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Abstract 

Neurodegenerative diseases (NDs) result from progressive deterioration of selectively susceptible 
neuron populations in different central nervous system (CNS) regions. NDs are classified in 
accordance with the primary clinical manifestations (e.g. parkinsonism, dementia or motor neuron 
disease), the anatomic basis of neurodegeneration (e.g. frontotemporal degenerations, 
extrapyramidal disorders or spinocerebellar degenerations) and fundamental molecular 
abnormalities (e.g. mutations, mitochondrial dysfunction and its related molecular alterations). 
NDs include the Alzheimer disease (AD), Parkinson disease (PD) among others. There is growing 
evidence that mitochondrial dysfunction and its related mutations in the form of 
oxidative/nitrosative stress and neurotoxic compounds play major roles in the pathogenesis of 
various NDs. Curcumin, a polyphenol and nontoxic compound, obtained from turmeric, has been 
shown to have a therapeutic beneficial effect in various disorders especially on the CNS cells. It 
has been shown that curcumin has considerable neuro- and mitochondria-protective properties 
against broad-spectrum neurotoxic compounds and diseases/injury-associating NDs. In this article, 
we have reviewed the various effects of curcumin on mitochondrial dysfunction in NDs. 

Keywords: Curcumin; Neurodegenerative Diseases; Mitochondrion; Mitochondrial dysfunction; 
Neuroprotection.  
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Introduction 

Turmeric (Curcuma longa L.) is a common golden-colored spice from a member of the ginger 
family (Zingiberaceae) which is a rhizomatous herbaceous perennial flowering plant 
T(Angiosperms)39T (1, 2). The powdered rhizome of turmeric has been used in traditional medicine as 
a curative compound as well as in Asian 39Tcuisines 39T as a food additive and beverage industries as a 
coloring agent (3, 2). Curcuminoids are biologically active and are one of the main components of 
turmeric, which based on soil conditions and origins, contain 2% to 9% of the turmeric compounds. 
Curcuminoids consist of curcumin/ 39Tdiferuloylmethane 39T(the major component)39T, 
39Tdemethoxycurcumin, bis-demethoxycurcumin and cyclic curcumin (the minor component) (4, 2). 

Over the past half a century, curcuminoids in particular curcumin, have displayed a growing 
interest in a broad range of biological/pharmacological research. The anti-bacterial properties of 
curcumin were reported for the first time in 1949 (5, 6). Since then growing number of studies 
have focused on the potential therapeutic properties of curcumin in a myriad conditions and shown 
to have antioxidant (7), anti-tumoral (8-10, 3, 1), lipid-modifying (11, 12), hepatoprotective (13, 
14), vasculoprotective (15), cardioprotective (16), pulmonoprotective (17),  neuroprotective (18), 
anti-thrombotic (19), immunomodulatory (20, 21), anti-diabetic (22), analgesic (23), anti-
inflammatory especially anti-neuroinflammatory (24-27) as well as microglia-activation inhibitory 
(2) properties. 

Curcumin (1,7-bis-(hydroxy-3-methoxyphenyl)-1,6-heptadiena-3,5-dione; C₂₁H₂₀O₆) is a natural 
polyphenol compound with molecular weight of 368.38 g/mol. It contains two ferulic acid residues 
joined by a methylene bridge (28, 6). It is a hydrophobic molecule, mostly insoluble in water, 
poorly soluble in hydrocarbon solvents (e.g. cyclohexane, hexane) and easily soluble in polar 
solvents (e.g. ethanol, methanol, DMSO, acetonitrile, chloroform, ethyl acetate) (6). Biological 
activities and therapeutic properties of curcumin take place in three functional groups: an aromatic 
o-methoxy phenolic group, α, β-unsaturated β-diketo moiety and a seven carbon linker (28). In 
addition to its various therapeutic properties, owing to the hydrophobic tendency, presence of an 
active methylene group and a β-diketone moiety, curcumin has poor 
bioavailability/pharmacokinetics and degraded easily via aldo-keto reductase in the liver (29, 2). 
Numerous studies are being conducted to improve the bioavailability and pharmacokinetics 
property of curcumin. 

NDs are a heterogeneous group of disorders that are characterized by the progressive deterioration 
of the function and structure of the selectively vulnerable neuron populations in the CNS (30). 
NDs are showing a growing trend worldwide as well as worsening mortality and morbidity 
especially in the elderly (31). The individual NDs can be classified by their clinical presentations 
and symptoms, with pyramidal and extrapyramidal movement impairments (also known as 
ataxias) and cognitive or behavioral impairments (also known as dementia) being the most 
common (32, 33). NDs comprise AD, PD and PD-related disorders, Huntington disease (HD), 
Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis [ALS; also known as motor neuron 
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diseases (MND)], dementia with Lewy bodies (DLB), Spinocerebellar ataxia (SCA), corticobasal 
degeneration (CBD), Frontotemporal dementia (FTD) and its variants, progressive supranuclear 
palsy (PSP), Prion disease and other dementia/ataxia-related NDs (34). NDs are mostly incurable 
and the current therapeutic strategies are aimed at symptomatic relief and/or restraining the disease 
progression (35). NDs not only reduce the life expectancy and health-related quality of life 
(HRQoL) in patients but also take a heavy toll on family members and impose striking financial 
strains on global healthcare systems (36, 37). Hence, it is an urgent necessity to develop more 
effective therapeutic strategies to cope with the growing burden and health-related consequences 
of NDs.  

NDs are characterized by many micro-processes resulting in progressive neuronal dysfunction and 
death. These include specific protein accumulations, mitochondrial dysfunction, 
oxidative/nitrosative stress, proteotoxic stress and its related abnormalities in ubiquitin 
proteasomal and autophagosomal/lysosomal systems, excitotoxicity, apoptosis (also known as 
programmed cell death) and uncontrolled neuroinflammation (38-41). There is overwhelming 
evidence of mitochondrial dysfunction and mutations in the pathogenesis of various NDs. 
Mutations in the mitochondrial DNA (mtDNA), impaired mitochondria dynamics (e.g. shape, size, 
distribution, fission-fusion, movement), abnormalities in complexes of the electron transport chain 
(ETC) and partial inhibition of mitochondrial ATP production giving rise to overproduction of free 
radicals. This will lead to damage of the biomolecules (e.g. lipids, proteins and DNA), 
neuroinflammation, tissue damage and consequent cellular apoptosis in CNS which are the major 
hallmarks of NDs (40, 42). 

