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Abstract 

Reactions of [{Re6Q8}Br6]
4−/3− (Q = S, Se) with molten imidazole lead to the formation of two 

new neutral cluster complexes [{Re6Q8}(imzH)4(imz)2] (imzH = imidazole). The interaction of 

[{Re6Q8}(imzH)4(imz)2] with hydrohalic acids resulted in cationic complexes 

[{Re6Q8}(imzH)6]X2 (X = Cl, Br). All compounds were characterised by X-ray single-crystal and 

powder diffraction analyses, elemental analysis, energy dispersive X-ray and IR spectroscopies. 

The luminescence of the neutral compounds [{Re6Q8}(imzH)4(imz)2] was also studied. 
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1. Introduction 

Octahedral rhenium cluster complexes of the general formula [{Re6Q8}L6]
n (where Q is S or Se, 

and L are either inorganic or organic terminal ligands) and related cluster-based materials have 

attracted significant attention of researchers due to the unique combination of properties that they 

possess. This includes phosphorescence in the red/near-infrared region upon UV/blue light 

excitation [1-6], electroluminescence [7], their ability to generate singlet oxygen [8-10] and high 

X-ray attenuation efficacy [11-12]. This set of properties opens an avenue to applications such as 

materials for light emitted diodes [7], photoactive liquid crystals [13-14], optical bioimaging [9-

10, 15-16], photodynamic therapy[10], imaging agents for X-ray computed tomography [11-12] 

and others [17-23]. 

Notably, by replacing the terminal ligands L, one can both fine-tune the photophysical properties 

of the octahedral rhenium clusters and target them to a specific application. For example, to target 

biomedical applications, it is possible to synthesise compounds with ligands bearing functional 

groups such as –NH2, –COOH, –CONH2 [24-28] i.e. groups open for further modification or 

cleaving to biological molecules. Alternatively, furnishing the clusters with polymerisable ligands 

gives an opportunity to use the octahedral rhenium clusters as the active components of 

processable luminescent polymers [7, 29-30]. Synthesis of the metal clusters with simple 

heterocyclic ligands [9, 31-34] are also of interest, as such compounds that can lead to additional 

properties, which include supramolecular, porous crystalline structures [35-37] or versatile redox 

properties [27]. Moreover, the study of octahedral complexes with simple heterocycles that are 

related to biological molecules such as nucleotides and amino-acids may uncover the potential of 

these compound as, for example, anticancer agents [38]. 
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In this work we report the synthesis, structures and luminescent properties of new neutral 

octahedral rhenium cluster complexes that have imidazole ligands, which is an important 

biological building block (e.g. the amino acid, histidine, and the related hormone, histamine, which 

both contain imidazole rings). Specifically, here we demonstrate the neutral cluster compounds 

[{Re6Q8}(imzH)4(imz)2], in which cluster cores {Re6Q8}
2+ (Q = S (1) or Se (2)) are coordinated 

by four imidazole (imzH) and two imidazolide (imz) ligands. Both compounds were obtained in 

just one stage by heating Cs4[{Re6S8}Br6]·2H2O or Cs3[{Re6Se8}Br6]·2H2O, respectively, in 

molten imidazole. It should be noted that the compounds’ two imidozolide ligands retained 

significant basic properties, which allowed us to also obtain cationic cluster compounds 

[{Re6Q8}(imzH)6]X2 (X = Cl, Br) by the reaction of [{Re6Q8}(imzH)4(imz)2] with hydrohalic 

acids. 

2. Experimental 

2.1. Materials and methods 

All reagents and solvents were commercially available and they were used without additional 

purification. The caesium salts Csn[{Re6Q8}Br6]·2H2O (Q = S and n = 4 or Q = Se and n = 3) were 

obtained according to the literature procedure [39-40]. 

Elemental analyses were performed on a EuroVector EA3000 Elemental Analyzer. Infrared 

spectra were recorded as KBr pellets with a Bruker Vertex 80 spectrometer from 400 to 4000 cm−1. 

