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Abstract 6 

Churn flow is an important intermediate flow regime occurring in between slug and annular flow patterns 7 

in two-phase flow, with profound implications in chemical and petroleum industry. The majority of studies 8 

to date in churn flow have been carried out mainly using water or liquids of low viscosities and limited 9 

information exists regarding the behaviour of high viscosity liquids which resemble realistic process 10 

conditions. In this paper, a study that investigated churn flow and its characteristics in high viscosity oils 11 

(360 and 330 Pa.s) and large diameter columns (240 and 290mm) is presented for a first time. Transition 12 

to churn flow regime starts when the structure velocity, length and frequency of the liquid bridges, which 13 

appear at the end of slug flow, increase. In churn flow, gas flows at the core of the oil column with a wavy 14 

passage, leaving the top surface open to atmosphere with a possibility of creating a very long bubble. The 15 

average length of the bubbles seen to decrease with increasing the gas flow rate. While, no considerable 16 

change is observed in void fraction, structure velocity and film thickness at this flow pattern. 17 
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1. Introduction 23 

Churn flow, which is an intermediate flow regime that appears between slug and annular flow 24 

regimes, is an important flow pattern in gas-liquid two-phase flow. Churn flow occurs during operations in 25 

many hydrocarbons industries and chemical processes such as pipelines in oil and gas industry. It can also 26 

be found in some natural phenomena such as volcanos. The pressure drop, mass and heat transfer are design 27 

parameters which have a significant role in the safety and the stability of gas-liquid systems and can be 28 

affected during churn flow. In churn flow, the gas-liquid travels upward and downward in a churning or 29 

oscillating movement with a resultant of upward flow. This oscillating motion is a result of two forces, 30 

gravity and shear forces, acting in opposing directions on the falling film around Taylor bubbles. Churn 31 

flow was first defined by Zuber and Findlay (1965) as ''churn-turbulent'' bubbly flow. Then, it was 32 

considered as an intermediate region that occurs between slug and churn flow regimes by Hewitt and Hall-33 

Taylor (1970). Finally, it was defined as churn flow regime by Taitel et al. (1980). Furthermore, Hewitt et 34 

al. (1985) reported similarities between these two flow regimes by employing a visual technique. In 35 

addition, a modified form of slug flow model was applied by De Cachard and Delhaye (1996) for churn 36 

flow. However, the pressure that drops in the pipe in churn flow is seen to be better predicted by annular 37 

flow model, Holt et al. (1999). Churn flow was correlated to be a developing form of slug flow regime. On 38 

the other hand, Barbosa Jr et al. (2001) defined this flow regime as it appears after the breakdown of slug 39 

flow when the velocity increases. Since churn flow is similar to annular flow regime in features, a number 40 

of studies considered it as annular flow. For instance, Nicklin (1962) used the name ''semi-annular'' flow to 41 

recognise the annular properties churn flow is distinguished from the annular flow regime based on 3 42 

criteria. First, the change of the pressure gradient inside the pipe with an increasing gas flow rate. The 43 

friction and the intensive wave activity which result from the sudden breakdown of slug flow increase the 44 

pressure gradient significantly inside the pipe. Owen (1986) presented the change of the pressure gradient 45 

data against the dimensionless gas velocity for air-water flow in a 32 mm diameter vertical pipe. According 46 

to his results, the pressure gradient values showed a sudden drop at the transition to churn flow due to the 47 

high-frequency wave activity and friction. However, in Owen’s work, the values of the pressure gradients 48 

decreased with an increasing gas flow rate at a constant liquid flow rate. The decrease in the amount of the 49 

interaction between the gas and the liquid is a reason of the decrease of the pressure gradient at the selected 50 

gas flow rate. Then by increasing the gas flow rate, the values of the pressure gradients increased again.  51 
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Second, the mechanism of the two-phase flow. Churn flow establishes when the falling liquid film 52 

accumulates and starts to flow upward in a form of large waves. This flow mechanism, which was proposed 53 

by Hewitt et al. (1985), is similar to the flooding phenomenon due to the flow of large waves. The third 54 

criterion, for starting churn flow, is the entrainment of the droplets from the large liquid fractions which 55 

travel as large flooding waves along the column. Wallis (1962) found that increasing the gas velocity 56 

decreases the entrained fraction to a minimum value (churn flow). Then a further increase in the upward 57 

gas flow rate increases the liquid entrained fraction in the annular flow. Churn flow in low viscosity liquids 58 

was also studied by Brauner and Barnea (1986), Sekoguchi and Mori (1997), Kaya et al. (2000), de 59 

Carvalho and Ferreira (2000), Furukawa and Fukano (2001),  Sawai and Kaji (2001) and Azzopardi and 60 

Wren (2004).  61 

Knowledge regarding churn flow in high viscosity liquids and large diameter columns is still limited 62 

despite its importance. Such high viscosity liquids can be found for example in crude oil and bitumen 63 

production (with a viscosity up to 2000 Pa.s, Shu, 1984) and in polymer manufacturing (100-1000 Pa.s). It 64 

is also important to predict the volcanic degassing process where gas-Silicatic magmas rise in volcanic 65 

conduits as multiphase flow mixtures. The viscosity of the common type of magma is ranged from 100 to 66 

1000 Pa.s. No experimental studies to date have so far introduced churn flow in liquids of 360 Pa.s viscosity. 67 

In addition, all existent empirical correlations in slug-churn flow transition are based on low viscosity 68 

liquids (commonly, water). Therefore, the characteristics of the dynamic of two phase flow using realistic 69 

liquids need more attention and investigation.  The aim of this work is to investigate the characteristics of 70 

churn flow in very high viscosity liquids and large diameter columns for the first time. Two columns of 71 

240 and 290 mm diameters and 360 and 330 Pa.s Silicone oil respectively were employed in this work. 72 

Electrical Capacitance Tomography (ECT) was used to collect information about the characteristics of the 73 

flow in both columns. Mean void fraction, Probability Density Function (PDF), structure velocity, film 74 

thickness, pressure gradient, large bubbles lengths and frequency were all determined and compared with 75 

analytical approaches from literature. 76 

2. Experimental setup  77 

In the present work, two experimental rigs of similar design are used to study churn flow in high 78 

viscosity liquids and large diameter columns. Each rig consists of a large vertical column open to the 79 

atmosphere with internal diameters of 240 and 290 mm contained Silicone oils with viscosity of 360 and 80 
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330 Pa.s respectively. An Electrical Capacitance Tomography, ECT sensor is placed at 2.56 m from the gas 81 

inlet section in both columns in order to allow full development of the flow structure. The ECT sensor (with 82 

twin, 8 electrodes) is connected to a TFLR 5000 electronic box and a PC for data acquisition and processing. 83 

This non-intrusive sensor measures the cross-section distribution of capacitance in the column, which can 84 

be then correlated to the cross-section phase distribution for the non-conductive fluids. The sensor is 85 

capable of measuring up 5000 frames per seconds with excitation frequency range of 1 −10 MHz.  86 