It has been reported that native curcumin and its micellized (43)/micronized (44)/hybridized 
(45)/nano-sized (46) forms, as well as its derivatives (47)/synthetic analogs (48) and its synergistic 
combination with other compounds (49) have the excellent capacity for scavenging intracellular 
reactive oxygen species (ROS) and reactive nitrogen species (RNS) (50, 51). In addition, it protects 
the mitochondrial dysfunctions/impairments by 1. retaining mitochondrial membrane potential 
(ΔΨm)/the activities of all four mitochondrial complexes (complex I, II, III and IV) (48) and 
Bax/Bcl-2 ratio (52); 2. enhancing/increasing mitochondrial fusion activity, mitochondrial 
biogenesis and synaptic proteins (53); 3. reducing fission machinery (53), mitochondrial swelling, 
lipid peroxidation, protein carbonylation (44), levels of oxidized lipids (49) neuroinflammation 
(54), apoptosis (55-57), cytochrome c, caspase-3 and -9 activation and mitochondrial 
depolarization (58); 4. modulating/targeting the phospho-CREB-BDNF signaling (54) and the 
nuclear factor (erythroid-derived 2)-like 2 (also known as Nrf2 or NFE2L2; a transcription factor) 
(59) and 5. restoring the glutathione (GSH) levels and superoxide dismutase (SOD) (44). 

These findings suggest that utilizing curcumin and its related compounds as a neuroprotective 
agent with modulatory/protective effects on mitochondrial impairments and mitophagy (60) could 
be a promising approach for the treatment of NDs. Due to the association between NDs and 
mitochondrial dysfunction, we review in detail about the effects and underlying mechanisms of 
curcumin on the mitochondria in NDs in vitro, in vivo and in clinical trials. 
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Neurodegenerative Diseases 

At present, there is no definitive treatment for curing the NDs. , The current therapeutic strategies 
are just capable of symptomatic relief and/or managing the overall symptoms as well as restraining 
the disease progression such as dopaminergic treatments for parkinsonism (e.g. PD, PD-related 
disorders and movement impairments) (61), cholinesterase inhibitors for cognitive disorders (62), 
antipsychotic drugs (also known as neuroleptics or major tranquilizers) for behavioral and 
psychological symptoms of dementia (63), analgesics for pain reduction (64), anti-inflammatory 
medications for ameliorating disease progression (2), and deep-brain stimulation, a medical 
device, to stop tremor and refractory movement disorders (65).   

Although recent advances have shed more light into the pathophysiology of NDs, the exact 
etiology of NDs remain to be fully elucidated. The etiology of NDs could be multifactorial and 
heterogeneous, albeit credible evidence has emphasized that aging, genetic background, 
accumulated/misfolded proteins and environmental/external factors (e.g. lifestyle and chemical 
exposure) are potentially linked with the onset of these diseases (66, 67). 

The NDs are typically described by specific misfolded and aggregated proteins (68); however, the 
affected neuron populations and disease severity differ for each NDs (41). However, NDs share 
many substantial micro-processes associated with gradual neuronal dysfunction and death such as 
proteotoxic stress and its related abnormalities in ubiquitin–proteasomal and 
autophagosomal/lysosomal systems, synaptic toxicity, excitotoxicity, oxidative stress, apoptosis, 
cell-death-related signaling pathways and neuroinflammation (33, 54).  

AD is the most common form of dementia with a growing impact on NDs-related global health 
challenges affecting more than 50 million individuals. It is projected that AD cases in 2030 and 
2050 will rise to 82 and 152 million respectively (69). Aβ peptides accumulation and their 
deposition into β-amyloid plaques (also known as Aβ plaques), as well as the neurofibrillary 
tangles aggregation into misfolded and hyperphosphorylated tau protein, are the leading causes 
and the accelerator of AD and AD-related pathology (41). Neurotoxic metals (e.g. lead, mercury, 
aluminum, cadmium, arsenic), as well as metal-based nanoparticles and some pesticides, are 
reported to increase Aβ peptides and the neurofibrillary tangles aggregation. This leads to Aβ 
plaques and hyperphosphorylation of Tau protein and the consequent onset of AD and AD-related 
pathology (67). Energy deficiency due to mitochondrial dysfunction is a crucial characteristic of 
AD and AD-related dementias. 

PD and PD-related disorders are the second most common NDs with more than 6 million cases or 
1-2 individual per 1000 of the population worldwide affected (70). This group of disorders 
predominately affect dopaminergic (dopamine-producing) neurons in a specific area of the brain 
called substantia nigra (41). The exposure to several metals (e.g. lead and manganese), industrial 
chemicals and pollutants (71), solvents and some pesticides (72) are significantly associated with 
the mitochondrial dysfunction, metal homeostasis alterations and proteins aggregation such as a-
synuclein, which is a key constituent of DLB and a pivotal factor in PD pathogenesis (67). 
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Moreover, nuclear genome mutations in the PINK1 and Parkin genes have been implicated in PD-
related NDs pathology (73). DLB is the second most common dementia which is characterized by 
progressive cognitive impairment, psychiatric and behavioral disturbances and parkinsonian motor 
symptoms (74). 

HD is an autosomal dominant neurodegenerative disorder with choreoathetosis, behavioral as well 
as psychiatric disturbances and dementia that is caused by excessive CAG repeats in the short arm 
of chromosome 4p16.3 in the Huntingtin gene.  The more CAG repeats (36 CAG repeats or more) 
the earlier will be the onset of the disease (75, 76). Prion disease is a group of rare NDs that can 
affect both humans and animals (77). Prion is a type of protein that can fold abnormally leading to 
the onset of prion disease which is also known as transmissible spongiform encephalopathies.  

