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We report the results of calculations pertaining to the HH intramolecular stretching

fundamentals of (p-H2)2 encapsulated in the large cage of structure II clathrate hy-

drate. The eight-dimensional (8D) quantum treatment assumes rotationless (j = 0)

H2 moieties and a rigid clathrate structure but is otherwise fully coupled. The (H2)2-

clathrate interaction is constructed in a pairwise-additive fashion, by combining the

ab initio H2-H2O pair potential for flexible H2 and rigid H2O [D. Lauvergnat, et al., J.

Chem. Phys. 150, 154303 (2019)] and the 6D H2-H2 potential energy surface [R. J.

Hinde, J. Chem. Phys. 128, 154308 (2008)]. The calculations are performed by first

solving for the eigenstates of a reduced-dimension 6D “intermolecular” Hamiltonian

extracted from the full 8D Hamiltonian by taking the H2 moieties to be rigid. An

8D partially contracted product basis for the solution of the full problem is then con-

structed from a small number of the lowest-energy 6D intermolecular eigenstates and

two discrete variable representations covering the H2-monomer internuclear distances.

Converged results are obtained already by including just the two lowest intermolec-

ular eigenstates in the final 8D basis of dimension 128. The two HH vibrational

stretching fundamentals are computed for three hydrate domains having an increas-

ing number of H2O molecules. For the largest domain, the two fundamentals are

found to be site-split by ∼ 0.5 cm−1 and to be redshifted by about 24 cm−1 from the

free-H2 monomer stretch frequency, in excellent agreement with experimental value

of 26 cm−1. A first-order perturbation theory treatment gives results that are nearly

identical to those of the 8D quantum calculations.

a)Electronic mail: felker@chem.ucla.edu
b)Electronic mail: zlatko.bacic@nyu.edu
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I. INTRODUCTION

Hydrogen clathrate hydrates are inclusion compounds in which one or more hydrogen

molecules are confined inside closely packed polyhedral cavities within the three-dimensional

(3D) crystalline framework created by hydrogen-bonded water molecules.1–3 Simple hydrogen

clathrate hydrates, with only hydrogen molecules as guests, first identified by Dyadin et

al.,4 and subsequently studied in more detail by Mao et al.,5 adopt the classical structure II

(sII).1,2,5 Its unit cell is cubic, comprised of two types of cages: (a) sixteen small cages, each

consisting of 20 H2O molecules and denoted 512 due to its 12 pentagonal faces, and (b) eight

large cages, each formed by 28 H2O molecules arranged in 12 pentagonal and 4 hexagonal

faces, and therefore denoted as 51264. The small cage has been shown to accommodate only

one H2 molecule, while up to four H2 molecules can be encapsulated in the large cage.6

Hydrogen clathrate hydrates have been the subject of a great deal of research in recent

years, owing to their potential as hydrogen storage materials that could be both economical

and environmentally friendly.1,2,7–10

The dynamics and spectroscopy of hydrogen molecules entrapped inside the cages of the

clathrate hydrate are dominated by strong quantum effects, to a degree seen only for light

molecules inside fullerenes.11 These quantum effects have multiple sources. Nanoscale con-

finement in the hydrate cages gives rise to the quantized translational center-of-mass (c.m.)

degrees of freedom (DOFs) of the guest molecule(s) (particle-in-a-box effect). They are cou-

pled by the confining potential of the hydrate cage to the also quantized rotational DOFs of

the hydrogen molecule(s). The translation-rotation (TR) energy level structure that results

is sparse, due to the the low molecular mass of H2/HD/D2, their large rotational constants,

and the small size of the hydrate cavities. For a single hydrogen molecule in the cages of

the sII clathrate hydrate, the salient features of its TR eigenstates, notably the splittings

of both the translational fundamental and rotational levels, as well as their manifestations

in the inelastic neutron scattering (INS) spectra, have been characterized by Bačić and co-

workers through quantum 5D bound-state calculations12–15 and rigorous computations of the

corresponding INS spectra.15–19 These features have also been observed experimentally, in

the INS20,21 and the Raman spectra22–24 of the binary tetrahydrofuran (THF) + H2/HD/D2

sII clathrate hydrate. The quantum TR dynamics of up to four H2 molecules in the large

hydrate cage has been studied at T = 0 K by means of the diffusion Monte Carlo (DMC)
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calculations,25 and at elevated temperatures (T = 25−200 K) using path-integral molecular

dynamics (PIMD) simulations.26. In addition, fully quantal calculations of the TR eigen-

states have been performed for two27,28 and four29 H2 molecules inside the large clathrate

hydrate cage. In all these calculations, both the H2 molecules and the hydrogen-bonded

clathrate hydrate framework were treated as rigid. Recently,30 this constraint was relaxed

partially, by performing quantum 5D calculations of the TR levels of (rigid) H2 in the small

sII hydrate cage, while taking into account the quantum delocalization of the proton nu-

clei of the framework water molecules arising from their hindered rotations about the fixed

positions of their O atoms.