Measured capacitances are converted into permittivity and concentration distribution as follows. The 87 

properties of the capacitance sensor are initially calculated or measured to generate a sensitivity matrix for 88 

the empty column. This matrix consists of a set of sub-matrices which elements are related to the individual-89 

pixels in a rectangular 32× 32 grid that can be used to define the cross-section of the sensor/pipe. Normally, 90 

for a circular pipe, 812 pixels are used. An ECT sensor is calibrated using two different permittivity 91 

materials by first filling the sensor with low permittivity material and measuring all possible individual 92 

inter-electrode capacitances values. The same procedure is repeated for the sensor filled with high 93 

permittivity material. The calibration data obtained is then stored in a calibration-file which helps to set up 94 

the measurement-parameters for each measuring channel. Once the calibration has been completed, 95 

capacitances between all unique pairs of sensor-electrodes can be measured continuously. The possible 96 

unique capacitance values are N(N−1)/2 per image frame or measurement, where N is the number of 97 

electrodes. Therefore 28 unique capacitance values per plane were obtained for the experimental work 98 

described in this paper. The measured capacitances were then normalised to the measured values during 99 

the calibration of the system. The overall volume ratio (VR), which is simply the ratio of the two materials 100 

(phases) presented in the pipe can then be easily obtained. For more details on ECT, see for example, Byars 101 

(2001) and Abdulkareem (2011). 102 

Azzopardi et al. (2010) validated the ECT using the Wire Mesh Sensor (WMS) for air/Silicone oil 103 

flow in a vertical pipe at different flow regimes (i.e. bubbly, slug and churn flow). Although WMS is an 104 

intrusive technique, placing a WMS sensor downstream the ECT (to prevent flow disturbances across the 105 

ECT) allows the ECT to be validated. Figure 1 shows the comparison of the overall cross-sectional averaged 106 

void fraction between ECT and WMS. The standard deviation between two measurement techniques is 107 

displayed in Fig. 2. 108 

 109 
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 110 

Figure 1: Averaged void fraction measured using ECT and WMS. 111 

 112 

 113 

Figure 2: Standard deviation of measurements between ECT and WMS, Azzopardi et al. (2010). 114 

In addition, ECT technique was compared and validated using other measurement techniques as well 115 

as CFD simulations.  Chaminda Pradeep et.al (2014), investigated the validation of an ECT using gamma-116 

ray meter. They reported that ECT showed most of the features and characteristics seen in the gamma-ray 117 

meter. CFD simulations were also conducted and the results were in good agreement with their 118 

experimental work. Marashdeh (2009) carried out a series of experiments to validate (quantitatively and 119 

qualitatively) an ECT using Magnetic Resonance Imaging and fibre optics probes in two phase fluidized 120 

bed. He showed that the shape of the bubbles obtained and the voidage distribution from MRI and ECT are 121 

almost the same. He reported that, the time averaged cross sectional of solids concentrations calculated 122 

from the fibre optic probes and ECT exhibited very good agreement. 123 

 Figure 3 displays the experimental setup which is used in the present work showing the gas injection 124 

arrangements, instrumentation, and the dimensions. The rig is also incorporated a temperature measurement 125 

sensor (thermocouple) to indicate the temperature of the air at the gas lines besides the air-oil mixture in 126 
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the column. Both columns contain stagnant Silicone oil with initial heights of 3.30 m, the properties of the 127 

fluids are listed in Table 1. The gas injection system consists of two main gas lines to obtain a wide range 128 

of gas flow rates, high pressure of 6 bar and low pressure of 2 bar. The high-pressure line is connected to 5 129 

flow meters and pressure gauges. Then each line is divided into 5 more lines. Thus, the total number of the 130 

gas injection lines is 25 lines distributed equally at the bottom of the column. Sealed pressure transmitters 131 

were mounted along the 290 mm diameter column to indicate a continuous pressure outputs. The 2 Keller, 132 

PR-25/8797.1-5 transmitters are installed at 2.2 and 3.6 m from the gas inlet section. The pressure 133 

measurements were collected at a sampling rate of 50 Hz for 300 s at flow rate range of 10−3000 L/min. 134 

 135 

Figure 3: The experimental setup employed to study the flow structure of gas-high viscosity liquids.136 

137 

Through the gas inlets, air of superficial velocities 0.127−0.314 and 0.108−0.566 m/s was injected 138 

into the 240 and 290 mm diameter columns respectively. Data acquisition time for each run was 600 s with 139 

a sampling rate of 50 Hz. 140 

 141 

 142 

 143 
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Table 1: Properties of the fluids 144 

Fluid (1) Silicone oil 

Column diameter 

(m) 

Viscosity 

(Pa.s) 

Density 

(Kg/m3) 

Surface tension 

(N/m) 

Eötvös number 

GρlD2/δ 

0.24 360 950 0.02 26812 

0.29 330 950 0.02 39148 

Fluid (2) Air 

Column diameter 

(m) 

Gas injections diameters 

(mm) 

Density 

(Kg/m3) 

Gas-line pressure 

bar 

Temperature  

(°C) 

0.24 3 1.225 6 20−23 

0.29 4 1.225 6 19−22.5 

145 

The overall average void fraction, εg was also calculated from the level swell (i.e. by monitoring the 146 

oscillation level at the top section of the column and determining the initial height of the liquid, Hliquid before 147 

gas injection and the height of the gas-liquid mixture, Hmix after gas injection).  This can be calculated based 148 

on the assumption that the volume of the liquid in the column remains constant (Hills, 1976, Al-Oufi et al., 149 

2010). Therefore; εg = {( Hmix- Hliquid)/ Hmix}. Table 2 shows the relative error between measured (from 150 

ECT) and calculated void fraction. It should be mentioned that, as the gas superficial velocity increases, 151 

determination of  Hliquid becomes more difficult as the liquid becomes milky and the considerable sheared 152 

bubbles stick into the wall of the Perspex pipe which affect the visual appearance of the silicone oil level. 153 

 154 

Table 2: Comparison of measured and calculated void fraction for 240 mm diameter column 155 

Flow regime Gas superficial velocity (m/s) 
Void fraction 

Level swell ECT Relative error 

Slug flow 

0.016 0.198 0.373 0.468 

0.028 0.321 0.432 0.258 

0.114 0.491 0.487 − 0.008 

Transition to churn flow 

0.127 0.506 0.496 − 0.020 

0.148 0.509 0.491 − 0.036 

0.175 0.519 0.507 − 0.024 

0.201 0.528 0.501 − 0.053 

0.232 0.546 0.505 − 0.081 

0.260 0.565 0.451 − 0.252 

0.284 0.587 0.435 − 0.348 

0.314 0.605 0.505 − 0.196 
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3. Results  156 

3.1. Visual observation and time series of void fraction  157 

Videos and photos were obtained and compared with the data of the time series of void fraction. 158 

Images were also reconstructed from the recorded data using Tikhonov iterated regularization technique. 159 