FTD is an umbrella term given to a heterogeneous group of clinical syndromes and is the leading 
cause of early-onset dementia in patients under 65. It results from neurodegeneration within the 
frontal and anterior temporal lobes, insular cortex and subcortical structures. The major hallmarks 
of FTD are early changes in emotion and behavior, language, and motor skills (31). ALS/MND is 
a fatal motor neuron disorder that is characterized by progressive deterioration of the upper and 
lower motor neurons at the spinal or bulbar level (78). The exact etiology of ALS/MND remains 
to be elucidated. Mutations of superoxide dismutase 1 have been proposed as the most common 
cause of this fatal motor neuron disorder (79). 

The Roles of Mitochondria in NDs 

Although the adult brain is about 2% of the body mass, it consumes more than 20% of energy 
supply in the form of ATP. Most of the brain energy is consumed for synaptic transmission which 
is crucial for synaptic plasticity (80). Mitochondria are dynamic organelles and the powerhouses 
of cells. The mitochondria are not only responsible for production of the majority of energy 
currency represented by ATP but also have a variety of crucial roles including regulation of 
calcium homeostasis, biogenesis of haem, fatty acid synthesis, biogenesis of iron–sulfur (Fe–S) 
proteins, apoptosis and population maintenance through fission and fusion (81, 82). There is 
overwhelming evidence that mitochondrial dysfunction and mutations play major roles in the 
aging and pathogenesis of various NDs (42). 

Brain-derived neurotrophic factor (BDNF) pathway is a fundamental pathway for regulating the 
synaptic transmission and plasticity of neurons. These processes require a high amount of energy 
consumption and ca²⁺-buffering. For ca²⁺-buffering, mitochondria must be moved to the proper 
locations. The role of the BDNF pathway in mitochondrial movement and distribution has been 
increasingly recognized. This suggests that mitochondrial movement and distribution play a 
crucial role in BDNF-mediated synaptic transmission and plasticity (83). Hence, impairment of 
mitochondria could affect the synaptic transmission and synaptic plasticity which are the important 
neurochemical foundation of learning and memory. Intensifying the BDNF pathway could be 
associated with a higher mitochondrial movement and distribution. 
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The cAMP response element-binding (CREB) protein is a ubiquitous transcription factor. After 
phosphorylation, it can promote the transcription of cAMP response element-regulated genes 
especially mitochondrial genes and it related protein biogenesis (84). However, dysregulation of 
the CREB transcriptional cascade is reported that have a direct link with the mitochondrial 
dysfunction and the progression of NDs (85). 

The human mtDNA contains genetic coding information of 13 proteins which are the core 
constituents of the mitochondrial electron transport chain (ETC) complexes I-IV that are 
embedded in the inner membrane (86). ETC is one of the major hallmarks of mitochondria for 
energy production in cells through the redox (reduction and oxidation) reactions. Since the major 
part of ATP is generated by ETC the proper functioning of this chain is fundamental for the CNS 
cells. Dysfunction in ETC complexes via genetic or exogenous factors could contribute greatly to 
the onset of NDs. It is reported that neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) suppresses the protein NADH-CoQ reductase in Complex I from pumping the protons 
across the mitochondrial membrane leading to inhibition of the electrochemical gradient formation 
and subsequent hindering ATP production and energetic failure (87).  

In addition to mtDNA mutations, nuclear DNA mutations are also associated with mitochondrial 
dysfunction and subsequent NDs. It is reported that nuclear genome mutations in genes encoding 
α-synuclein, parkin (88), PINK1 (89) and LRRK2 (90) lead to a molecular link between 
mitochondrial dysfunction and subsequent oxidative stress contributing to PD and PD-related NDs 
pathology. Mutations in amyloid protein precursor (APP), presenilin-1 (PSEN1) and presenilin-2 
(PSEN2) genes cause autosomal dominant forms of early-onset AD (91). PSEN1 and PSEN2 
mutations impact the mitochondrial function by deregulating the ca²⁺ signaling leading to 
mitochondrial metabolic defects (92). On the other hand, APP mutations lead to a serious reduction 
in respiratory activity and enhance glycolysis as well as reduce the mtDNA transcripts (93). 

ETC is responsible for most of the ROS production in the cells. GSH and SOD are the natural 
antioxidants in the cells especially in mitochondria responsible for ROS scavenging. Several 
studies have reported that patients with NDs have a significant reduction of these antioxidants (94). 
On the other hand, mitochondria dysfunction leads to an increase in the levels of lipid peroxidation 
and protein carbonylation which has been identified as the potential intensifier of ROS and/or free-
radical productions (95, 96).  

Nrf2, a basic leucine zipper protein, is amongst the most pivotal cell defense mechanisms against 
exogenous and/or endogenous stressors. Nrf2 targets variety of genes such as a vast range of 
antioxidant enzymes, proteins bound up in xenobiotic detoxification, repair and damaged-proteins 
elimination, inhibition of neuroinflammation as well as other targeted transcription factors which 
have fundamental role in retaining the cellular redox homeostasis by regulation, utilization, and 
generation of GSH and NADPH (97). It is reported that Nrf2 defends neurons against 
mitochondrial neurotoxic compounds, reduced GHS and imbalanced mitochondrial ROS 
production as well as improving the function and integrity of mitochondria. Besides, in many 
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mitochondrial-related disorders especially NDs the function of Nrf2 is suppressed by several 
processes (98, 59). 

ΔΨm generated by proton pumps of ETC complexes I, III and IV is a fundamental component of 
mitochondria. It results from the redox reactions associated with the activity of the Krebs cycle 
and is responsible for the storage of energy. ΔΨm plays a crucial role in mitochondria homeostasis 
by eliminating mitochondria dysfunction. The association of proton gradient (ΔpH) and ΔΨm, 
form the transmembrane potential of hydrogen ions and can harness ATP production. The levels 
of ΔΨm and ATP production are relatively steady with limited fluctuations leading to normal 
physiological activity (99). Alterations of mitochondrial function such as reduction of ΔΨm is 
highly linked to generating more oxidative stress-inducing early apoptosis (100). In short, long-
term decline or the rise of ΔΨm levels may promote adverse effects on cell viability and could be 
a reason for generating various pathologies especially NDs in CNS (101).  