Another spectroscopic manifestation of the encapsulation of hydrogen molecules in the

cages of clathrate hydrates, particularly relevant for this study, is the shift in the frequency

of the H2 intramolecular stretching vibration away from that in the gas phase. It is readily

observable in the Raman spectra of the binary tetrahydrofuran (THF) + H2 sII hydrate,

where the large cages are completely occupied by the THF while the small cages are singly

occupied by H2, and also in those of simple sII hydrates in which H2 molecules are the only

guests.10,22,23 The vibrational frequencies of H2 molecules encapsulated in the sII hydrates

are always lower than, i.e., redshifted relative to, the gas-phase H2. The largest redshift,

−34 cm−1, is observed in the Raman spectra of the THF + H2 sII hydrate, and can be

assigned unambiguously to the singly H2 occupied small cage.10,22,23 The same redshift of

−34 cm−1 appearing in the Raman spectra of the simple sII hydrate is therefore also at-

tributed to H2 in the small cage.

Also observed in the Raman spectra of the simple sII hydrate are the bands redshifted

by −26, −18, and −11 cm−1, respectively,10,22,23 that must represent contributions from the

large cages whose H2 occupancy ranges between two and four. Thus, the frequency shifts

are very sensitive to the number of H2 molecules confined in the cage. However, interpreting

them in terms of a particular H2 occupancy of the large cages has turned out to be nontrivial,

and the initial attempts22 proved to be incorrect. The subsequent elaborate experiments led

to the assignment of these three redshifts to double, triple, and quadruple H2 occupancies

of the large cages, respectively.23

In the case of sII hydrogen hydrates, it was possible to assign the observed frequency

shifts to different H2 occupancies of the small and large clathrate cages based on detailed

experimental data alone. However, in general, e.g., molecular hydrogen in metal-organic

4



frameworks (MOFs),31,32 extracting the information encoded in the measured vibrational

frequency shifts regarding the H2 occupancies of the cavities of nanoporous materials, and

other structural as well as dynamical aspects of the entrapped H2, demands theoretical meth-

ods capable of accurate calculation of the frequency shifts. This task is highly challenging,

for two reasons. The first is posed by the high dimensionality of the problem. Even if the

host cavity is treated as rigid, the dimensionality of the calculations is 6nD, n being the

number of encapsulated H2 molecules, when treated as flexible. Thus, for n = 1−4, one has

to be able to deal with the problem whose dimensionality ranges from 6D to 24D. This re-

quires having accurate high-dimensional potential energy surfaces (PESs), that incorporate

the H2-clathrate interactions and, in the case of multiple occupancy, the interactions among

the guest H2 molecules. In addition, the interactions must include the dependence on the

H2 intramolecular stretch coordinate and its coupling to the intermolecular DOFs. Second,

dynamical quantum effects and anharmonicities in both intra- and intermolecular DOFs are

significant, particularly at the low temperatures of the Raman spectroscopy measurements.

Consequently, these key features have to be described correctly by any first-principles the-

oretical method whose goal is to determine accurate intramolecular vibrational frequency

shifts of encapsulated hydrogen molecules.

A number of approaches, relying on different approximations, have been utilized to ad-

dress this fundamental and difficult problem. In some of them, the H2 molecules encap-

sulated in the isolated small or large hydrate cages were treated as static, frozen in the

geometry corresponding to the minimum energy of the system.33–35 This leaves out nuclear

quantum effects, especially the averaging over the large-amplitude intermolecular vibrations

of the guest H2 molecules. This problem was also approached by combining classical molec-

ular dynamics (MD) and PIMD simulations with electronic structure calculations at the

DFT (B3LYP) and MP2 levels.36 The H2 vibrational frequencies calculated in 1D for the

H2 intermolecular coordinates taken from many snapshots of the MD simulations covered a

broad distribution of frequencies that extended to that of the free H2 at 4155 cm−1. Their

maxima agree reasonably well with experiment, after a scaling factor was introduced in the

calculations. Finally, classical MD simulations within the DFT framework were performed

for an sII hydrate unit cell, and the H2 vibrational spectra were calculated by Fourier trans-

forming the H-H bond length autocorrelation function.37 This classical treatment does not

account for the quantum effects. Moreover, it gives the vibrational spectra that are shifted
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by 100-150 cm−1 to higher frequencies relative to the experimental results, and above the

stretch fundamental of free H2.