Transition to churn flow was observed at gas superficial velocities of 0.127−0.314 and 0.108−0.243 m/s in 160 

the 240 and 290 mm diameter columns respectively. Churn flow appeared at 0.276-0.566 m/s in the larger 161 

diameter column.  162 

At a gas superficial velocity of 0.108 m/s, regions of high frequency activity started to appear. This 163 

extends systematically as the gas flow rate is further increased. These regions are shown as (B) on the time 164 

series of void fraction in the figures below and also depicted on the photos of the column. Figure 4  displays 165 

the time series of void fraction and the equivalent photos which show the flow structure at the selected gas 166 

flow rates. The transition to churn flow regime starts when the length and the frequency of the regions of 167 

the high frequency activity, which appeared at the end of slug flow, increases. These regions of high 168 

frequency activities were observed as the liquid bridges flow up and down. The void fraction of these 169 

regions is lower than that in Taylor bubbles. The source of liquid bridging is believed to be from the drained 170 

falling film from the Taylor bubbles. With increasing gas flow rate, the length of Taylor (A) bubbles 171 

increases until it reaches the total height of the column, producing larger volumes of falling film which lead 172 

to increase the length of the high frequency liquid bridges region and their frequency decreases. The high 173 

frequency liquid bridges region is considered to be churn flow. The maximum amount of the coalescence 174 

between Taylor bubbles occurs in this flow regime (transition to churn). The length of Taylor bubbles 175 

increases dramatically with increasing gas input till it reaches the total height of the column.  176 

According to the visual observations, Taylor bubbles become deformed when the gas flow rate is 177 

increased. This is due to increasing the rate of the coalescence and therefore increasing the length of the 178 

bubbles. The Top and/or the bottom of the bubbles lose the round shape. The liquid slugs between the 179 

bubbles eventually disappear and get replaced by the churn areas (B). The churn areas are connected to the 180 

deformed Taylor bubble by a small neck (See (A) in Figure 4). The deformed long Taylor bubbles are 181 

referred to as long bubbles at this flow regime. Coalescence between bubbles appears from about 100−150s 182 

and 230−280s for 0.243 m/s gas superficial velocity in the time series data. The photos of the column in 183 
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(B) show the developing of the churn areas which become more complicated and deformed with increasing 184 

gas flowrate. By the end of this flow regime, only a small number of long bubbles appear. 185 

The Silicone oil which used in this work showed the behaviour of Newtonian liquids during the 186 

viscosity bench test. The viscosity of the oils was measured by applying a certain shear rates using a rotating 187 

spindle. The viscosity of the oil was found to change with changing temperature, not with the amounts of 188 

applied shear force, (Papanastasiou et al., 1999). 189 

 190 

Figure 4: Time series of void fraction and photos of transition to churn flow in 330 Pa.s Silicone oil and 191 

290 mm diameter column at different gas superficial velocities. A is the large bubbles, B is the churn 192 

areas in both photos and the time series 193 

The time series data from the ECT besides the videos obtained from the top section at different 194 

positions of the column provide local information about the flow behaviour in the column. Therefore, an 195 

overall picture of the gas-high viscosity liquid behaviour in the column is presented in a schematic drawing 196 

in Figure 5. This schematic drawing shows the overall flow structure in the column at the transition to churn 197 
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flow regime. The letters A−E correspond to the behaviour of the flow structure at different times for 198 

constant gas superficial velocity (0.205 m/s.).  199 

 200 

Figure 5: Schematic drawing showing the transition to churn flow pattern in high viscosity liquids and 201 

large diameter columns. The arrows in the figure correspond to the direction of the liquid flow, the 202 

numbers at the top section of the column corresponding to the liquid levels in the column. The gas 203 

superficial velocity is 0.205 m/s. 204 

At a gas superficial velocity of 0.276 m/s, the flow structure changed significantly. The long bubbles 205 

disappeared and the churn areas dominated the flow structure. According to the time series data and the 206 

photos shown in Figure 6, and the schematic drawing in Figure 7, churn flow consists of two regions. First 207 

an open gas core with a thick liquid film with the possibility of liquid bridging the cross-section creating 208 

series of short bubbles (columns D and E in Figure 7 and the photos in Figure 6). This gas core might not 209 

exist at the centre of the column. Subsequently, with increasing gas flow rate, the gas builds up and push 210 

the liquid (column A in Figure 7) creating a very long bubble with a falling thin film. This long bubble 211 

bursts at the top section of the column and remain open to the atmosphere. This open large core is shown 212 

in Figure 6 at 120−180 s (A) in 0.566m/s gas superficial velocity and (B) in Figure 7. Then the falling film, 213 

which drains along the pipe wall, accumulates at the bottom of the column (column C in Figure 7) and 214 

creates the next churn unit. The schematic drawing in Figure 7 shows the overall behaviour churn flow 215 

regime along the column, as it described earlier, at a constant gas flow rate and at different times.  216 
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 217 

Figure 6: Time series of void fraction and photos showing churn flow in 330 Pa.s Silicone oil and 290 218 

mm diameter column. The marked areas correspond to the large bubble and the photos show the churn 219 

regions. 220 

Churn flow can also be distinguished from the transition to churn flow regime by the sound of the 221 

gas flowing inside the column. At the end of slug flow and the transition to churn flow regime the sound of 222 

the bubble eruption at the top surface could be heard with every single bubble and is totally different from 223 

the, the sound generated by the flowing fluids in the churn flow regime. The open gas core sounds like the 224 

volcanic conduit during volcanic activity. This continuous sound of the air passage through the viscous oil 225 

stops when the fraction of the drained liquid increases at the bottom of the column. At this stage, the gas 226 

builds up and pushes the drained liquid until the liquid fraction becomes very thin and bursts at the top 227 

section. Then the sound from the open core starts again. The sounds of the air passing through the high 228 

viscosity liquid which used in this work were approximately similar to the Arenal Volcano in Costa Rica. 229 

The volcano sounds are studied by Woulff and McGetchin (1958), Richards (1963), Garcés and McNutt 230 

(1997), and Dubosclard et al. (2004). 231 

 232 
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 233 

Figure 7: Schematic drawing showing churn flow pattern in high viscosity liquids and large diameter 234 

columns. The arrows in the figure correspond to the direction of the liquid flow, the numbers at the top 235 

section of the column corresponding to the liquid levels in the column. D and E are the more common 236 

structure for this flow regime. A-C occur when the liquid accumulates at the bottom of the column and the 237 

gas build up and rise as one long bubble and carry the whole liquid up to drain again as a falling film. The 238 

gas superficial velocity is 0.566 m/s. 239 

The percentage of churn is calculated from the time of churn and the overall flow of each gas flow 240 

rate. The time of churn can be defined as the time when the areas of the high frequency activity (churn 241 

areas) pass through the ECT planes. Figure 8 displays the effect of gas flow rate on the time of churn in 242 

high viscosity liquids and large diameter pipes. It should be noted that data in Fig. 8 was read and extracted 243 

qualitatively from void fraction data measured from the ECT whose uncertainty was already reported in 244 

Fig. 9. In the 290 mm diameter column, the time of churn increased significantly with increasing the gas 245 

flow rate at the transition to churn regime (from 0 to 80%). While it decreased slightly from 96% to 91% 246 

in churn flow regime. This slight decrease in time of churn can be attributed to the single long bubbles that 247 

appear at the end of this flow regime. The time of churn increased by approximately 22% over the range of 248 

gas superficial velocities at which ECT measurements were taken (0.127−0.314 m/s). According to data 249 

obtained using the pressure transducers for a wider range of gas flow rates, it continued increasing to about 250 

79%.  251 
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 252 

Figure 8: Time of churn calculated from the time series of void fraction of 240 and 290 mm diameter 253 

columns using the ECT, the pressure transducers in the smaller diameter column and the transition points 254 

are calculated from two straight lines on drift flux (Ugs/αg vs Ugs). □ 240 mm ECT, ■ 240 mm pressure 255 

transmitters, ◊ 240 mm transition point, ○ 290 mm ECT, ● 290 mm transition point.  256 