Mitochondria also play a prominent role in the extrinsic/death receptor and intrinsic/mitochondrial 
apoptosis pathway, which is a fundamental process for growth, homeostasis and 
immunomodulation in mammalian cells. Apoptosis is initiated by multiple forms of cellular stress 
stimuli/DNA damage including oxidative stress/ROS/RNS and endoplasmic reticulum stress, 
radiation and drugs (e.g. chemotherapeutic agents) (102, 40). In this process, pro-apoptotic Bcl-2 
homology domain 3 only (BH3-only) proteins (e.g. Bad, Bid, Bim and NOXA) activate Bcl-2 pro-
apoptotic family members (e.g. Bax and Bak) and consequently they translocate to the 
mitochondria. Bax and Bak also induce the cytochrome c release into the cytosol. This promotes 
the assembling of apoptosome (Apaf-1 and caspase-9) and subsequent activation of executioner 
caspase-3, -6, -7 initiating the cell death. Moreover, Bcl-2 family has a group of anti-apoptotic 
members such as Bcl-2, Bcl-xL, Mcl-1 and Bcl-w.  For the proper functioning of the cells, the 
ratio between anti-apoptotic (e.g. Bcl-2, Bcl-xL) and pro-apoptotic (e.g. Bax and Bak) members 
of Bcl-2 family proteins must be steady. Unbalancing the anti-apoptotic and pro-apoptotic 
members of Bcl-2 family proteins leads to neuronal damage/death and NDs (103, 104). Moreover, 
the extrinsic pathway can also crosstalk to the intrinsic apoptosis pathway by an amplification 
induced by caspase-dependent activation of Bid protein (105). 

Microglial cells are the innate immune system cells residing in the CNS. In circumstances such as 
an invasion of pathogens and the formation of Aβ plaques, microglial cells are converted to the 
activated state. To defend against the pathogenic invaders and eliminate the Aβ plaques, activated-
microglia have the capability of generating neuroinflammation by releasing broad-range of 
compounds such as inflammatory mediators and neurotoxic compounds. These compounds are a 
double-edged sword for defending the neurons or affecting the neurons viability and CNS 
integrity. The chronic expression of several compounds such as TNF-α, IL-1β, PGE2, IL-6, IFN-
γ, ROS and RNS could be destructive to cells (106, 2). Long-standing neuroinflammation and 
chronic expression of several compounds will strikingly affect the neuronal viability and the 
survival of neural precursor cells by unbalancing the anti-apoptotic and pro-apoptotic members of 
Bcl-2 family proteins and targeting mitochondria as well as extrinsic and intrinsic apoptosis 
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pathway (107, 108). Moreover, astrocytic mitochondrial dysfunction including change in 
intracellular calcium, GSH, SOD and specific neurotoxic compounds production have been 
implicated by various studies to be associated with the onset of NDs (109). 

In short, mitochondrial impairments/dysfunction in the CNS neurons results in mitochondrial 
depolarization and reduction of mitochondrial dynamics/movements, distribution and fission, as 
well as releasing cytochrome c/ROS/RNS and subsequent neuronal damage and apoptosis. 
Moreover, many genetic alterations and related suppression on proteins production are associated 
with a higher incidence of mitochondrial dysfunction and its molecular consequences. Hence, 
mitochondrion and its related abnormalities are promising therapeutic targets for neurological 
disorders and NDs (Figure 1). 

Molecular Targets of Curcumin on mitochondria in NDs 

It has been shown that many exogenous and endogenous factors such as aging, nuclear- and mt-
DNA mutations, drugs, neurotoxic compounds and misfolded/aggregated proteins, leads to 
mitochondria dysfunction, which is markedly linked to the onset and pathogenesis of NDs (30). 
NDs have a significant effect on the life expectancy and HRQoL (37); however, the existing 
medications are just capable of symptomatic relief or managing the overall symptoms. It is a 
priority to develop more effective drugs to face the growing trend of mortality and morbidity of 
NDs. Curcumin is a natural polyphenol and nontoxic compound stemmed from Curcuma longa 
L., which has a highly pleiotropic and broad-range of targets in cells especially the cell-relating to 
NDs. Moreover, curcumin’s structure makes it possible to cross the blood-brain barrier (BBB) (2). 
There is growing evidence on the beneficial therapeutic properties of curcumin on various aspects 
of cells associated with NDs especially for their dysfunctional/impaired mitochondria (Table 2). 
In this section, we discuss the molecular targets of curcumin on mitochondria in NDs. 

Various neurotoxic compounds and/or drug are increasingly being recognized as external risk 
factors linked to the mitochondria-mediated onset of various NDs. For instance, long-term alcohol 
abuse induces oxidative stress, activates the neuroinflammation pathways, increases the caspase-
3, -9, -8 and also changes the Bcl-2/Bax ratio (decreases Bcl-2 and increases Bax proteins). 
Mitochondria are responsible for regulating the neurotoxicity induced by long-term alcohol abuse, 
however, these compounds promote the cytochrome c and decrease mitochondria biogenesis (110-
112). Curcumin has neuro- and mitochondria-protective effects by reversing the withdrawal effects 
of the alcohol-induced neurodegeneration and also improves neuronal survival by reducing 
apoptosis, oxidative stress, neuroinflammation and perturbation in phospho-CREB-BDNF 
signaling. Moreover, curcumin improves the alcohol-induced reduction in the SOD, GSH, 
oxidized GSH and GSH reductase activity. Curcumin also decreases the levels of TNF-α and IL-
1β as well as reduces the Bax and Bax/Bcl-2 ratio (54). 

Oxaliplatin, a platinum-based anti-cancer chemotherapy drug has dose-limiting side effects on the 
mitochondria by mediating the oxidative stress leading to damage the neurons (113, 114). 
Combination of curcumin and quercetin have demonstrated neuro- and mitochondrial-protective 
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effects against oxaliplatin side effects by significantly reducing the mitochondrial lipid 
peroxidation levels, protein carbonyl content and subsequent oxidative stress. It also improves the 
altered non-enzymatic and enzymatic antioxidants and ETC complexes enzymes of mitochondria 
(114). 

Exposure of tert-butyl hydroperoxide (t-BHP) to neurons leads to ΔΨm loss and cytochrome c 
release and subsequent activation of caspase-3 and PARP cleavage and cell apoptosis. Curcumin 
has neuro- and mitochondrial-protective effects by abrogating the ΔΨm loss and cytochrome c 
release, suppressing the caspase-3 activation and altering the of Bcl-2 family expression as well as 
preventing the cellular GSH and decreasing intracellular ROS generation. In short, curcumin has 
the potential to attenuate tBHP-induced apoptosis in cortical neurons (115). 