Recently, Powers et al.38 have calculated the frequency shift of H2 inside the small cage

of the sII hydrate, isolated and surrounded by spherical hydrate domains of increasing size,

allowing the investigation of the effects of the condensed-phase environment. The approach

employed was that developed earlier by Bačić and co-workers for the purpose of computing

the HF stretch frequency shift in ArnHF clusters.39–42 The H2 frequency shift was obtained

by means of the quantum 5D bound-state calculations of the coupled TR eigenstates on

a pair of effective pairwise-additive intermolecular PESs for rigid H2 in a (rigid) hydrate

domain that depend on the vibrational state of H2, v = 0 or v = 1, respectively. These 5D

PESs were constructed using the 5D (rigid-monomer) pair potential for the interaction of

H2 in the ground and first excited vibrational states, respectively, with H2O, obtained by

averaging the full-dimensional (9D) ab initio PES of H2-H2O by Valiron et al.43 over the

vibrational ground state wave function of H2O and the vibrational wave functions of H2

for v = 0 and v = 1, respectively. This approach rests on the assumption of dynamical

decoupling between the H2 intramolecular vibration and the TR modes, well-justified by

their large energy separation. The H2 vibrational frequency shift of ∼ −44 cm−1 calculated

for the largest clathrate domain considered, with 1945 H2O molecules, that mimics the

condensed-phase environment, was about 10% larger in magnitude than that obtained for

the isolated small cage. This 0 K value agrees well with the frequency shifts measured at

20 K,22 −37 cm−1, and at 76 K,23 −34 cm−1. It was suggested that improving further the

agreement with experiment may require including many-body interactions, three-body in

particular, missing from the pairwise-additive intermolecular PES employed.38

Motivated in part by this suggestion, as well as by other considerations, Qu and Bowman44

have performed diffusion Monte Carlo (DMC) calculations of the vibrational frequency shift

of H2 encapsulated in the (rigid) small cage of the sII hydrate, without and with surrounding

water molecules, for the PES that included ab initio 3-body H2–H2O–H2O interactions, in

addition to the 2-body H2–H2O interactions. For the largest hydrate domain considered, the

inclusion of the 3-body interactions resulted in the shift of −40±4 cm−1, in good agreement

with experiment. The DMC method employed by Qu and Bowman44 is well-suited for

ground-state calculations, but already the first excited state poses a challenge arising from

the need to locate the node in the wave function, which is generally unknown (unless it
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can be determined from symmetry considerations45). Therefore, the calculations for the

first excited vibrational state of the caged H2 were done in the fixed-node approximation,

applying the “adiabatic” method of McCoy and co-workers46 to find the position of the node.

In our recent study,47 we presented the results of the first fully coupled quantum 6D

calculations of the vibration-translation-rotation (VTR) eigenstates of a single flexible H2,

HD and D2 molecule entrapped in the (rigid) small cage of the sII hydrate, that extended

to the first excited (v = 1) vibrational state of H2. Prior to this work, it has been a widely

held opinion that for molecular systems which have both high-frequency intramolecular

vibrational mode(s) and low-frequency intermolecular vibrations, such as H2 in hydrate cages

and hydrogen-bonded and van der Waals (vdW) molecular complexes, rigorous calculation of

fundamental (and overtone) excitation(s) of their intramolecular vibrational mode(s) would

be an extremely difficult and prohibitively costly task. The main source of the difficulty was

seen to be the very large number of highly excited intermolecular vibrational eigenstates in

the manifold of the intramolecular ground state lying below the energy of the intramolecular

vibrational excitation(s), and the assumption that they all have to be converged in order to

accurately compute the latter.

However, we demonstrated that, contrary to the above expectation, accurate computation

of the intramolecular stretch fundamental of the entrapped H2 at ≈4100 cm−1 required

having only a modest number of converged TR states in the v = 0 manifold up to at most

400-450 cm−1 above the ground state, and none within several thousand wave numbers of

of the intramolecular fundamental.47 Our explanation for this most surprising finding was

that, although the number of highly excited intermolecular v = 0 TR states in the vicinity

of the H2 stretch fundamental is large, their coupling to it is extremely weak. Consequently,

not including them in the calculations has a negligible effect on the accuracy with which

the intramolecular vibrational excitation is calculated. Of course, this resulted in a major

reduction of the basis size required, and transformed a computationally very demanding

task to one that was readily tractable.47

Exploiting the valuable insight gained in the above study, we recently developed a very

efficient method for full-dimensional, and fully coupled, quantum calculations of intramolec-

ular vibrational fundamentals and overtones of weakly bound molecular dimers.48 Its appli-

cation to the 6D problem of (HF)2 produced results in excellent agreement with those in the

literature, but with a fraction of the basis sets required by the other methods.
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In this paper, we go one step further and report the results of the calculations of the

intramolecular stretch fundamentals of (p-H2)2 confined inside the large cage of sII clathrate

hydrate. These challenging calculations, like those for (HF)2,
48 are made possible by what

we learned in our investigation of a single H2 in the small clathrate hydrate cage.47 They

also borrow from the computational methodology implemented in the (HF)2 calculations.48

The quantum treatment is in 8D (instead of 12D), since it assumes that the H2 moieties

are rotationless (j = 0), and that the hydrate framework is rigid. Apart from that, the

approach is fully coupled. The 8D partially contracted product basis includes a very small

number of the lowest-energy eigenstates of the reduced-dimension 6D intermolecular Hamil-

tonian obtained from the full 8D Hamiltonian by fixing the bond lengths of the H2 moi-

eties. The (H2)2-clathrate interaction potential is generated in a pairwise-additive fashion,

by combining the ab initio H2-H2O pair potential for flexible H2 and rigid H2O
47 and the

6D H2-H2 potential energy surface.49 The quantum 8D calculations are performed for three

clathrate hydrate domains of increasing size, the largest of which contains 98 H2O molecules.