Figure 9 compares the average void fraction in two different flow regimes and two different column 257 

diameters. In general, mean void fraction decreases with increasing gas flow rate in both columns. In the 258 

290 mm diameter column, the mean void fraction continues to decrease in the transition to churn flow until 259 

it stabilises when churn flow is achieved. It decreases from 0.455 to 0.284 when gas superficial velocity 260 

was varied from, 0.108 to 0.243 m/s. This is due to the rise in the time of churn with increasing gas flow, 261 

as void fraction is lower at the churn sections. Then it varies between 0.259 to 0.250 from 0.276 m/s and 262 

higher gas superficial velocities (churn flow).  263 

 264 

Figure 9: The effect of gas superficial velocity on the mean void fraction in high viscosity liquids and 265 

large diameter columns. ● D=240 mm, ■ D=290 mm. 266 

In this flow regime, the structure is dominated by the low void fraction churn, and this explains the 267 

stability of void fraction values. Therefore, increasing gas flow rate at this flow regime does not limit the 268 
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volume fraction of the gas which can pass through the viscous liquid column. This behaviour could be 269 

important for the volcanic degassing process. In this process, the rate of degassing from volcanic conduits 270 

might be controlled by the availability of the gas from the magmatic system. As a result, the rate of 271 

degassing might not be limited by the volcanic plumbing system. 272 

On the other hand, the average void fraction showed a different behaviour in the 240 mm diameter 273 

column. Void fraction decreased slightly by 0.06 then it increased again by 0.07 at the last gas flow rate in 274 

this range. The difference in the void fraction between both columns at the transition to churn regime can 275 

be explained by comparing the data of the time series of void fraction in Figure 4 and 4. First, the transition 276 

to churn flow region in the smaller diameter column consists of longer bubbles of higher frequency, higher 277 

coalescence rate, and lower frequency of churn regions compared to the case in the larger diameter column. 278 

This explains the higher values of void fraction which are due to the difference in the column diameter and 279 

the small variation of viscosity in two columns. The gas volume fraction is larger in the smaller diameter 280 

column for the same gas flow rate due to the geometry. In addition, the void fraction increases with 281 

increasing liquid viscosity, Philip et al. (1990). Although the study conducted by Philip et al. was performed 282 

for bubbly and slug flows, they covered fairly wide range of highly viscous fluids (i.e. 115−300 mPa.s). 283 

Further investigation is required to study the effect of the viscosity on the void fraction of highly viscous 284 

oil (i.e. up to 300 Pa.s) in churn flow. The percentage of churn time increases gradually with increasing gas 285 

flow rate in the smaller diameter column while it increases significantly in the larger diameter column. 286 

However, void fraction exhibits an increase at the highest gas flow rate in the smaller diameter column. 287 

This might be a beginning of fluctuation due to the significant increase in the coalescence between the 288 

bubbles before starting churn flow regime.  289 

3.2. Probability Density Function  290 

The Probability Density Function (PDF) signature is commonly used to identify the flow structure 291 

of two phase flow Costigan and Whalley (1997). PDF in combination with the time series of void fraction 292 

data extracted from the ECT was used to identify the flow structure of churn flow in high viscosity oils. 293 

Data from the void fraction time series, where long bubbles occur, was extracted from the overall time 294 

series of void fraction and separated from that in the churn regime. The PDF was calculated for each 295 

segment separately. Figure 10 compares the overall PDF (which represents the whole flow structure) with 296 

the PDFs of the churn and slug flow separately.  297 
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 298 

Figure 10: PDF for air flow in 330 Pa.s viscosity Silicone oil and 290 mm diameter column at different 299 

gas superficial velocities. The dashed lines in blue and red correspond to the slug and churn areas which 300 

were extracted from time series of void fraction of the 290 mm diameter column. The first two graphs at 301 

0.139 and 0.243 m/s gas superficial velocities which show the transition to churn flow. While the last two 302 

PDFs at gas superficial velocities of 0.276 and 0.566 m/s show churn flow regime.  303 

This figure can be divided into 4 parts. First, the beginning of the transition to churn flow (the lowest 304 

gas superficial velocity in the figure), when the structure contains long bubbles separated by regions of 305 

churning. At this gas flow rate, the long bubbles with high void fractions (PDF in blue) dominate the 306 

structure of the flow, while the probability of ``churn'' regions is still low (PDF in red). Then, with 307 

increasing gas flow rate, at the transition to churn flow, the frequency of churning regions increases. For 308 

example at a gas superficial velocity of 0.243 m/s the PDF of the higher void fraction in blue (the long 309 

bubbles) peaks at an approximately equal value to the PDF of the lower void fraction which is the churning 310 

regions (in red). Furthermore, at the beginning of churn flow, at a gas superficial velocity of 0.276 m/s the 311 

frequency of churning regions (PDF in red) increases dramatically with a probability of appearing in a 312 

number of long bubbles. Finally, at the higher gas flow rate, the probability of presence of churning regions 313 

is almost similar to the lower gas flow rate with the existence of one long bubble. However, at gas 314 

superficial velocities of 0.336 and 0.518 m/s (in the churn flow range) churn regions appear to dominate 315 

the whole flow structure with no evidence of any large bubbles, see Figure 6. 316 

 317 
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3.3. Pressure gradient  318 

A wide range of gas superficial velocities of 0.003−0.517 m/s was applied to study the pressure drop 319 

in the 290 mm diameter column at different flow patterns. Figure 11 shows a schematic drawing for the 320 

flow patterns observed in high viscosity liquids and large diameter columns. It displays the structure of gas 321 

flow in 330 Pa.s Silicone oil and 290 mm diameter column. Measurements of the pressure gradient were 322 

collected for each flow regime shown in this figure.  323 

 324 

Figure 11: Schematic drawing showing the flow patterns in 330 Pa.s Silicone oil and 290 mm diameter 325 

vertical pipe. The arrows in the figure correspond to the direction of the liquid flow. 326 

The results of the pressure gradient measurements are shown in Figure 12 came in agreement in 327 

trend with the work done by Owen (1986) who used air-water in a 32 mm diameter vertical pipe and 328 

presented the change of pressure gradient data against dimensionless gas velocity for a number of liquid 329 

flows in vertical pipes. According to his results, the pressure gradient values at slug region showed a sudden 330 

drop and then a sharp increase again at the slug/churn transition region due to the high frequency wave 331 

activity and friction. A similar trend in the pressure gradient values was observed in this work. As shown in 332 

Figure 12, the pressure gradient at the onset of churn region increased gradually by 2 KPa/m from 0.276 to 333 

0.322 m/s due to increase in frequency of the churn areas where the interaction is very intense between the 334 

oil and the air. Pressure gradient then remained almost constant until a gas superficial velocity of 0.517 m/s 335 

was reached. The flow structure in churn flow regime was found more stable in terms of structure velocity, 336 

mean void fraction, and mean film thickness. The deviation in the pressure gradient behaviour can be 337 

attributed to the substantial difference in the liquid viscosities, surface tension, and the pipe diameters. 338 

Wallis (1962) found that during the start of churn flow, entrainment of the droplets occurs from the large 339 
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liquid fractions which travel as large flooding waves along the column. This mechanism of churn flow 340 

formation is not applicable for high viscosity liquids such as the oils used in the present work. No droplets 341 

were observed in the 330 and 360 Pa.s Silicon oils due to the very high viscosity. 342 