Aβ and APP can impair the mitochondria by localizing in the mitochondria membrane, interacting 
with mitochondrial proteins, disrupting the ETC and following synaptic activity reduction, 
increasing reactive oxygen species production, reducing the mitochondrial biogenesis and fusion 
activity, leading to mitochondrial and neuronal damage and consequent NDs (116, 49). It has been 
reported that curcumin can reverse the Aβ-withdrawal (and maybe APP-withdrawal) effects by 
reducing the mitochondrial dysfunction and its fission machinery, improving mitochondrial fusion 
activity and maintaining cell viability and mitochondrial dynamics, mitochondrial biogenesis, 
synaptic activity and synaptic proteins (53). 

Rotenone, an insecticide and pesticide, has the potential to impair the cognitive function, affect the 
oxidative defense (e.g. by increasing lipid peroxidation, nitrite concentration and decreasing 
activity of superoxide dismutase, catalase and reduced glutathione level) and also influence the 
mitochondrial complex (II and III) enzymes activities (117, 118). It is reported that curcumin has 
the neuro- and mitochondrial-protective against rotenone-withdrawal effects by improving the 
behavioral alterations, mitochondrial ETC complexes enzyme activities, reducing ROS production 
and oxidative damage, preventing apoptosis as well as restoring the motor deficits and ΔΨm and 
enhancing the antioxidant enzymes (48, 118). 

D-galactose, a reducing sugar, have the potential of inducing oxidative stress resulting in an 
alteration in mitochondrial dynamics and apoptosis of neurons. Additionally, D-galactose can 
impair the activity of the mitochondrial ETC complexes I, II and III. It also significantly increases 
the lipid/protein oxidation, diminish the levels of GSH and activate the caspase-3 (119, 49). 
Curcumin can markedly reduce the D-galactose effects on CNS cells by restoring the activity of 
the mitochondrial ETC complexes I, II and III, decreasing the levels of malondialdehyde, advanced 
oxidation protein products and protein carbonylation, increasing the GSH and oxidized GSH and 
reducing the expression of cleaved caspase-3 (49). 

Various misfolded and aggregated proteins lead to the onset and progression of NDs. α-synuclein, 
an expressed neuronal protein, is the main protein affected in a group of neurodegenerative 
disorders called α-synucleinopathies, which are characterized by the presence of intracellular α-
synuclein aggregation. α-synuclein can potentially lead to the onset of dementia in DLB, PD and 
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PD-related disorders (120, 121). α-synuclein aggregation leads to the induction of the cell death, 
intracellular ROS production, caspase-3 and -9 activations, mitochondrial depolarization and 
cytochrome c release. Curcumin has neuro- and mitochondrial-protective properties against the 
aggregated-α-synuclein neurotoxicity by reducing the cell death, intracellular ROS, caspase-3 and 
-9 activations, mitochondrial depolarization and cytochrome c release (58). 

Hydrogen peroxide (H₂O₂) is the major source of oxidative stress and is considered to have a major 
role in various neurological disorders especially NDs. H₂O₂ has the potential ability to induce ROS 
production, apoptosis, caspase-3 and -9 activations and lipid peroxidation, reduce the 
mitochondrial depolarization, GSH and GSH peroxidase and increase the intracellular and 
extracellular release of ca²⁺. It was reported that curcumin has the neuro- and mitochondrial-
protective ability by reversing the detrimental effects of H₂O₂ (122). 

1-methyl-4-phenylpridinium ions (MPP⁺), the active metabolite of 1-methyl-4-phenyl- 1,2,3,6-
tetrahydropyridin, exerts its neurotoxicity by inhibiting ATP production, stimulating superoxide 
radical formation, leading to mitochondria dysfunction and consequent CNS cell death (123). 
Curcumin significantly protects CNS cells against MPP⁺-induced apoptosis. It also improves the 
mitochondrial function by attenuating the ΔΨm dysfunction and intracellular ROS production and 
expression of Bcl-2 (56). 

Glutamate is the major excitatory neurotransmitter in the CNS. A mounting number of evidence 
suggests that perturbations in the systems using the excitatory ʟ-glutamate may underlie the 
pathogenic mechanisms of a myriad of diseases such as epilepsy and chronic NDs. All neurons in 
the CNS have the N-methyl-d-aspartate subtype of ionotropic ʟ-glutamate receptors mediating the 
post-synaptic Ca2⁺ influx. Excitotoxicity resulting from the activation of NMDA receptors leads 
to the upregulation of GSH peroxidase 1, GSH disulfide, Ca2⁺ influx, NO/ROS/H₂O₂ production, 
cytochrome c release, Bax/Bcl-2 ratio, caspase-3 activity, lactate dehydrogenase and 
malondialdehyde. It also downregulates GSH, GSH reductase, SOD and catalase thereby 
promoting cell apoptosis (124, 125). Curcumin has been shown to effectively protect CNS cells 
by reversing all the described glutamate-induced oxidative toxicity and excitotoxicity (125). 

Neurotoxic compounds such as manganese and aluminum have the capability to enhance the ETC 
activity of NADH dehydrogenase (complex I), succinic dehydrogenase (complex II) and 
cytochrome oxidize (Complex IV), increase the malondialdehyde, ROS production as well as 
induce mitochondria-related apoptosis such as caspase-3 and -9 activations, cytochrome c release 
and Bcl-2/Bax ratio (Bax increase, and Bcl-2 decrease). Curcumin exerts its neuro- and 
mitochondrial-protective effects on CNS cells especially microglial cells by reversing the effects 
of manganese- and aluminum-induced cytotoxicity/neurocytotoxicity (126, 57). 