They yield the vibrational stretching fundamentals of the caged (p-H2)2 and their redshifts

from the free-H2 stretch frequency, that for the largest domain considered are in excellent

agreement with the measured values. We also formulate a first-order perturbation theory

treatment, whose results are extremely close to those from the quantum 8D calculations.

This paper is organized as follows: The general approach is described in Sec. II, and the

computational details in Sec. III. In Sec. IV, we present and discuss the results. Sec. V

summarizes the work and outlines possible directions of further research.

II. GENERAL APPROACH

As stated in the Introduction, for n (flexible) H2 molecules inside a nanocavity, taken

to be rigid, the dimensionality of the quantum bound-state treatment is 6nD. Therefore,

computing the coupled VTR eigenstates of (H2)2 in a cage represents a 12D problem. This

poses a serious computational challenge, especially when one is interested in the excited in-

tramolecular stretching vibrational eigenstates of (H2)2. In order to alleviate this problem,

in the following, the two caged p-H2 molecules are treated as rotationless, i.e., in ground

(j = 0) rotational state, and thus effectively as spherical particles. This reduces the di-

mensionality of the problem to be solved from 12D for two rotating H2 molecules to 8D
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for two rotationless (j = 0) H2 monomers. This approximation is made rather commonly,

e.g., in the well known Silvera-Goldman isotropic effective pair potential for H2.
50 Moreover,

as demonstrated in Sec. IV A for the vibrational calculations on a single p-H2 in the large

clathrate hydrate cage, the error introduced by the j = 0 approximation is not large, and it

decreases further as the size of the hydrate domain increases.

The 8D Hamiltonian for the coupled VRT motions of (H2)2 inside a large cage, isolated

or within a larger sII hydrate domain, assumed to be rigid, and for rotationless (j = 0)

H2-monomer moieties, can be written as

Ĥ =
2∑
i=1

[
− ∇

2
i

2m
+ V

(4D)
H2−domain(Ri, ri)−

1

2µ

∂2

∂r2i
+ VHH(ri)

]
+ VH2H2(R12, r1, r2). (1)

Here Ri is the position vector of the center of mass (c.m.) of the ith H2 moiety measured

with respect to a cage-fixed axis system with origin at cage center, ∇2
i is the Laplacian

associated with that vector, V
(4D)
H2−domain is the interaction energy between a rotationless H2

moiety and the hydrate domain, ri is the distance between the two H nuclei in the ith H2,

VHH is the intramolecular PES of monomer H2 in its ground electronic state, R12 ≡ |R1−R2|,

VH2H2 is the isotropic interaction energy between the two H2 moieties, m = 2.01565 amu is

the mass of H2 and µ = 0.5039125 amu is the reduced mass of H2.

The approach we take in order to solve for the eigenstates and eigenvalues of the 8D

Ĥ in Eq. (1) adopts some of the key elements of our recent full-dimensional treatment of

the intramolecular vibrational eigenstates of weakly bound molecular dimers,48 specifically

(HF)2. We first re-write Ĥ by separating out its six-dimensional (6D) “intermolecular”

portion from the remainder

Ĥ = Ĥinter(R1,R2; r̄) + ∆VH2H2(R12, r1, r2; r̄) +
2∑
i=1

[
− 1

2µ

∂2

∂r2i
+ ∆Vi(Ri, ri; r̄)

]
, (2)

where the constant r̄ is an intramolecular HH distance close to the bottom of the VHH(ri)

well, and

Ĥinter ≡
2∑
i=1

[
− ∇

2
i

2m
+ V

(4D)
H2−domain(Ri, r̄) + VHH(r̄)

]
+ VH2H2(R12, r̄, r̄), (3)

∆Vi(Ri, ri; r̄) ≡ [V
(4D)
H2−domain(Ri, ri)− V (4D)

H2−domain(Ri, r̄)] + [VHH(ri)− VHH(r̄)], (4)

and

∆VH2H2(R12, r1, r2; r̄) ≡ VH2H2(R12, r1, r2)− VH2H2(R12, r̄, r̄). (5)
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Second, as in Ref. 48, we diagonalize the 6D Ĥinter in Eq. (3) to obtain the intermolec-

ular eigenfunctions |κ〉 and associated eigenvalues Einter
κ . Third, we construct a partially

contracted 8D basis, consisting of states |κ, γ1, γ2〉, as the direct product of the Ninter lowest-

energy |κ〉 and two one-dimensional (1D) Morse discrete variable representations (DVRs)

covering the r1 and r2 coordinates, respectively, and consisting of NMorse functions apiece:

|κ, γ1, γ2〉 ≡ |κ〉|r1,γ1〉|r2,γ2〉 (6)

Finally, we compute the matrix of Ĥ in this basis and diagonalize.