 343 

Figure 12:  Mean pressure gradient and mean void fraction with changing the flow patterns of air flow in 344 

330 Pa. Silicone oil and 290mm diameter column. ○ dP in bubbly, + dP in slug, ● dP in churn, ◊ stagnant, 345 

□ dP in transition to churn, ■ void fraction.   346 

Figure 13 illustrates the changing in pressure with time in air-viscous oil mixture in 290 mm 347 

diameter column for different gas flow rates. Pressure starts to fluctuate steadily during slug flow at slug 348 

flow regime. This is due to the high frequency of the long Taylor bubbles which occupy a significant portion 349 

of the cross-sectional area of the column. The fluctuation of the pressure outputs reaches the maximum due 350 

to the increase in the frequency of the liquid bridges (churn regions) during transition to churn flow. The 351 

pressure gradient in churn flow can be seen in the last four flow rates. The oscillation in pressure decreases 352 

gradually for increasing gas flow rates; this potentially is due to the thick film around the air conduit in the 353 

column. The uniform pressure drop downstream the ECT (see Fig. 13, for gas superficial velocities Ugs= 354 

0.276, 0.332, 0.336 and 0.517 m/s) indicates that the fully developed flow is achieved. Such uniformity can 355 

also be seen from the void fraction data (at Ugs > 0.276 m/s) obtained from the ECT and already displayed 356 

in Figure 12. In addition, a series of high quality videos reveal that the characteristics of the churn flow are 357 

exist. 358 
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 359 

Figure 13: Effect of gas-viscous oil flow on the pressure inside the 290 mm diameter column for different 360 

gas flow rates. The distance between the two sensors is 1.4 m, the bottom sensor is located at 2.2 m from 361 

the gas inlet section. 362 

3.4. Motion, Dimensions and Structure of the Flow 363 

Structure velocity, length of long bubbles and frequency have been determined in the transition to 364 

churn and in the churn flow regimes in high viscosity oils and large diameter columns. They have been 365 

calculated from the time series data of void fraction obtained from the ECT. Structure velocity was 366 

calculated by cross-correlating the void fraction signal from both ECT planes. Figure 14 illustrates the 367 

effect of increased gas flow rate on the structure velocity. In general, structure velocity increases with 368 

increasing gas flow rate in both columns at the transition to churn flow regime. It increased by 0.56 m/s in 369 

the larger diameter column and 0.33 m/s in the smaller diameter column. While no considerable increase 370 

was seen in churn flow regime in the larger diameter column. structure velocity is lower in the smaller 371 

diameter column because the large bubbles are longer and the rate of coalescence is higher. On the other 372 

hand, structure velocity in churn flow regime showed an increase of 0.02 m/s in the 290 mm diameter 373 

column, potentially due to the oscillating movement of the liquid bridges in this flow regime. The slight 374 

fluctuation in the values of the void fraction at this flow regime is caused by the single bubble that appears 375 

at some gas flow rates.  376 
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 377 

Figure 14: The structure velocity of gas flow in 360 and 330 Pa.s Silicone oil and 240 and 290 mm 378 

diameter respectively at the transition to churn flow and churn flow regimes. The maximum standard 379 

errors calculated for the structure velocity are 16% and 9% for the 240 and 290 mm diameter columns 380 

respectively. 381 

The experimental structure velocity was compared with a theoretical approach by Viana et al. (2003) 382 

and Guet et al. (2004) in Figure 15. The rise velocity of Taylor bubble 𝑈𝑇𝐵  , which bridges the pipe cross 383 

section area in stagnant liquid, was determined both theoretically and experimentally by Davies and Taylor 384 

(1950) and Nicklin (1962). 𝑈𝑇𝐵 = 𝐹𝑟√𝑔 𝐷𝐵 , where: D is the pipe diameter, g is the gravitational 385 

acceleration and 𝐹𝑟 is Froude number, a dimensionless velocity represents the ratio of the gravitational and 386 

inertial forces which are equal to 0.351 and 0.328. These values are constants proposed by Dumitrescu 387 

(1943) and Davies and Taylor (1950) to represent 𝐹𝑟. Dumitrescu (1943) proposed 𝐹𝑟 equal to 0.351 for the 388 

first time analytically. Then, Davies and Taylor (1950) presented a value of 0.328 analytically and 389 

experimentally. Viana et al. (2003) presented an equation to determine the value 𝐹𝑟 basing on the 390 

dimensionless inverse velocity Buoyancy Reynolds number, 𝑅. 𝑅 = √𝐷𝐵
3 𝑔 (𝜌𝑙 − 𝜌𝑔)𝜌𝑙/𝜇, and Eötvös 391 

number, 𝐸𝑜 which is the ratio of the interfacial tension and viscous forces; 𝐸𝑜 = 𝑔 𝜌𝑙  𝐷𝐵
2/𝜎. Where μ is 392 

liquid viscosity, 𝜎 is surface tension and 𝜌𝑙  and  𝜌𝑔 are densities of the liquid and the gas respectively. They 393 

also presented a universal correlation for the flat region of high Buoyancy Reynolds number and inclined 394 

region of low Buoyancy Reynolds number. These two regions are separated by a transition region (10< R< 395 

200), which was described by fitting the data to a ''logistic dose curve'', the equation has 13 empirical 396 

constants. The accurate values of 𝐹𝑟 were shown by Viana et al. (2003) and Azzopardi et al. (2014) for 397 

liquids up to 300 Pa.s viscosity. 398 
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The rise velocity of the isolated Taylor bubble, 𝑈𝑇𝐵 in a flowing turbulent liquid can be determined 399 

by the following relationship, Nicklin (1962); 400 

 𝑈𝑇𝐵 = 𝐶𝑜(𝑈𝑔𝑠 + 𝑈𝑙𝑠) + 𝐾 𝐹𝑟√𝑔 𝐷𝐵 .                                                       (1)  401 

 𝑈𝑔𝑠 and 𝑈𝑙𝑠 are gas and liquid superficial velocities respectively, 𝐾 = 0.905/(1 − 𝜀𝑔𝑠)
3.95

. The 402 

coefficient 𝐶𝑜 represents the ratio of the maximum centreline velocity of the bubble to the mean upward 403 

liquid velocity. Nicklin (1962) suggested a value of 1.2 for the coefficient 𝐶𝑜. Collins et al. (1978) suggested 404 

a slight modification of Nicklin (1962)  relationship, basing on a strong theoretical support. He suggested 405 

a value of 1.29 for 𝐶𝑜 . In Equation 1 2.25 the difference between the two 𝐶𝑜 values is due to the difference 406 

of pipe diameters. However, according to Nicklin (1962) the higher values of 𝐶𝑜 are more suitable when 407 

the flow rates  decrease. Another study by Dukler and Fabre (1994) and Guet et al. (2004) proposed more 408 

complicated equation for 𝐶𝑜 value. It can be written as: 409 

𝐶𝑜 =  
𝐶𝐵𝑐

[1 + (
𝑅𝑒𝑚

𝑅𝑒𝑐
)

2

]

 +    
𝐶0,𝑅𝑒=∞

[1 + (
𝑅𝑒𝑐

𝑅𝑒𝑚
)