Nrf2 has a pivotal role in defending the CNS cells against the mitochondrial dysfunction and its 
neurotoxic compounds, reduced GHS and imbalanced mitochondrial ROS which is suppressed in 
NDs. Curcumin activates Nrf2 and Nrf2 target genes in the CNS cells decreases the level of 
intracellular ROS and attenuates the oxidative damage and mitochondrial dysfunction (127). 
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Cerebral ischemia can induce a rapid increase in lipid peroxidation and reduction in ΔΨm, increase 
cytochrome c release and caspase-3 activation thereby resulting in apoptosis. Cerebral ischemia 
also induces extensive neuronal death together with increasing the astrocytes and microglial cells 
activation. However, it has been reported that curcumin exerts its neuro- and mitochondrial-
protective effects against ischemia-induced neurodegeneration by attenuating ischemia-induced 
neuronal death and glial activation as well as decreasing the lipid peroxidation, mitochondrial 
dysfunction and thereby apoptosis (55). 

Curcumin analogs 

Despite the myriad therapeutic beneficial effects of curcumin due to its hydrophobic tendency, 
presence of an active methylene group and a β-diketone moiety, curcumin has a poor 
bioavailability/pharmacokinetics and get metabolized easily via aldo-keto reductase in the liver, 
which hinders its in vivo and clinical trial use in many routes of administration (29, 2). Numerous 
studies have been looking into mechanisms to circumvent the unstable and poor bioavailability 
and pharmacokinetic properties of curcumin by designing and characterizing micellized 
(43)/micronized (44)/hybridized (45)/nano-sized (46) forms of native curcumin as well as its 
derivatives (47) and synthetic analogs (48). 

Modification of curcumin not only enhance its bioavailability status but also amplify the neuro- 
and mitochondrial-protective effects of curcumin. For instance, curcumin pyrazole derivatives 
(e.g. C1-C6 and CNB-001) have significantly more protective properties on mitochondrial 
dysfunction and it related abnormalities by inhibiting the ΔΨm loss, attenuating intracellular ROS 
and enhancing nuclear translocation of Nrf2 (48, 59).  

Curcumin micelles have been shown to have a better bioavailability status by improving solubility 
in different cells membranes. It has been shown that some micelles considerably improve the 
curcumin bioavailability up to 40-fold. Moreover, curcumin micelles are more effective in 
preventing mitochondrial swelling and oxidative stress than native curcumin (43). 

Hybridization of compounds to curcumin is another approach to overcome its poor bioavailability 
and also potentially intensify the neuro- and mitochondrial-protection by another therapeutic 
compound. It is reported that curcumin and melatonin hybridization (two natural compounds) can 
potentiate the curcumin bioavailability and its function and can cross BBB could be even more 
significant and promising in neuroprotective approaches in NDs therapy (45). 

Bioconjugates of curcumin such as di-demethylenated piperoyl, di-valinoyl and di-glutamoyl 
esters improve neuroprotective effects against nitrosative stress and mitochondrial dysfunction and 
damage (47). To compensate for the poor bioavailability of curcumin, curcumin encapsulated solid 
lipid nanoparticles (CSLNs) has been shown to significantly increase the activity of mitochondrial 
ETC complexes and cytochrome levels. Moreover, CSLNs also restore GSH levels and SOD 
activity. CSLNs markedly reduce the mitochondrial swelling, lipid peroxidation, protein carbonyls 
and ROS and also promote the Nrf2 antioxidant pathway (44). When encapsulated in nano-sized 
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PLGA curcumin exerts its neuro- and mitochondrial-protective effects through the regulation of 
NF-κB (p65) and also reduce the caspase-9a expression as well as the apoptosis by ameliorating 
CSF levels of TNF-α and IL-1β (46). 

The Promise of Curcumin for NDs Therapy 

Curcumin has the potential to protect the CNS cells against a myriad of conditions including NDs. 
It has been shown that curcumin not only protect mitochondrial dysfunction and inhibit neuronal 
death by targeting wide-range of crucial pathways including oxidative stress/ROS/RNS, 
intrinsic/extrinsic pathway of apoptosis, neuroinflammatory mediators as well as microglial cells 
activation and other glial cells, but also attenuate the neuronal loss by many diseases/injuries and 
neurotoxic compounds. Many conditions such as hypertension, diabetes, atrial fibrillation, 
ischemic, heart-disease, dyslipidemia and obesity have the potential to induce stroke especially 
ischemic stroke, which increases the risk of dementia up to five-fold (128). It has been shown that 
curcumin can protect the CNS cell against ischemia-induced mitochondrial dysfunction and the 
onset of NDs.  

Due to its structural properties, it has poor bioavailability however, there is an increasing number 
of studies using nano-/micro-sized and encapsulated form of curcumin to enhance its 
bioavailability. By developing hybrid medications with curcumin and other natural compounds 
can potentiate the properties of curcumin even more which could be assessed in future clinical 
trials. Hence the use of curcumin is a promising therapeutic strategy to cope with the growing trend 
of NDs. 

Conclusions 

Based on in vitro (Table 1) and in vivo (Table 2) evidence, curcumin has an excellent potential to 
protect CNS cells against mitochondria-related pathology in a wide variety of NDs and against 
several stimulating factors (e.g. ischemia-induced neurodegeneration via mitochondrial 
dysfunction), neurotoxic compounds (e.g. aluminum, manganese, MPP, HO, D-galactose, 
rotenone and t-BHP), lifestyle-induced neurodegeneration (e.g. heavy alcohol usage), 
excitotoxicity-induced neurodegeneration (e.g. ʟ-glutamate) and adverse effects of some existing 
medications on neurodegeneration (e.g. oxaliplatin) as well as pathologies induced by misfolded-
/aggregated-/mutant proteins (e.g. Aβ, APP and α-synuclein). Moreover, curcumin exerts its 
mitochondria protecting properties by: 1. retaining ΔΨm/the activities of mitochondrial ETC 
complexes (48) and Bax/Bcl-2 ratio (52); 2. enhancing/increasing mitochondrial fusion activity, 
mitochondrial biogenesis and synaptic proteins (53); 3. reducing fission machinery (53), 
mitochondrial swelling, lipid peroxidation, protein carbonylation (44), levels of oxidized lipids 
(49) neuroinflammation (54), apoptosis (55-57), cytochrome c, caspase-3 and -9 activation, and 
mitochondrial depolarization (58); 4. modulating/targeting the phospho-CREB-BDNF signaling 
(54) and Nrf2 (59) and 5. restoring GSH levels and SOD (44). 
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In conclusion, curcumin is associated with biological properties on mitochondrial dysfunction and 
its related abnormalities and could be a potential therapeutic candidate for the management of 
various NDs. 
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Figure legends 