Energy-dispersive X-ray spectroscopy (EDS) was performed on a Hitachi TM3000 TableTop 

SEM with a Bruker QUANTAX 70 EDS equipment with results reported as the ratio of the heavy 

elements: Re, S/Se, and X; the relative error of the method was about 5%. The thermal properties 

were studied on a Thermo Microbalance TG 209 F1 Iris (NETZSCH) from 25 to 850 °C with a 

rate of 10 ° min−1 in He flow (30 mL min−1). X-ray powder diffraction (XRPD) data were collected 

on a Shimadzu XRD 7000S using CuK radiation ( = 1.5406 Å) and a graphite monochromator. 

2.2. Synthesis of compounds 

General Proce dure for Syntheses of Compounds. 

Synthesis of [{Re6S8}(imzH)4(imz)2] (1): Cs4[{Re6S8}Br6]·2H2O (200 mg, 0.0826 mmol) and 

imidazole (200 mg, 2.938 mmol) were heated in a sealed glass tube at 180 ºC for 2 days. The 

reaction product was washed with water and dried in air. The amorphous product was dissolved in 

10 mL water-ethanol solution (v/v=1:1) containing ~30 mg of KOH and precipitated by the 

addition of water, washed with water and dried on air. Yield: 118 mg (80%). For C18H22N12Re6S8 

(1) calculated: C, 12.1; H, 1.2; N, 9.4; S, 14.3; found: C, 12.1; H, 1.3; N, 9.2; S, 14.1. EDS: Re : S 

: Br  = 6 : 7.8 : 0. 

Synthesis of [{Re6Se8}(imzH)4(imz)2] (2): The compound was obtained similarly to 1 by the 

reaction of Cs3[{Re6Se8}Br6]·2H2O (200 mg, 0.0751 mmol) with imidazole (200 mg, 2.938 mmol) 

Yield: 138 mg (85%). For C18H22N12Re6Se8 (2) calculated: C, 10.0; H, 1.0; N, 7.8; found: C, 10.0; 

H, 1.2; N, 7.8. EDS: Re: Se :Br = 6 : 7.9 : 0. 

Protonation of cluster complexes [{Re6S8}(imzH)6]X2∙4DMSO (1∙2HX∙4DMSO) and 

[{Re6Se8}(imzH)6]X2∙4DMSO (2∙2HX∙4DMSO): [{Re6Q8}(imzH)4(imz)2] (50 mg) was dissolved 
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in DMSO (2 ml), where a few drops of HXconc. (X = Cl, Br) were added. The resultant cluster 

complexes [{Re6Q8}(imzH)6]X2∙4DMSO (1∙2HCl∙4DMSO and 1∙2HBr∙4DMSO, 

2∙2HCl∙4DMSO and 2∙2HBr∙4DMSO) were precipitated by the addition of 50 ml of ethyl acetate. 

The product was quantitatively isolated by centrifuging, washed with ethyl acetate and dried in 

air. Yields: ~100%. For C26H48Cl2N12O4Re6S12 (1∙2HCl∙4DMSO) calculated: C, 14.4; H, 2.2; N, 

7.8; S, 17.8; found: C, 14.3; H, 2.3; N, 7.8; S, 17.7. For C26H48Br2N12O4Re6S12 (1∙2HBr∙4DMSO) 

calculated: C, 13.8; H, 2.1; N, 7.4; S, 17.0; found: C, 14.0; H, 1.9; N, 7.5; S, 16.9. EDS: Re : S : 

X ratio is 6 : 12.1 : 1.9 for 1∙2HCl∙4DMSO and 6 : 11.8 : 1.9 for 1∙2HBr∙4DMSO. For 

C26H48Cl2N12O4Re6S4Se8 (2∙2HCl∙4DMSO) calculated: C, 12.2; H, 1.9; N, 6.6; S, 5.0; found: C, 

12.3; H, 2.1; N, 6.8; S, 4.7. For C26H48Br2N12O4Re6S4Se8 (2∙2HBr∙4DMSO) calculated: C, 11.9; 

H, 1.8; N, 6.4; S, 4.9; found: C, 12.0; H, 1.8; N, 6.5; S, 4.9. EDS: Re : Se : X ratio is 6 : 7.9 : 2 for 

2∙2HCl∙4DMSO and 6 : 8.1 : 1.9 for 2∙2HBr∙4DMSO.  