The Ĥinter matrix in this basis is diagonal with elements given by

〈κ, γ1, γ2|Ĥinter|κ, γ1, γ2〉 = Einter
κ (7)

The matrix elements of the other pieces of Ĥ are easily written as follows:

− 1

2µ
〈κ′, γ′1, γ′2|

(
∂2

∂r21
+
∂2

∂r22

)
|κ, γ1, γ2〉 = − 1

2µ
δκ′κ

(
δγ′2γ2〈γ

′
1|
∂2

∂r21
|γ1〉+δγ′1γ1〈γ

′
2|
∂2

∂r22
|γ2〉
)
, (8)

〈κ′, γ′1, γ′2|∆V1 + ∆V2|, γ1, γ2〉 = δγ′1γ1δγ′2γ2〈κ
′|∆V (R1, r1,γ1 ; r̄) + ∆V (R2, r2,γ2 ; r̄)|κ〉, (9)

and

〈κ′, γ′1, γ′2|∆VH2H2 |κ, γ1, γ2〉 = δγ′1,γ1δγ′2,γ2〈κ
′|∆VH2H2(R12, r1,γ1 , r2,γ2 ; r̄)|κ〉 (10)

The efficiency of this approach in calculating accurate intramolecular fundamental fre-

quencies for the (H2)2@cage species depends crucially on the assumption of weak coupling

between the intramolecular vibrational fundamentals of the confined (H2)2 and its inter-

molecular vibrational excitations. If this assumption is fulfilled, then the low-energy inter-

molecular vibrational manifold is not particularly sensitive to the intramolecular vibrational

excitations of the caged H2 moieties, and can be converged rapidly for both the ground and

excited intramolecular vibrations using a compact contracted 6D basis of rigid-monomer

intermolecular vibrational eigenstates. Moreover, weak coupling between the intra- and

intermolecular vibrational DOFs of the confined (H2)2 is the key prerequisite for the fulfill-

ment of the expectation, stemming from our recent work on weakly bound species,47,48 that

intramolecular vibrational levels can be obtained accurately from full-dimensional quantum

calculations that converge only a fraction of intermolecular vibrational eigenstates with the

energies far below those of intramolecular vibrational fundamentals (and overtones) of in-

terests. Based on our study of (HF)2,
48 in the weak-coupling regime it should be possible to
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compute accurate intramolecular fundamentals of the (H2)2@cage species by including only

a small number of 6D (rigid-monomer) intermolecular vibrational eigenfunctions of Ĥinter in

Eq. (3) in the 8D basis, that span a range of energies much lower those of the intramolecular

vibrational excitations. Our results discussed below bear out this expectation to a very high

degree.

III. COMPUTATIONAL DETAILS

A. Potential Energy Surfaces

The four-dimensional V
(4D)
H2−domain(Ri, ri) PES describing the interaction of j = 0 H2 moiety

#i with the clathrate-water moieties is taken as

V
(4D)
H2−domain(Ri, ri) =

NH2O∑
k=1

〈V (2b)
h,wk

(Ri, ωi, ri,Ξk)〉ωi
, (11)

where the sum is over the water moieties in the sII hydrate domain chosen, whose number is

NH2O, Ξk denotes the (fixed) coordinates of water #k, and ωi denotes the two angles that fix

the orientation of H2 #i with respect to the cage-fixed axis system. The 6D pair potential

V
(2b)
h,wk

has the same meaning as in our recent work:47 It is obtained from the full 9D H2-H2O

ab initio pair potential of Valiron, et al.43 by fixing the intramolecular coordinates of the

H2O moiety to their ground-state values. The angle brackets in Eq. (11) – 〈. . .〉ωi
– signify

taking the average over all ωi. This averaging, appropriate for j = 0 H2, was performed by

Lebedev quadrature on a grid of 26 points. Three different spherical domains of increasing

size and growing number of H2O molecules (NH2O) were considered, all extracted from the

3 × 3 × 3 supercell of the sII hydrate similar to that done by Powers, et al.15 in studies of

H2 in the small cage of the sII hydrate. The smallest domain (NH2O = 28) consists of just

the H2O moieties comprising the hexakaidecahedral large cage of the sII hydrate. The next

larger domain (NH2O = 44) encompasses all such moieties in the sII hydrate structure whose

O atoms lie within 7.5 Å of the center of the large cage. The largest domain considered

(NH2O = 98) includes all those H2O molecules with O atoms within 9 Å of the cage center.

For VHH we use the identical one-body term, V
(1b)
h , that we employed previously in the

study of H2 inside the small sII hydrate cage.47 It comes from the paper by Bowman, et

al.51 and is based on the work by Schwenke.52 This potential gives rise to a vibrational
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fundamental frequency of 4161.2 cm−1 for free-monomer H2, given the value of µ that we

use.