Figure 1. Genetic alterations (e.g. mutations) and environmental/external factors as well as their 
synergistic effects can induce the formation of reactive oxygen species (ROS), reactive nitrogen 
species (RNS) and other neurotoxic compounds, leading to accumulated/misfolded proteins and 
subsequent mitochondrial dysfunction. Mitochondrial dysfunction can contribute to 
neurodegeneration through several mechanisms including interference with cell signaling, redox 
state, microglial activation and lipid peroxidation. Curcumin can mitigate the destructive effects 
of ROS, RNS and other neurotoxic compounds by several mechanisms that result in blunted 
neurodegeneration. GSH: reduced glutathione, SOD: superoxide dismutase, ETC: electron 
transport chain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

Table 1. Effects of Curcumin on Mitochondria Function on NDs in vitro. 

Author Species and cell 
type 

Agents Dose In vitro effects Refs. 

Liao et al. 
(2019) 

PC12 cells Six curcumin 
pyrazole 
derivatives 

Dose- and 
time-
dependent 
manner 

Curcumin pyrazole derivatives 
potentially reduce ROS levels 
and protect the neurons by 
targeting and/or protecting 
mitochondria and nrf2 signaling 
pathway. 

(59) 

Daverey et al. 
(2016) 

A172 (human 
glioblastoma cell 
line) and HA-sp 
(human astrocytes 
cell line derived 
from the spinal 
cord) astrocytes. 

Curcumin Dose- and 
time-
dependent 
manner 

Curcumin not only protected 
astrocytes from H₂O₂-induced 
oxidative stress but also 
reversed the mitochondrial 
damage and dysfunction 
induced by oxidative stress. 

(129) 

Cihangir 
Uguz et al. 
(2015) 

SH-SY5Y cells Curcumin and 
H₂O₂  

5 mM 
curcumin and 
100 mM 
H₂O₂ 

Curcumin effectively induced 
modulator effects on oxidative 
stress and the levels of 
intracellular Ca²⁺, caspase-3 and 
-9.  

(122) 

Hagl et al.  
(2015) 

PC12 cells Curcumin 
micelles 

0.1 μM and 
10 μM 

Curcumin micelles prevented 
mitochondria from swelling and 
was a suitable substance for the  
prevention of mitochondrial 
dysfunction and 
neurodegeneration. 

(43) 

Liu et al. 
(2011) 

PC12 cells 
expressing 
inducible A53T α-
synuclein 

Curcumin Dose-
dependent 
manner 

Curcumin reduced mutant α- 
synuclein-induced intracellular 
reactive oxygen species (ROS) 
levels, mitochondrial 
depolarization, cytochrome c 
release, and caspase-9 and 
caspase-3 activation. 

(58) 

Chen et al. 
(2006) 

PC12 cells Curcumin Dose-
dependent 
manner 

Curcumin protected PC12 cells 
against MPP⁺-induced 
cytotoxicity and apoptosis by 
inducing overexpression of Bcl-
2, and reducing the loss of 
mitochondrial membrane 
potential, intracellular ROS and 
overexpression of iNOS. 

(56) 

van der 
Merwe et al. 
(2017) 

PINK1 Knock 
Down SH-SY5Y 
cell line 

Curcumin Dose- and 
time-
dependent 
manner 

This study demonstrated that 
down regulation of PINK1 by 
specific siRNA resulted in 
features of mitochondrial 
dysfunction and increased cell 

(130) 
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death which were rescued and 
reversed by curcumin. 

Chang et al. 
(2014) 

PC12 cells Curcumin and 
glutamate 

Dose- and 
time-
dependent 
manner 

Curcumin effectively protected 
PC12 cells against the 
glutamate-induced oxidative 
toxicity in two pathways: the 
glutathione-dependent nitric 
oxide-reactive oxygen species 
pathway and the mitochondria-
dependent nitric oxide-reactive 
oxygen species pathway. 

(125) 

Chojnacki et 
al. (2014) 

MC65 Cells hybrid 
compounds of 
curcumin and 
melatonin 
(named 7) 

Dose-
dependent 
manner 

7’s antioxidant effects correlate 
well with its neuroprotective 
potency and these effects might 
be due to its interference with 
the interactions of amyloid-β 
oligomers within the 
mitochondria. 

(45) 

Mythri et al. 
(2011) 

N27 cells Bioconjugates 
of curcumin 
(Di-
demethylenated 
piperoyl, di-
valinoyl and di-
glutamoyl 
esters) 

Dose-
dependent 
manner 

Glutamoyl diester of curcumin 
showed the improved protection 
against peroxynitrite-dependent 
CI inhibition and protein 
nitration. Additionally, Di-
glutamoyl curcumin protected 
dopaminergic neurons against 
MPP⁺-mediated neuronal death. 

(47) 

Jayaraj et al. 
(2013) 

SK-N-SH cells CNB-001 and 
rotenone 

2 μM 
curcumin and 
100 nM 
rotenone 

CNB-001 demonstrated 
protection against rotenone-
induced toxicity by inhibiting 
mitochondrial ROS generation, 
retains ΔΨm, and prevents 
apoptosis. Moreover, CNB-001 
offered neuroprotection by its 
antioxidant, mitochondrial 
protective, and antiapoptotic 
properties. 

(48) 

Reddy et al. 
(2016) 

SH-SY5Y cells Curcumin and 
Aβ 

Dose-
dependent 
manner 

After Aβ affections on 
mitochondria, curcumin 
enhanced mitochondrial fusion 
activity, reduced fission 
machinery, increased biogenesis 
and synaptic proteins. 

(53) 

Park et al. 
(2017) 

BV-2 Microglial 
Cells 

Curcumin and 
manganese 

0.1–10 μM 
curcumin and 
250 μM 
manganese 

Curcumin prevented 
manganese-induced microglial 
cell death through the induction 
of HO-1 and regulation of 
oxidative stress, mitochondrial 

(57) 
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dysfunction, and apoptotic 
events. 