X-ray crystallography 

Single-crystal X-ray diffraction data for 1, 1∙2DMSO, 2∙2HCl∙4DMSO and 2∙2HBr∙4DMSO were 

collected using graphite monochromatised Mo Kα-radiation (λ = 0.71073 Å) at 150(2) K on a 

Bruker-Nonius X8 APEX diffractometer equipped with a 4 K CCD area detector. The φ-scan 

technique was employed to measure intensities. Absorption corrections were made empirically 

using the SADABS program [41]. The structures were solved by the direct method and further 

refined by the full-matrix least-squares method using the SHELXTL program package [41]. All 

non-hydrogen atoms were refined anisotropically. Table 1 summarises crystallographic data, while 

CCDC 1890750-1890753 contain the supplementary crystallographic data for this paper. These 

data can be obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

2.3. Luminescence measurements 

For the emission measurements, the powdered samples were placed between two non-fluorescent 

glass plates. The absorbance of the cluster solutions was set at < 0.1 at 355 nm. The solutions were 

poured into a quartz cuvette and deaerated by purging with an Ar-gas stream for 30 min, and then 

the cuvettes were sealed. Measurements were carried out at 298 K. The samples were excited by 

laser pulses with a wavelength of 355-nm (6 ns duration, LOTIS TII, LS-2137/3). Corrected 

emission spectra were recorded on a red-light-sensitive multichannel photodetector (Hamamatsu 

Photonics, PMA-12). For the emission decay measurements, the emission was analysed by a 

streakscope system (Hamamatsu Photonics, C4334 and C5094). To calculate the lifetime 

parameters the luminescence intensity decays were fitted by using the u8167-01 software supplied 

with the streakscope system by Hamamatsu Company. Emission quantum yields were determined 

at the excitation wavelength of 400 nm by an Absolute Photo-Luminescence Quantum Yield 

Measurement System (Hamamatsu Photonics, C9920-03), which comprised an excitation Xenon 

light source, an integrating sphere, and a red-sensitive multichannel photodetector (Hamamatsu 

Photonics, PMA-12). The luminescence spectra were smoothed by the Savitzky–Golay filter to 

increase the signal-to-noise ratio [42]. 

3. Results and discussion 
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3.1. Synthesis and general characterization of cluster complexes with imidazole 

The reactions of octahedral halide clusters in molten organic pro-ligands, where they serve as both 

a reactant and a reaction medium, have proven themselves as a simple way to obtain new 

octahedral cluster complexes with organic ligands. [25, 31-32, 40, 43-44] Furthermore, it was 

noted earlier that the ability of the organic pro-ligands to self-ionise (i.e. whether they have protic 

or aprotic properties) predetermines the charge and the number of apical ligands in the final 

product [40]. Namely, the driving force in the reactions of the clusters with aprotic pro-ligands is 

the formation of the neutral complex, which are more stable in the non-ionic melt. In this case, 

only four halide ligands are substituted to give the total neutral charge. On the other hand, the 

reactions with protic pro-ligands lead to the formation of hexa-substituted complexes, such as these 

few examples reported earlier: [{Re6Q8}(PPh2CH2CH2COOH)6]Br2∙H2O [28] and [{Re6Q8}(3,5-

Me2pzH)6]Br2∙2(3,5-Me2pzH) [31] (Q = S and Se, 3,5-Me2pzH = 3,5-dimethylpyrazole). The 

formation of hexa-substituted complexes is believed to be due to the ability of protic molecules to 

stabilise charged species in melt via self-ionisation. The reactions with such pro-ligands are thus 

driven only by the chemical potential of the pro-ligand, which is significant when pro-ligand is 

used as a reaction solvent.  