For VH2H2 we use the isotropic part of the 6D H2-H2 PES reported by Hinde.49 This surface

extends only to R12 = 4.25 bohr on the low side. As such, for VH2H2 values corresponding to

R12 < 4.25 bohr on the 6D grid that we use for the R1,R2 coordinates (see Subsection III B)

we substitute the VH2H2 value corresponding to R12 = 4.25 bohr. We anticipate minimal

errors due to this approximation since the potential at these small R12 values sufficiently

exceeds that at the potential minimum that low-energy intermolecular wave functions should

have negligible amplitude at these distances.

B. Diagonalization of Ĥinter

For Ĥinter we use Eq. (3) with r̄ = 0.74 Å, a value close to that corresponding to the

minimum of VHH. We diagonalize the operator in a 6D product basis consisting of 1D sine

DVRs53 covering the six Cartesian coordinates associated with R1 and R2. These 1D DVRs

are all of identical form, with each derived from the 15 lowest-energy eigenfunctions of a

particle in a box whose interior ranges from −2.7 to +2.7 Å. Diagonalization was effected

by using the Chebyshev version54 of filter diagonalization.55 This procedure involves the re-

peated application of the Hamiltonian on a random initial state vector. We symmetrized the

initial state vector such that it was either symmetric or antisymmetric with respect to H2

interchange prior to implementing the filter diagonalization algorithm. Thus, the complete

diagonalization of Ĥinter consisted of separate calculations yielding “even” (|κ+〉) and then

the corresponding “odd” (|κ−〉) intermolecular eigenfunctions. (While the odd intermolecu-

lar states are not physical on their own, they can combine with (H2)2 intramolecular states

that are also antisymmetric with respect to H2 interchange to produce physically realizable

states. Hence they must be included in the construction of the full 8D basis.)

Operation with Ĥinter on the state vector was accomplished by matrix-on-vector multipli-

cation. The matrix elements of the pieces of the kinetic-energy operator in Ĥinter were easily

obtained by first evaluating them analytically in the basis of 1D particle-in-box eigenfunc-

tions, and then transforming the results to the DVR representation. Potential-energy matrix

elements are diagonal in the 6D DVR basis and are given by the value of the potential at

the relevant DVR point.

12



Table I lists properties of the 10 lowest-energy even/odd eigenfunction pairs obtained by

the diagonalization of Ĥinter for the NH2O = 98 domain. The results for the domains with

NH2O = 28 and 44 are very similar except for overall near-constant shifts in the absolute

energies of the levels to higher values. This low-energy level structure is qualitatively similar

to that previously computed28 for (p-H2)2 in the large cage of sII hydrate, for a different

PES and a symmetrized cage geometry, and the H2 moieties taken to be rigid. That is, the

excitations are in the range of tens of wave numbers and correspond essentially to hindered

rotations of the (H2)2 pseudo-diatom. Notably, the interchange-tunneling splittings of the

states in Table I are all very small, and the properties of the two states in each tunneling

pair are almost identical. Apparently the barrier to H2 interchange is large compared to the

excitation energies of these low-energy states.

Further insight into the low-energy intermolecular level structure can be gained by con-

sidering the single-H2 c.m. probability densities (PDs)

ρκ(R1) ≡
∫
|〈R1,R2|κ〉|2dR2 (12)

associated with the states. (Note that, though ρκ in Eq. (12) is for H2 #1, the same density

function pertains to H2 #2 owing to interchange symmetry.) Isosurface plots of ρκ are

presented in Fig. 1 for several of the low-energy states listed in Table I. From the Figure

one notes that the intermolecular ground state, |0+〉, has its H2 moieties localized in two

regions (Fig. 1(a)). This ground-state behavior is different from that reported in previous

studies25,28 in which a different PES was assumed, and in which delocalization of the H2

c.m. positions over four sites was found. As the other plots in Fig. 1 show, however, the

states at higher energies show increasing degrees of angular delocalization, consistent with

excitations involving hindered rotational motion.

C. Diagonalization of Ĥ

Per Eq. (6), the 8D basis for the diagonalization of Ĥ was constructed from states of Table

I together with those constituting two 1D Morse DVRs of eight functions apiece. Thus, the

largest 8D basis that we used consisted of Ntot = Ninter×NMorse×NMorse = 20×8×8 = 1280

states. Each Morse DVR was constructed56 by first solving the vibrational Schrödinger
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equation for a particle of mass µ = 0.504 amu moving in the Morse potential

VMorse(ri) = D

[
1− e−α(ri−re)

]2
(13)

with D = 0.1744 hartree, α = 1.02764 bohrs−1, and re = 1.40201 bohrs. (This equation

is close to the vibrational Schrödinger equation of H2 monomer in its ground state.) The

DVR was then obtained by diagonalizing the matrix of z ≡ e−α(ri−re) in the finite basis

representation (FBR) consisting of the eight lowest-energy Morse eigenfunctions. We tested

the Morse DVR by using it as the basis for the calculation of the monomer H2 vibrational

states associated with the VHH potential employed herein. Results converged to within ∼ 0.1

cm−1 were obtained for the v = 0 and v = 1 states.