Zhu et al. 
(2004) 

Primary cortical 
neurons culture 

Curcumin and 
tBHP 

2.5-20 μM/L 
curcumin for 
18 h and 100 
μM/L tBHP 
for 60 min 

Curcumin treatment prevented 
cellular GSH and decreased 
intracellular ROS generation, 
and also attenuated tBHP-
induced apoptosis in cortical 
neurons. 

(115) 
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Table 2. Effects of Curcumin on Mitochondria Function on NDs in vivo. 

Author Species and cell 
type 

Agents Dose/route In vivo effects Refs. 

Jiang et al. 
(2011) 

male mice (Nrf2⁺/⁺ 
and 
Nrf2⁻/⁻) and their 
primary spinal cord 
astrocytes 

Curcumin Dose- and time-
dependent 
manner 

Curcumin activated Nrf2 and 
Nrf2 target genes in primary 
astrocytes, decreased the 
level of intracellular ROS, 
and attenuated oxidative 
damage and mitochondrial 
dysfunction. 

(127) 

Atamna et al. 
(2006) 

Mouse model of 
AD and SH-SY5Y 
cell line 

Curcumin Dose- and time-
dependent 
manner 

Curcumin reduced oxidative 
stress in a mouse model for 
AD of Aβ-heme. 

(131) 

Sood et al. 
(2011) 

Sprague-Dawley 
rats 

Curcumin and 
aluminum 

Oral gavage of 
100 mg/kg body 
wt/day 
aluminum, and 
50 mg/kg 
curcumin 
intraperitoneall
y administration 

Curcumin supplementation 
to aluminum-treated rats 
significantly normalized the 
activities of all the three 
mitochondrial complexes 
(complex I, II, IV) and 
reduced the content of GSH 
in the brain which wase 
altered following aluminum 
treatment. 

(126) 

Motaghinejad
a et al. (2017) 

Male wistar rats Curcumin and 
alcohol  

Dose- and time-
dependent 
manner 

Curcumin demonstrated 
neuro- and mitochondria-
protection via reversing the 
withdrawal effects of the 
alcohol-induced cell 
degeneration, and improving 
neuronal survival by 
reducing apoptosis, 
oxidative stress, 
neuroinflammation and 
perturbation in CREB-
BDNF signaling. 

(54) 

Hagl et al.  
(2015) 

NMRI mice Curcumin 
micelles 

Orally gavaged 
of 1.75 μL 
curcumin 
micelles 
solution per 
gram body 
weight 

Curcumin micelles 
prevented mitochondria 
from swelling and was a 
suitable substance for the 
prevention of mitochondrial 
dysfunction and 
neurodegeneration. 

(43) 

Sandhir et al. 
(2014) 

Female Wistar rats Curcumin 
encapsulated 
solid lipid 
nanoparticles 
(CSLNs) 

Dose- and time-
dependent 
manner, i.p. 
administration 

CSLNs demonstrated a 
significant increase in the 
activity of mitochondrial 
complexes and cytochrome 
levels, also restored the GSH 

(44) 
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levels and superoxide 
dismutase activity and 
significantly reduced the 
mitochondrial swelling, lipid 
peroxidation, protein 
carbonyls and ROS. 

Eckert et al. 
(2013) 

Senescence-
accelerated mice 

Curcumin 0.5 g curcumin 
per kg diet for 5 
months. 

Curcumin restored 
mitochondrial function by 
induction of the nuclear 
receptor PGC1a, and maybe 
a promising dietary agent 
that may slow down brain 
aging and prevent 
mitochondrial dysfunction. 

(132) 

Wang et al. 
(2005) 

male Mongolian 
gerbils 

Curcumin i.p. 
administration 
of 30 mg/kg bwt 

Curcumin administration 
significantly attenuated 
ischemia‐induced neuronal 
death, glial activation and 
decreased lipid peroxidation, 
mitochondrial dysfunction, 
and the apoptotic indices.  

(55) 

Seo et al. 
(2010) 

Tg2576 mice Curcumin 500 ppm Curcumin reversed motor 
function deficits of Tg2576 
mice. Moreover, the 
enhanced lipid peroxidation 
and neuronal loss were 
partially suppressed by 
curcumin. 

(133) 

Zhang et al. 
(2017) 

Male albino, Wistar 
rats  

Curcumin 25 mg/kg bwt Curcumin reduced the brain 
edema and water content, the 
level of IL-6 and TNF-
α,  Protein expression of p53 
and Bax, and  ΔΨm 

(134) 

Waseem et al. 
(2016) 

Male Wistar rats Curcumin and 
quercetin 

Dose-dependent 
manner 

Curcumin and quercetin 
showed neuroprotective 
effects and regulated the 
neurotoxic effects of 
oxaliplatin exposure; they 
also attenuated oxidative 
stress as evident by 
mitochondrial dysfunction. 

(114) 

Banji et al. 
(2014) 

Sixteen-week old 
healthy Wistar rats 

Curcumin, D-
galactose and 
hesperidin 

150 mg/kg D-
galactose 
subcutaneously 
50 and 100 
mg/kg curcumin 
orally; 10 and 
25 mg/kg 

Curcumin reduced the levels 
of oxidized lipids, proteins, 
cleaved caspase-3 
expression and 
mitochondrial enzymes. 
Moreover, the combination 
of curcumin and hesperidin 

(49) 
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hesperidin 
orally  

protected the morphological 
facets and improve the 
biochemical functions of 
neurons. 

Khatri et al. 
(2016) 

Swiss albino male 
mice 

Curcumin and 
rotenone 

1 mg/kg 
rotenone i.p. 
administration 
and 50, 100 and 
200 mg/kg of 
curcumin oral 
administration 

Curcumin treatment 
markedly improved the 
rotenone-induced behavioral 
alterations, oxidative 
damage and mitochondrial 
enzyme complex activities 
as compared to negative 
control (rotenone treated) 
group, and demonstrated 
neuroprotective effects on 
PD. 

(118) 

Chang et al. 
(2015) 

male Sprague–
Dawley rats 

Nanocurcumin 75/150/300 
μg/kg/ day 

Nanocurcumin exerted its 
neuroprotective effects 
through the upward 
regulation of NF-κB (p65) 
and reduced mitochondrion 
related caspase-9a 
expression 

(46) 

 

 