In accordance with this hypothesis, the reactions of caesium salts of octahedral chalcohalide 

rhenium cluster complexes Csn[{Re6Q8}Br6]∙2H2O (Q = S, n = 4 or Q = Se, n = 3) in molten 

imidazole (which is a protic pro-ligand) also produced hexa-substituted compounds (Scheme 1, 

Reaction (i)). Indeed, according to EDX, the amorphous reaction products obtained by washing 

the reaction mixture with water contained only around 0.5 Br per cluster unit and no caesium. The 

dissolution of these products in a water-ethanol mixture containing KOH and their precipitation 

by the addition of more water yielded neutral compounds [{Re6Q8}(imzH)4(imz)2], where Q = S 

(1) or Se (2), Reaction (ii). EDX revealed no traces of Br, while elemental analyses were in good 

agreement with the suggested formula. Powder XRD of 1 and 2 (Fig. S1) revealed that they both 

contain single crystalline phases, since the reflections coincide with those generated from crystal 

structure of 1 as discussed below. FTIR (400-4000 cm–1) of both precipitates had all of the peaks 

that were expected for imidazole, while that of 1 also showed the band at 413 cm–1 assigned to Re-

(µ3-S) vibration (Fig. S2). We thus believe that in the reaction with molten imidazole both neutral 

[{Re6Q8}(imzH)4(imz)2] and admixture of cationic [{Re6Q8}(imzH)6]Br2 were formed with the 

latter chemical form being eliminated in the consequent dissolution with KOH. 

It was also possible to obtain pure protonated form of the compounds, [{Re6Q8}(imzH)6]
2+, by the 

reactions of 1 and 2 with hydrohalic acids in DMSO, Reaction (iii). Indeed, we noticed that the 

solubility of compounds is significantly better in acidified DMSO than in pure DMSO. During the 

reactions, deprotonated ligands were protonated to give cluster di-cations. Such protonated forms 

of the clusters can be also obtained by the dissolution of the products of Reaction (i) with HX in 

DMSO, Reaction (iv), while the cationic clusters can be converted into the neutral ones using the 

same method as in Reaction (ii), i.e. by the treatment of the cationic cluster complexes with water-

ethanol solution of KOH, Reaction (v). Protonation/deprotonation of the rhenium clusters with 

imidazole are therefore reversible processes. Unfortunately, we were not able to obtain the crystal 

structure of compound containing [{Re6S8}(imzH)6]
2+ salts, while [{Re6Se8}(imzH)6]

2+ were 
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successfully crystallised with chloride and bromide counter-ions and characterised by single 

crystal analysis as 2∙2HX∙4DMSO, where X = Cl or Br. Nevertheless, powder XRD patterns of 

1∙2HX∙4DMSO and 2∙2HX∙4DMSO were in good agreement with the theoretical diffractograms 

calculated from structural data of 2∙2HX∙4DMSO (Fig. S3). 

Thermogravimetric analysis (TGA) confirmed that 1 and 2 are thermodynamically preferable 

products of the reaction in molten imidazole as they are stable all the way up to above 200 ºC (Fig. 

S4). In the temperature range 200-800 ºC both cluster complexes undergo two step decomposition, 

with the first step starting from just above 200 ºC and the second step from above 550ºC. In 

contrast, TGA of solvates, 1∙2HBr∙4DMSO and 2∙2HBr∙4DMSO, revealed that both start 

decomposing at 100 ºC, likely with the removal of two HBr molecules (first step in the TGA curve 

on Fig. S5), followed by removal of DMSO molecules and decomposition of the cluster 

complexes. 

3.2. Crystal structure of compounds with imidazole ligands 

Single crystals of 1 for X-ray structural analyses were obtained by two different techniques: 1) by 

slow evaporation of water-ethanol solution (v/v=1:1) containing a small amount of KOH to give 

crystals of 1 and 2) by diffusion of ethyl acetate into solution of 1 in DMSO to give crystals of 

solvate 1∙2DMSO. Single crystals of the protonated form of 2, were obtained as solvates 

2∙2HCl∙4DMSO and 2∙2HBr∙4DMSO by the diffusion of ethyl acetate into the solution of 2, 

containing hydrohalic acid in DMSO. 