2

]

                                                         (2) 410 

where: 𝐶𝐵𝑐= 5 or 2.27, 𝑅𝑒𝑐 = 4000, 𝐶0,𝑅𝑒=∞ = 1.2, and 𝑅𝑒𝑚 = 𝐷𝐵  𝜌𝑙  (𝑈𝑔𝑠 + 𝑈𝑙𝑠)/𝜇. 411 

Experimental and analytical data in Figure 15 showed relative errors of 0.01 and 0.04 in the 240 and 412 

290 mm diameter columns respectively at the transition to churn flow regime.  413 

 414 

Figure 15: Theoretical and experimental large bubbles velocities in viscous Silicone oil for both columns. 415 

●:240mm, ■: 290mm (experimental) and ▬ 240mm, ---290mm (from Viana et al. (2003), and Guet et al. 416 

(2004), using 𝐶𝐵𝑐=2.27). 417 

However, in the smaller diameter column, the ECT measurement fluctuation is due to the increasing 418 

coalescence rate between the bubbles. The calculated and experimental structure velocities show a big 419 
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divergence in the churn flow regime (relative error of 1.3). The models used in these predictions are not 420 

applicable for churn flow regime, as slip velocity is calculated based on the velocity of large bubbles. 421 

The length of the large bubbles was calculated from the structure velocity and the time of the bubble 422 

passing through the ECT electrodes. The length of large bubbles flow in high viscosity liquids and two 423 

large diameter columns are displayed in Figure 16. In general, large bubble length increased significantly 424 

with increasing gas flow rate in the transition to churn flow region. Whereas, it decreased in the churn flow 425 

regime in the 290 mm column. Also, bubble length is higher in the smaller diameter column for the most 426 

of the gas flow rates.  427 

 428 

Figure 16: Lengths of the large bubbles in viscous oil and large diameter columns at the transition to 429 

churn flow and churn flow regimes. 430 

In the 290 mm diameter column, the bubbles length increases significantly from 5.2 to 13.9 m when 431 

the gas superficial velocity is increased from 0.108 to 0.243 m/s (transition to churn flow regime). While it 432 

increases gradually from 9.5 to 14.4 m for gas superficial velocity increase from 0.127 to 0.314 m/s (churn 433 

flow). These high values of the bubble lengths are due to the high rate of coalescence between the bubbles 434 

which produces a very long bubble. At the same time, the frequency of bubbles decreases due to the 435 

increasing frequency and length of the churn regions. It in turns increases due to the increasing fraction of 436 

liquid draining from the very long bubbles. The bubbles’ length which appears in the figure is higher than 437 

the length of the column at certain gas flow rates. Some large bubbles that burst at the top section of the 438 

column in this flow regime remain as an open core for some time. The length of the bubble is calculated 439 

from the time of the bubble passing through the ECT sensor, therefore open core can be considered a very 440 

long bubble. This long bubble is not a Taylor bubble as it contains large waves on the falling film and does 441 

not have a rounded top and/or bottom as the Taylor bubbles that appear in slug flow.  442 
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At churn flow, the length of the bubbles fluctuates between 15.8 to 2 m for the whole range of gas 443 

flows. This is due to the complicated structure in this flow regime which consists of an open gas core with 444 

liquid bridging of varying film thicknesses and a possibility of creating a very long bubble and leads to an 445 

error of 122% for the 290mm diameter column. The maximum standard error for the bubble length 446 

calculated for the smaller diameter column is 14%. 447 

The large bubble frequency was also calculated from the time series of void fraction data by counting 448 

the number of bubbles over the gas injection time. Unlike bubble length, the frequency of the bubbles 449 

appears to decrease with increasing gas flow rate in the transition to churn flow region. In the larger 450 

diameter column, the frequency decreases approximately by 0.023 Hz in the transition to churn flow region. 451 

This can be attributed to the increasing length of bubbles due to bubble coalescence. In the churn flow 452 

regime, frequency increases by 0.113 Hz. See Figure 17. 453 

 454 

Figure 17: Frequency of the large bubbles at the transition to churn flow and churn flow regimes in high 455 

viscosity liquids and large diameter columns. The maximum errors are 3.9% and 5.7% for 240 and 290 456 

mm diameter column. 457 

. When the time series of void fraction are used to determine the bubble frequency it appears that 458 

bubble frequency increases when there is only one long bubble appearing in the void fraction signal at the 459 

same flow rate range. This is potentially due to the increase in the frequency of liquid bridges that behave 460 

like a series of bubbles connected to each other. Therefore, in the transition to churn flow region, the 461 

dominant frequency represents the frequency of long bubbles which decrease with increasing gas input. 462 

While in churn flow the dominant frequency represents that of short bubbles produced by liquid bridging 463 

which increases with increasing gas flow rate. 464 

 465 
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3.5. Film Thickness and Wave Velocity  466 

Phase distribution images for the cross-sectional of the column of air and 330 Pa.s Silicone oil in 467 

290 mm diameter were reconstructed using the ECT32 and Recon commercial software that incorporate 468 

the iterated Tikhonov regularisation technique. The structure of flow in such viscous oils was studied by 469 

comparing the time series of void fraction, film thickness, and the reconstructed images of the phase 470 

distribution inside the column. The average film thickness in the transition to churn and in churn flow 471 

regions was determined in the 240 and 290 mm diameter columns. It was calculated by the geometric 472 

relationship δ = (D  /  2) (1-√εg), where δ is the film thickness, εg is the void fraction from the ECT. The 473 

film thickness was estimated in both flow regimes using the void fraction data collected from the two ECT 474 

planes.  475 

Figure 18 compares the reconstructed time-resolved images of the gas-liquid flow with the void 476 

fraction and the calculated film thickness for churn flow in the 290 mm diameter column. The Tikhonov 477 

regularisation technique with 100 iterations (using a commercial ECT32 and Recon software) was used to 478 

generate the reconstructed images. The three plots are at the same flow rate and the same time period. In 479 

Figure 18, the phases’ distribution in the cross section from the upper plane of the ECT is displayed at 480 

different time instances. They have been generated using the ECT32 software at 0.566 m/s gas superficial 481 

velocity. The red colour corresponds to the high permittivity fluid which is the 330 Pa.s Silicone oil and 482 

the blue colour corresponds to the low permittivity fluid, the air. The green and the yellow colours represent 483 

the interface between the two fluids. B1, B2, A1, and A2 in the figure refer to a time or sections. For 484 

example, A1 presents the phase distribution of the large bubble at 120 s. It also refers to the corresponding 485 

void fraction, film thickness, and the reconstructed image.  The churning regions exist between 3 and 100 486 

s, corresponding to B1 and B2 in these two figures. Also, (B) at 350 and 500 s for the time series in Figure 487 