More can now be said about the calculation of the matrix elements that appear in Eqs.

(8) to (10), and that contribute to the matrix of Ĥ in the 8D basis. The 1D matrix elements

on the rhs of Eq. (8) can be readily evaluated by computing the matrix of the relevant

operator in the Morse FBR basis and then transforming it to the DVR representation. The

3D and 6D matrix elements on the rhs of Eqs. (9) and (10), respectively, are easily obtained

by quadrature by expressing the intermolecular eigenfunctions (i.e., |κ′〉, |κ〉) in terms of

the primitive 6D DVR intermolecular basis. In regard to the evaluation of Eq. (10), we

also note that many of the R12 values for different (R1,R2) pairs on the 6D DVR grid are

identical (or almost so - i.e., to within 0.001 bohr). As such, rather than having to calculate

156 values of VH2H2 to compute Eq. (10), only 1175 such values were required.

We used direct diagonalization to compute the eigenvectors and eigenvalues of Ĥ. Several

basis sets, apart from the one with Ntot = 20× 8× 8 were used to test convergence. All the

basis sets differed only in respect to the number of intermolecular states (Ninter) included.

In all cases, if one intermolecular state of an interchange-tunneling pair was included in the

basis, then the other one was as well. Erroneous results obtain if this is not done.

D. Intramolecular stretch fundamental of a single H2 in the large hydrate cage

While our main concern here is with the intramolecular vibrational fundamentals of (H2)2

moieties in the large cage, there are two reasons why similar calculations pertaining to a

single H2 in that cage are relevant, as well. First, since it is straightforward to perform

full-dimensional calculations on the single-H2 system,47 one can investigate the magnitude
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of the errors that arise from making the j = 0 approximation. Second, determining the trend

in frequency shift with the H2 occupancy of the large cage obviously requires the single-H2

data point.

We have performed calculations on p-H2 inside the large cage similar to those described

in our previous work47 on H2 in the small cage of the sII clathrate hydrate. We use filter

diagonalization to diagonalize the full 6D vibrational Hamiltonian

ĤH2 = − ∇
2

2mH2

− 1

2µ

∂2

∂r2
+ V

(6D)
H2−domain(R, ω, r), (14)

where R is the c.m. position vector of the H2 moiety, ∇2 is the Laplacian associated with

R, r is the HH internuclear distance, ω denotes the two angles that fix the H2 axis with

respect to the cage axis system, and

V
(6D)
H2−domain(R, ω, r) ≡ VHH(r) +

NH2O∑
k=1

V
(2b)
h,wk

(R, ω, r). (15)

This potential involves the same VHH and the same H2-H2O interaction, V
(2b)
h,wk

(R, ω, r), that

we use for the two-H2 system [see Eq. (11)] and that we used in Ref. 47, except that there is

no averaging over H2 orientation in Eq. (15). Clathrate hydrate domains identical to those

defined in Sec. III A and employed in the (H2)2 calculations were also used in evaluating

Eq. (15).

For the 6D bases we used (a) the product of three 1D sine DVRs identical to those

described in Sec. III B to cover the R degrees of freedom times (b) a 1D Morse DVR identical

to that described in Sec. III C to cover the r degree of freedom times (c) a spherical harmonic

Y m
j (ω) to cover the H2 rotational degrees of freedom. In one 6D basis we only included the

j = 0 spherical harmonic. In a second one we included all spherical harmonics with j = 0, 2

and 4.

IV. RESULTS AND DISCUSSION

A. Single H2 in the large hydrate cage

Table II lists results from the vibrational calculations on a single p-H2 in the large cage.

The results pertain to all three clathrate hydrate domains, and are given for both the

rotationless (jmax = 0) basis and for the basis that allows for H2 rotational motion (jmax = 4).
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There are three significant trends to note from these results. First, both the ground-state

energy and the frequency of the intramolecular stretch fundamental decrease with increasing

NH2O, although the decrease for the latter is very small. This behavior matches that which

has previously been observed in computational studies38,47 of one H2 in the small cage of the

sII clathrate hydrate. It is readily rationalized in that the H2-H2O interactions relevant to

the hydrate inclusion compounds tend to be predominantly attractive, and such as to lower

the H2 intramolecular fundamental frequency. Hence the more such interactions, the lower

the ground-state energy and the smaller the frequency of the H2 stretch fundamental(s).

Of course, one expects these effects to saturate as NH2O → ∞, given that the long-range

H2-H2O interactions fall off considerably faster than (distance)−3.

Second, the jmax = 0 results are not fully converged with respect to the H2 rotational basis.