According to single crystal analyses the molecular structures of all cluster compounds in all 

crystalline phases are in accordance with the suggested formula. Specifically, they contain 

octahedral cluster cores {Re6Q8}
2+ (Q = S or Se), similar to starting octahedral clusters and other 

related compounds. Each cluster core represents a Re6 octahedron with all faces capped by μ3-Q 

atoms. Each of the rhenium atom in the clusters are also coordinated by imidazole or imidazolium 

ligands via nitrogen atoms (Fig. 1). Re-Re, Re-Q and Re-N bond lengths in the crystalline 

compounds are presented in Table S1 and are in a good agreement with the literature data for hexa-

nuclear rhenium cluster complexes with N-donor heterocycles [5, 9, 25, 31-32, 45]. Overall, in the 

crystal structures the idealised Oh point symmetry of the clusters are reduced down to Ci in 1 and 

2∙2HCl∙4DMSO or C2v in 1∙2DMSO with all atoms in the cluster complexes being in the general 

crystallographic positions. 

Despite being quite different from the crystallographic point of view, i.e. crystallising in different 

crystal systems: triclinic and monoclinic, respectively, compounds 1 and 1∙2DMSO∙are relatively 

similar not only from molecular point of view but also from supramolecular bonding topology. To 

satisfy the neutral cluster complex stoichiometry, cluster cores in 1 and 1∙2DMSO were 

coordinated by two imidazolium and four imidazole ligands. In both of the structures, four of the 

planar organic ligands represent a mixture of two ImzH and two Imz ligands. In 1, this disorder is 

achieved by two crystallographically independent hydrogen atoms being equally distributed over 

four positions associated with non-coordinating nitrogen atoms, while in case of 1∙2DMSO there 

is one crystallographically independent hydrogen atom that is distributed over two positions. These 

disordered hydrogen atoms are involved in strong N–H⋯N hydrogen bond interactions between 
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adjacent complexes. These hydrogen bond interactions are demonstrated by the relatively short 

N⋯N distances: 2.729 and 2.984 Å in compound 1 (Fig. 2B and 2C) and 2.665 Å and 2.706 Å in 

compound 1∙2DMSO (Fig. 3A). Such disorder can be thus described as hydrogen atoms being 

shared between two planar imidazolium ions of neighbouring clusters, which give rise to extended 

2D layered grids with metal clusters located in the nodes of the grids (Fig. 2A and S6). 

The packing of the 2D grids is, however, different. In compound 1, the hydrogen bonded layers 

are stacked and further crosslinked by π–π stacking interactions (3.470, 3.647 and 4.239 Å between 

the ring centres) (Fig. S7) that form a strongly packed structure. Unlike compound 1, the 

independent part in 1∙2DMSO also contains one solvate molecule of DMSO, which is disordered 

over two crystallographic positions, with calculated occupancies of 0.6 and 0.4, respectively. 

These solvated DMSO molecules distort π–π stacking of the 2D grids. Instead, N –H⋯O hydrogen 

bonds are formed between imidazole ligands in axial positions and DMSO molecules with 

distances of 2.699 and 2.769 Å (Fig. 3B). 

Both cluster compounds 2·2HX∙4DMSO (X=Cl, Br) are isostructural and contain half of the 

centre-symmetrical cluster cation [{Re6Se8}(imzH)6]
2+, a halide anion (Cl– or Br–) and two solvate 

molecules of DMSO in the independent part. Since all nitrogen atoms of the ligands were 

protonated, the clusters were not hydrogen-bonded to each other. Instead, protons associated with 

the non-coordinating nitrogen atoms of imidazole ligands are involved in the developed network 

of hydrogen bonding that includes both O atoms of DMSO molecules and halide ions (Fig. 4). The 

N–H⋯X hydrogen bonds are characterised by N⋯X distances in the range of 3.143–3.163 Å for 

X=Cl and 3.310–3.276 Å for X=Br. The N–H⋯O bonds are O distances of 2.674 Å for 

2·2HCl∙4DMSO and 2.747 Å for 2·2HBr∙4DMSO.  

3.3. Photophysical properties 

Similar to other octahedral rhenium clusters with {Re6Q8}
2+ both compounds 1 and 2 are 

luminescent with broad emission spectra spreading from 550 to more than 950 nm in the solid 

state and in DMSO solution (Fig. 5). Table 2 summarises photophysical characteristics, i.e. 

emission maximum wavelengths (λem), emission lifetimes (τem) and quantum yields (Φem) of 1 and 

2 in both the solid state and DMSO solutions. One can note from the data that the emission profile 

of cluster complex 2 is slightly blue-shifted and somewhat narrower in comparison with that of 1. 