4, at the same flow rate. The gas core in churn flow regions seems to change its location from the centre to 488 

near the wall of the column unlike the case for low viscosity liquids where it always exists in the centre of 489 

the pipe. For example, the gas core in B1 is next to the column’s wall while in B2 is almost at the centre of 490 

the column. This also can be seen clearly from the photos of the column in Figure 6. This might be due to 491 

the effect of the very high viscosity and the low surface tension (0.02 N/m) which can be negligible in very 492 

high gas flow rates (Snabre and Magnifotcham, 1998). 493 

 494 
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 495 

Figure 18: Film thickness, void fraction, the reconstructed image using Tikhonov regularisation technique 496 

with 100 iterations and the pipe cross section for gas flow in 330 Pa.s Silicone oil and 290 mm diameter 497 

column. The 4 plots represent the flow structure for 200 s (10000 frames) at 0.566 m/a gas superficial 498 

velocity obtained from the upper plane of the ECT. B1 and B2 represent the churn areas. A1 and A2 499 

represent the large bubble in the column.  500 

At about 120 and 166 s (A1 and A2) in both figures, the flow appears as a large bubble. The 501 

difference between this large bubble and the Taylor bubbles in classical slug flow regime is the top and the 502 

bottom shape of the bubbles. Large bubbles have almost a flat top and end and separated from the churn 503 

regions by a thin film. The length of these large bubbles in churn flow regime seem to be dependent on the 504 

gas flow rate. This very long bubble represents the open core with the falling liquid film, B in Figure 7.  505 

The liquid film in churn flow varies in direction and thickness in both sections A and B. The liquid 506 

film surrounding the large bubbles flows downward to merge with the liquid travelling upwards in the 507 

following churn region. While the film in the churn region flows in different directions and rests at some 508 

points. The average film thickness seems to decrease slightly at the same gas flow rate, this will be discussed 509 

in the next section.  510 

Figure 19 and Figure 20 show the film thickness of gas flowing in 330 Pa.s Silicone oil and 290 mm 511 

diameter column at two different flow regimes. The first figure is the transition to churn flow at a gas 512 

superficial velocity of 0.243 m/s.  513 
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 514 

Figure 19: Film thickness at the transition to churn flow in 330 Pa.s and 290 diameter column at a gas 515 

superficial velocity of 0.243 m/s. 516 

The second figure (Figure 20) is at a gas superficial velocity of 0.566 m/s which represents the film 517 

thickness in churn flow regime. In both figures, 200 s length of data is presented at acquisition frequency 518 

of 50 Hz. Both figures focus on the direction of the film in the large bubble and the churn sections. In the 519 

ECT sensor, the electrodes in plane 1 are located above the ones in plane 2. This makes the value of wave’s 520 

velocity positive when they pass from plane 2 (lower plane) first.  521 

 522 

 523 

Figure 20: Film thickness at churn flow in 330 Pa.s and 290mm diameter column at a gas superficial 524 

velocity of 0.566 m/s. 525 

The values of the wave velocities were calculated from the time delay of each wave and the distance 526 

between the two planes. Velocity is equal to the distance between the planes (0.036 m in this sensor) divided 527 
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by the difference in time. Similarly, if the values of the calculated wave velocity are negative, this indicates 528 

downward film flow. Since the wave passes through the upper plane P1 first then to the lower plane P2.  529 

In general, the liquid film flow shows an average of downward movement in the large bubbles area 530 

(A in both figures) and upward flow in churn flow region (B) with some difference. Starting with the 531 

direction of liquid flow in the large bubbles (A) in both flow regimes (both figures). The waves’ velocity 532 

showed negative values (downward flow) for all the waves in churn flow while it showed some upward 533 

flow in the transition to churn flow regime. For example, the calculated velocities for the wave on the film 534 

around the large bubble at the transition to churn flow were -0.078, -0.052, 0, 0.3, and 0.3 m/s at about 107, 535 

120, 138, 142, and 146 s respectively. The velocity and the direction of the flow are not constant in this 536 

flow regime. The film flows downward between about 94 and 130 s. Then there is a time when the liquid 537 

holds/stagnates (between about 137−140 s) before it changes direction flowing upward from about 142 to 538 

146 s. This area is followed by churn section. This upward direction for the film around the large bubble 539 

might be due to the development of this fraction to churn.  540 

Different behaviour is exhibited by the liquid film around the large bubble (A) in the churn flow is 541 

shown in Figure 20. In this flow regime, the calculated velocities of the waves were -0.045, -0.075, -0.22, 542 

0, -0.225 m/s and hold at about 136, 152, 159, 162, 166, and 168 s respectively. This provides an evidence 543 

of the downward direction of movement of the film around the large bubble.  544 

The following churn section in churn flow regime did not show a significant effect on the direction 545 

and velocity of the film around the large bubble at the bottom. This might be due to the structure of flow in 546 

churn flow regime which seems to be more stable in terms of structure velocity, mean void fraction and 547 

mean film thickness. The wave velocities in the transition to churn flow and churn flow regimes were less 548 

than the values reported by Benjamin (1957). This can be referred to the very high viscosity of the liquid 549 

employed in this study. Benjamin studied the characteristics of the stability of laminar stream of viscous 550 

falling film on an inclined plane. According to his analysis, the velocity of the wave was equal to -3 𝑈𝑓 for 551 

liquid film Reynolds number equal to 0. 𝑈𝑓 is the velocity of the falling film.  552 

The film thickness in churn sections -(B) in both flow regimes- shows different values in film 553 

thickness and directions compared to that in large bubbles. In general, the direction of flow fluctuates 554 

between upward and liquid stagnation in churn flow regime, and upward flow in the transition to churn 555 

flow regime. The waves’ velocity in the transition to churn flow is higher than the ones registered in churn 556 

flow. They vary from 0.22, 1.8, 4, and 0.1 m/s at about 0.2, 1.2, 2, and 8 s respectively, Figure 19.While in 557 
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churn flow regime in Figure 20. The wave velocities were 0.6, 0, 0, 0, 0.3, and 0.9 at about 11, 12.4, 15.6, 558 

17 and 19.7 s respectively. These times of liquid holding agree with the visual observation as the gas seems 559 

to move as pulses during experiments.  560 

Comparing these results of the film thickness, reconstructed images and the photographs of these 561 

two flow regimes show two different flow characteristics. Both consists of two sections, one contains large 562 

bubbles which differ from Taylor bubbles but has a thin falling film. And second, sections of high-563 

frequency activity of liquid bridges with a thick film travelling in different directions. These two flow 564 

regimes can be distinguished by the frequency of the high activity sections (churn) which increases with 565 

increasing the gas flow rate. Also by the decrease of frequency of large bubbles with increasing gas input. 566 

Then, at a specific gas flow rate, the flow structure changes significantly (at 0.276 m/s gas superficial 567 

velocity). The flow at this gas flow rate is dominated almost completely by high-frequency liquid bridging. 568 

