87	in	condition	4	to	0.98	in	condition	6.	This	trend	was	expected	as	the	temperature	of	the	regeneration	air	was	increased	from	70ᵒC	in	condition	4	to	90	ᵒC	in	condition	6.

Table	6	Randomly	generated	operating	conditions.

alt-text:	Table	6

N Tp	[ᵒC] RHp	[-] Tr	[ᵒC] U	[m/s] Ld	[m] I	[W/m2]

1 25 0.6 20 1 1 600

2 26 0.7 20 2 2 1200

3 27 0.8 20 3 3 1800

4 28 0.9 70 4 4 0

5 29 0.6 80 1 5 0

6 30 0.7 90 2 1 0

7 31 0.8 20 3 2 1200

8 32 0.9 20 4 3 1800

9 33 0.6 20 1 4 600

10 34 0.7 20 2 5 1200

11 35 0.8 20 3 1 1800

12 36 0.9 20 4 2 600

13 37 0.6 20 1 3 1200

14 38 0.7 20 2 4 1800

15 39 0.8 20 3 5 600

16 40 0.9 20 4 1 600



3.3.3	Prediction	of	the	system	performance	in	warm	and	climate	weather	conditions
The	model	is	used	to	predict	the	performance	of	the	system	in	warm	and	humid	climates	i.e.	Singapore	and	Dubai	and	their	weather	information	[35]	are	shown	in	Fig.	8.	The	average	temperature	and	RH	humidity	are	chosen	as	input	conditions	of

the	process	air.	Flow	rate	of	process	air	is	1	[m/s]	and	length	of	the	desiccant	bed	is	1	[m].	The	regeneration	process	is	assumed	to	be	done	by	warm	air	only	where	the	temperature	of	regeneration	air	is	90	[ᵒC]	and	thus	the	solar	radiation	intensity	is

ignored.	Additionally,	the	prediction	is	done	for	1	h	of	operating	time	for	each	cycle.

Fig.	7	Prediction	of	the	system	performance	under	randomly	generated	operating	conditions;	(a):	moisture	extraction	efficiency;	(b):	moisture	removal	efficiency.

alt-text:	Fig	7



The	prediction	is	done	for	an	entire	year	in	Singapore	but	for	Dubai,	the	dehumidification	system	is	needed	from	April	to	November.	The	reason	for	this	is	that	the	average	temperature	and	relative	humidity	of	the	selected	months	should	be	within

the	predefined	ranges	in	Table	1.	The	prediction	results	for	both	moisture	extraction	and	moisture	removal	efficiencies	are	shown	in	Fig.	9.	As	can	be	seen,	the	moisture	extraction	efficiency	in	Singapore	ranges	0.25-–0.27.	The	reason	for	this	stability	is	the

stable	weather	conditions	in	Singapore	all	along	the	year	where	the	average	temperature	ranges	from	25	to	27.45	[ᵒC]	and	the	relative	humidity	is	between	0.82	and	0.9.	Similarly,	the	moisture	removal	efficiency	in	Singapore	is	relatively	constant	at	0.98.

This	is	again	because	of	the	stable	inputs	of	regeneration	air	where	the	main	impacting	factor,	the	temperature	of	regeneration	air,	is	constant	at	90	[ᵒC]	and	the	solar	intensity	is	ignored.	However,	for	Dubai,	the	moisture	extraction	efficiency	ranged	from

0.28	in	August	to	0.4	in	April	and	the	moisture	removal	efficiency	is	between	0.96	in	August	and	0.99	in	November.	The	reason	for	relatively	similar	moisture	removal	efficiencies	in	both	cities	lies	in	the	fact	that	apart	from	the	condition	of	the	desiccant

bed	happened	during	the	dehumidification	cycle,	the	main	effecting	factor	is	the	warm	air	temperature,	which	is	constant.

Fig.	8	Weather	information;	(a):	Singapore;	(b):	Dubai.

alt-text:	Fig	8



4	Conclusion
The	authors	were	pioneered	in	bringing	the	Gaussian	process	regression	into	investigation	of	the	dehumidification	systems.	The	GPR	model	was	first	trained	by	a	training	set	and	then	tested	with	a	numerical	model	through	the

testing	set.	Such	kind	of	effort	directly	correlated	the	main	operating	parameters	of	the	desiccant	system	with	the	performance	parameters.	The	selected	operating	parameters	were	temperature,	relative	humidity	and	flow	rate	of

process	 air,	 temperature	 of	 the	 regeneration	 air,	 length	 of	 the	 desiccant	 bed,	 solar	 radiation	 intensity	 and	 operating	 time	 of	 the	 system	 and	 the	 selected	 performance	 parameters	 were	 moisture	 extraction	 efficiency	 for	 the

dehumidification	cycle	and	moisture	removal	efficiency	for	the	regeneration	cycle.	The	model	was	tested	by	a	numerical	model	and	was	evaluated	by	three	common	metrics.	The	maximum	RSME	and	MAPE	were	0.045	and	0.21	for

moisture	extraction,	and	0.082	and	0.39	for	moisture	removal	efficiencies,	respectively;	and	the	lowestR2	was	0.97.	The	developed	GPR	model	was	employed	to	study	the	effect	of	four	operating	parameters	on	performance	of	the

system,	 prediction	 of	 the	 performance	 parameters	 under	 16	 randomly	 generated	 operating	 conditions	 and	 warm	 and	 humid	 climates.	 The	 presented	 GPR	 model	 is	 prompt	 and	 time	 efficient	 in	 performance	 prediction	 of	 the

dehumidification	systems	and	is	needless	of	heat	and	mass	transfer	equations.	The	model	can	be	used	as	a	robust	and	reliable	tool	in	design	and	optimization	of	the	dehumidification	systems.
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Highlights

• A	statistical	model	for	a	novel	dehumidification	system	is	developed.

• A	new	application	of	gaussian	Gaussian	process	regression	(GPR)	is	presented.

• Validity	of	the	model	for	any	random	operating	conditions	is	investigated.

• Several	applications	of	the	model	in	performance	prediction	of	the	system	are	presented.
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