Such differences between the sulphide and selenide rhenium clusters are quite typical and 

demonstrate the decrease of the energy gap between the emissive triplet state and the excited 

singlet state for metal clusters with the heavier chalcogen in the core [1, 3-5, 46]. Triple 

exponential decay fitting of the luminescence lifetimes of the powdered samples (Fig. S8) is also 

common for luminescent octahedral clusters in the solid state and it is usually explained by 

efficient excitation migration in the crystal and subsequent energy trapping and emission in the 

crystal defects [46]. Finally, a significant increase of both em and em values were observed for 

both compounds after degasification by purging with argon, which indicates the typical property 

of most of the known photoluminescent octahedral cluster complexes, i.e. quenching by molecular 

oxygen [8-9]. 

4. Conclusions 



©2019, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 
 

Four new rhenium cluster complexes with imidazole ligands were synthesised by a very simple 

technique that uses a molten n-donor organic pro-ligand as both reactant and reaction medium for 

octahedral rhenium chalcobromide clusters. The compositions of the products, 

[{Re6Q8}(imzH)4(imz)2] (Q = S, Se), are in the agreement with the earlier suggestion: reactions of 

octahedral rhenium clusters in molten protic ligands are likely to result in hexa-substituted cluster 

complexes. Notably, in the solid-state neutral metal clusters are bonded with each other via 

hydrogen bonds formed between imidazole and imidazolide ligands producing supramolecular 2D 

grid structures. The grids are further bonded via π-π stackings of imidazole rings of parallel grids. 

Solvation of [{Re6Q8}(imzH)4(imz)2] with DMSO affects the packing of the grids by intercalating 

between the grids and preventing the formation of π-π stackings. The fully protonated cationic 

species were also produced and isolated in pure crystalline form for the selenide cluster in the form 

of [{Re6Se8}(imzH)6]X2 (X = Cl, Br) by the addition of HX acid to the DMSO solution of neutral 

compound. The study of luminescent properties revealed a characteristic blue-shift of emission 

maximum of selenium compound in comparison with that of sulphur one with absolute quantum 

yields of 0.11 for [{Re6S8}(imzH)4(imz)2] and 0.06 for [{Re6Se8}(imzH)4(imz)2] in solid state and 

0.12 and 0.14 in deaerated DMSO solutions, respectively. 
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Scheme 1. Substances conversion scheme. 
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Figure 1. The structure of the [{Re6Q8}(imzH)4(imz)2] in compound 1. Colour code: Re (black), 

Q (yellow), N (blue), C (charcoal), H (white), H with occupation ½ (red), octahedron Re6 (green). 
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Figure 2. Packing in the crystal structure of 1. Colour code: Re (black), N (blue), C (charcoal), H 

with occupation ½ (red), octahedron Re6 (green). Sulphur atoms, non-disordered hydrogen and 

ligands without disordered hydrogen are omitted for clarity. 
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Figure 3. Packing (A) and hydrogen bonding (B) in the crystal structure of 1∙2DMSO. Colour 

code: Re (black), N (blue), C (charcoal), H with occupation ½ (orange), O (red), S (yellow,) 

octahedron Re6 (green). Sulphur atoms in the cluster core and other ligands are omitted for clarity. 
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Figure 4. The system of hydrogen bonds in the crystal structure of 2·2HX∙4DMSO (X = Cl, Br). 

Colour code: Re (black), N (blue), C (charcoal), O (red), S (yellow), X (green), H (white), 

octahedron Re6 (red).  
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Figure 5. Smoothed emission spectra of 1 (left) and 2 (right) in the solid state and in aerated and 

deaerated DMSO solutions. 
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Table 1. Crystallographic data, data collection and refinement parameters for 1, 1∙2DMSO, 

2∙2HCl∙4DMSO and 2∙2HBr∙4DMSO. 