A single large bubble might appear in a number of gas flow rates. Therefore, the flow regime from the gas 569 

superficial velocity of 0.108 − 0.243 m/s can be characterised as a transition to churn flow. While the flow 570 

regime from the gas superficial velocity of 0.276 − 0.566 m/s is churn flow, refer back to the time series of 571 

void fraction plots in Fig. 6. The liquid film motion directions in churn areas are upwards and stagnation as 572 

indicated by the holdup which in turn refer to flooding. However, the waves in the flooding regions are not 573 

always showing the holdup effectively.  574 

Seemingly, one of the known mechanisms for the transition to churn flow regime is flooding of the 575 

liquid film which occurs in slug flow inside the Taylor bubbles (Jayanti and Hewitt (1992) and Jayanti et 576 

al. (1993)). Govan et al. (1991) proposed that the transition to churn flow regime occurs due to the 577 

generation of ''flooding-type wav''. They also assumed the existing of the strong relation between churn 578 

flow and flooding phenomenon. The difference between the present work and the previous works from 579 

literature is the much larger pipe diameter and the much higher viscosity. For example, the droplets which 580 

from the breaking up of the flooding waves that occur in low viscosity liquids were not observed in the 581 

present study. In such high viscosity, no entrained fractions of liquid were found due to the very high 582 

viscosity of the oil. 583 

Figure 21 displays the effect of increasing the gas flow rate on average film thickness in the transition 584 

to churn and churn flow regimes. In general, gas flow rate shows more effect on film thickness in the larger 585 

diameter column and also a change in the trend of the liquid film between the two flow regimes appears 586 

clearly in the larger diameter column. However, the film thickness in the smaller diameter column 587 
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represents only one flow regime (the transition to churn flow). In addition, in the larger diameter column, 588 

the film thickness increased gradually by 0.2 m in the transition to churn flow regime while it increases 589 

slightly by only 0.005 m in the 240 mm diameter column. This increase in the film thickness values might 590 

be caused by the increasing frequency of the liquid bridges (churn) which have higher film thickness 591 

compared to the large bubbles region. Then when comparing the time series data in Fig. 5 and 6, the 592 

frequency of the churn regions is higher in the larger diameter column. This explains the difference between 593 

the trends in both columns. Also, in the larger diameter column, the frequency of the churning regions 594 

increases significantly in the transition to churn flow regime while it exhibits a slight increase in the smaller 595 

diameter column. This corresponds to the film thickness values in Figure 21.  596 

In the churn flow regime, starting from 0.276 m/s gas superficial velocity in the 290 mm diameter 597 

column, the film thickness appears to be more stable. It increases by only 0.003 m over a wide range of gas 598 

flow rates. This can be related to the time series data in Figure 6 and 6. The mean film thickness can also 599 

be linked to with Figure 9 the averaged void fraction. The maximum errors are 0.76% and 0.35% for the 600 

290 and 240 mm diameter columns respectively. 601 

 602 

Figure 21: Averaged film thickness around the gas passing through 360 and 330 Pa.s Silicone oil in 240 603 

and 290 mm diameter columns respectively at the transition to churn flow and churn flow regimes. The 604 

error bars represent the standard error for the film thickness values.  605 

3.6. Oscillations at the Top Section  606 

The height of the liquid in the column was recorded at a gas superficial velocity of 0.178 m/s for 10 607 

min at four different times over 5.5 h of the gas injection. In this experiment, the gas was injected for 5.5 h 608 

at a constant flow rate to study the effect of the gas injection time on the flow structure in 330 Pa.s Silicone 609 

oil. Figure 22 shows the top surface height obtained at four different times during 5.5 hours of constant gas 610 
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injection in 290 mm diameter column and the corresponding time series of void fraction. In general, the top 611 

surface oscillation corresponds to the eruption of long bubbles shown in the time series of void fraction.  612 

 613 

Figure 22: The change of the position of the top surface (liquid height per single bubble) during the time 614 

for constant gas superficial velocity in four different times during the day in 290 mm diameter column. 615 

The colours of the time series of void fraction correspond to the height of the top surface for each time.   616 

The liquid height oscillates periodically in the data collected at 150 and 330 min from the start of 617 

the injection, while a different trend was obtained in the data collected at 30 and 240 min. This is due to the 618 

unstable structures in the transition to churn flow. It also might belong to the uncertainty of locating the 619 

liquid height due to the presence of liquid film on the pipe wall from the previous bubble’s eruption. 620 

The difference in the average heights of the top surface of the 5.5 h is 140 mm. This is due to the 621 

increase in the concentration of the trapped small bubbles (centimetres-millimetres bubbles) in the column 622 
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which also contribute to increasing the average void fraction as it shown earlier. The fluctuation of the top 623 

surface decreases slightly from 1.8 to 1.6 m from 30 to 330 min. The reason behind that can be stemmed 624 

from the time series of the 330 minutes where the structure of the flow seems more organised. It reflects a 625 

lower rate of bubble coalescence. 626 

4. Conclusion  627 

The churn flow regime in high viscosity liquids has been studied in two large diameter columns over 628 

a wide range of gas flow rates. ECT was employed to reconstruct the image of phase distribution of air-629 

Silicone oil of 330 and 360 Pa.s viscosities. Results from the present work can be concluded as: 630 

 The transition to churn flow regime appeared in the range of gas superficial velocities between 0.127-631 

0.314 m/s and 0.108−0.243 m/s in the 240 and 290 mm diameter columns respectively. Churn flow 632 

regime was observed in the larger diameter column at a gas superficial velocity range of 0.276−0.566 633 

m/s.  634 

 The transition to churn flow regime starts when the length and frequency of the regions of the high 635 

frequency activity, which appears at the end of slug flow regime, increases. These regions can be 636 

described as liquid bridges flowing upwards and then stagnates. 637 

 The liquid flow shows an average downward flow movement as a film in the large bubbles areas and 638 

upward flow as large waves/bridges in the churn regions. The direction of the flow fluctuates between 639 

upwards and liquid stagnation in churn flow regime, and upwards in transition to churn flow regime. 640 

 With increasing the gas flow rate, the length of Taylor bubbles increases producing a larger fraction 641 

of liquid film falling downwards which leads to increase in the length of churn areas. 642 

 With increasing the gas flow rate, where the transition to churn starts to appear, pressure gradient 643 

starts to increase and void fraction to decrease due to the increase of the liquid film thickness around 644 

the air conduit in the column.  645 

 From the results of pressure drop presented in this paper, the pressure gradient behaviour is mainly 646 

due to the void fraction effects on the total pressure drop. 647 

 The averaged void fraction seems to decrease with increasing gas flow rate in both columns due to 648 

the increase of the frequency of churn units that have a low void fraction. In the 290 mm diameter 649 

column, the mean void fraction continues to decrease at the transition to churn flow until it stabilises 650 

in churn flow. 651 
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 The structure velocity increases with increasing gas flow rate in both columns in the transition to churn 652 

flow regime. 653 

 Bubble velocity increases with increasing gas flow rate at the transition to churn flow regime. Then 654 

no considerable increase was seen at churn flow regime. No fine bubbles were observed flowing in 655 

this flow regime. 656 

 The length of large bubbles increases significantly with increasing gas flow rate in the transition to 657 

churn flow region. Whereas, it decreases in the churn flow regime in the 290 mm diameter column. 658 

Also, the length of the bubbles appears to be higher in the smaller diameter column for most of the 659 

gas flow rates. 660 

 The droplets caused by the breaking up of the flooding waves which occur in low viscosity liquids 661 

were not observed in the current study. In addition, no entrained fractions of liquid were found due to 662 

the very high viscosity of the oil. 663 

 Unlike the case for low viscosity liquids, the gas core in churn flow regions, in the current study, 664 

seems to change its location from the centre to near the wall of the column.  665 

 In the transition to churn flow region, the dominant frequency represents the frequency of long bubbles 666 

which decrease with increasing gas input. While in churn flow the dominant frequency is due to the 667 

short bubbles produced by liquid bridging which increases with increasing gas flow rate 668 

 The top surface oscillation of the column in the transition to churn flow seems to fluctuate according to 669 

the eruptions of long bubbles where the liquid height oscillates periodically. 670 
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