 1 1∙2DMSO 2∙2HCl∙4DMSO 2∙2HBr∙4DMSO 

Empirical 

formula 
C18H22N12Re6S8 C22H34N12O2Re6S10 C26H48Cl2N12O4Re6S4Se8 C26H48Br2N12O4Re6S4Se8 

Formula 

weight 
1780.16 1936.41 2540.78 2629.70 

Temperature 

(K) 
150(2) 150(2) 150(2) 150(2) 

Crystal size 

(mm3) 
0.12  0.12  0.02 0.25  0.07  0.05 0.10  0.06  0.02 0.44  0.05  0.05 

Crystal 

system 
Triclinic Monoclinic Triclinic Triclinic 

Space group P 1 P 21/c P 1 P 1 

Z 1 2 1 1 

Unit cell 

dimensions 
    

a (Å) 10.9311(2) 11.6291(6) 11.1802(9) 11.0938(5) 

b (Å) 11.5522(3) 14.2902(8) 11.6187(10) 11.6179(4) 

c (Å) 14.0929(3) 12.9396(7) 12.1118(11) 12.1781(5) 

α (º) 90.6850(10) 90 62.030(3) 63.671(1) 

β (º) 109.1240(10) 107.097(2) 74.058(3) 74.021(1) 

γ (º) 109.0990(10) 90 85.394(3) 85.439(1) 

Volume 

(Å3) 
1574.64(6) 2055.30(19) 1333.9(2) 1357.04(9) 

Dcalcd. (g∙cm–

3) 
3.755 3.129 3.163 3.218 

μ (mm–1) 23.537 18.148 19.316 20.361 

θ range (º) 1.54 – 27.53 2.18 – 27.55 1.90 – 27.60 1.91 – 27.61 

Indices 

ranges 

–14 ≤ h ≤ 14 

–15 ≤ k ≤ 15 

–18 ≤ l ≤ 18 

–15 ≤ h ≤ 15 

–18 ≤ k ≤ 17 

–14 ≤ l ≤ 16 

–14 ≤ h ≤ 14 

–12 ≤ k ≤ 15 

–14 ≤ l ≤ 15 

–14 ≤ h ≤ 14 

–15 ≤ k ≤ 15 

–15 ≤ l ≤ 15 

Reflections 

collected 
17439 17450 13051 14519 

Unique 

reflections 
7242 (Rint = 0.0275) 4732 (Rint = 0.0357) 6147 (Rint = 0.0479) 6274 (Rint = 0.0266) 

Observed 

reflections  
6367 [I > 2σ(I)] 3819 [I > 2σ(I)] 3588 [I > 2σ(I)] 5004 [I > 2σ(I)] 

Parameters 

refined 
397 252 284 284 

R[F2 > 

2σ(F2)] 

R1 = 0.0223 

wR2 = 0.0481 

R1 = 0.0393 

wR2 = 0.1000 

R1 = 0.0413 

wR2 = 0.0787 

R1 = 0.0348 

wR2 = 0.0988 

R(F2) (all 

data) 

R1 = 0.0285 

wR2 = 0.0497 

R1 = 0.0546 

wR2 = 0.1056 

R1 = 0.0929 

wR2 = 0.0884 

R1 = 0.0467 

wR2 = 0.1042 

Goodness-

of-fit on F2 
1.041 1.062 0.922 1.138 

Δρmax, Δρmin 

(e∙Å–3) 
2.398, –1.237 3.879, –2.043 2.356, –1.761 2.717, –2.017 
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Table 2. Spectroscopic and photophysical parameters of cluster complexes 1 and 2. 

Compound 

 In DMSO solutions 
In solid state 

 Aerated Deaerated 

λem/nm  τem/µs (A) Φem τem/µs Φem τem/µs (A) Φem 

1 707 7.1 0.06 15.3 0.12 
τ1 = 0.2 (0.74) 

τ2 = 5.3 (0.12) 

τ3 = 8.8 (0.14) 

0.11 

2 688 
τ1 = 1.2 (0.56) 

τ2 = 3.6 (0.44) 
0.03 19.6 0.14 

τ1 = 1.2 (0.49) 

τ2 = 3.6 (0.50) 

τ3 = 11.4 (0.01) 

0.06 

 