However, the differences between the jmax = 0 and jmax = 4 values narrow considerably

as NH2O increases. Indeed, for the largest hydrate domain considered (NH2O = 98), the

vibrational fundamental changes by only −0.7 cm−1 in going from the small (jmax = 0)

to the large (jmax = 4) basis. This trend suggests that in the bulk clathrate hydrate the

difference between the jmax = 0 and jmax = 4 results would be negligible. The better j = 0

convergence with larger domain can be attributed to a decrease in the angular anisotropy

in the H2-hydrate interaction as NH2O increases. An analogous angular anisotropy decrease

with NH2O (as reflected in a decrease in the magnitude of the H2 j = 1 rotational-level

splitting) was also found to hold for H2 in the small cage.38,47 The trend is easily understood

once one recognizes that the angular anisotropy in the H2-cage interaction is due to the

asymmetry in the spatial distribution of H-atoms in the hydrogen-bond framework of the

hydrate. The effects of such asymmetry tend to get averaged away as more layers of water

moieties are included in the larger hydrate domains. In any case, the single-H2 results

indicate that the j = 0 approximation that we have made in the (H2)2 calculations causes

convergence errors of small and acceptable magnitude.

Finally, we note that the magnitudes of the HH-frequency shifts in Table II are signif-

icantly less than those that we have computed (∼ −42 cm−1) for H2 in the small hydrate

cage.47 This is in keeping with the relative ground-state energies in the two cases (the small-

cage H2 ground state is stabilized by approximately 200 cm−1 more than the large-cage

one relative to monomer H2), and the fact that the redshift of the stretch fundamental

tracks with ground-state stabilization. Indeed, the ratio of redshifts for the two cases closely
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matches the ratio of the ground-state stabilization energies.

B. (H2)2 in the large hydrate cage

Table III lists results from the diagonalization of Ĥ for the j = 0, (p-H2)2 system for

two 8D bases whose dimensions differ by a factor of ten – one corresponding to Ninter = 2

(the two lowest-energy states in Table I), and Ntot = 128, and the other to Ninter = 20 (all

the states in Table I), and Ntot = 1280, – and for the three different hydrate domains. The

results pertain to the ground-state (|ψ0〉) of the encaged (H2)2 and to its two interchange-

symmetry-allowed v1 + v2 = 1 intramolecular excited vibrational states (|ψνa〉 and |ψνb〉,

respectively). From the Table one notes first that there is remarkably little difference between

the results, intramolecular stretch fundamentals and frequency shifts, obtained for the small

basis (Ntot = 128) and the corresponding ones for the large basis (Ntot = 1280). Thus, the

computed values appear to be very well converged. Moreover, this is strong evidence that

the low-energy intermolecular excitations of the confined (H2)2 cluster are not appreciably

affected by the intramolecular excitations of the H2 moieties.

In this regard it is instructive to examine the intermolecular basis-state composition of

the pertinent 8D eigenfunctions computed by using the Ninter = 20 6D intermolecular basis.

To do so we calculate for 8D eigenstate |ψn〉 the quantities

Pκ(ψn) ≡
∑
γ1,γ2

|〈κ, γ1, γ2|ψn〉|2 (16)

For |ψ0〉, the only 6D intermolecular state that contributes appreciably is |0+〉, and P0+(ψ0) =

0.9986. For the intramolecular stretch fundamental states, |ψνa〉 and |ψνb〉, just two lowest-

energy 6D intermolecular states in Table I – |0+〉 and |0−〉 – dominate in their contributions

and P0+(ψνa/b)+P0−(ψνa/b) = 0.996. The implications of this are two-fold: (1) The remaining

nine higher-energy even/odd intermolecular eigenfunction pairs in Table I mix negligibly

with |ψνa〉 and |ψνb〉. (2) The 8D basis that we have used very efficiently overlaps the 8D

eigenstates that have small degrees of intermolecular excitation.

These observations help explain a most striking result of this study, that converged values

of the intramolecular stretch fundamentals of the caged (p-H2)2 are obtained already with

the smallest 6D intermolecular basis (Ninter = 2), and Ntot = 128, which is incapable of

describing any excited intermolecular vibrational states of (p-H2)2. Even the largest inter-
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molecular basis employed, with Ninter = 20, extends to only ∼ 64 cm−1 above the ground

state, which is far below the energies of the (p-H2)2 intramolecular stretch fundamentals,

around 4100 cm−1. At this energy, the density of the intermolecular vibrational states in

the v1 + v2 = 0 (ground-state) intramolecular vibrational manifold of (p-H2)2 must be very

high, but their coupling to the intramolecular vibrational excitations is negligible, so that

leaving them out of the treatment has no effect whatsoever on the calculated intramolecular

stretch fundamentals. This is fully in line with the findings of our theoretical studies of H2

in the small cage of sII hydrate47 and (HF)2.
48 For both systems, accurate intramolecular

vibrational fundamentals (and overtones for HF dimer) were obtained although the highest-

energy intermolecular vibrational levels computed lay thousands of wave numbers below the

intramolecular vibrational excitations of interest.47,48

One also sees from Table III that there are clear trends in respect to the computed

energies as a function of clathrate domain: Both the ground-state energy and the vibrational

fundamental frequencies decrease as NH2O increases. These trends match those referred to

above in conjunction with the single-H2 results in Sec. IV A.

Lastly from Table III, one notes that the calculated fundamental frequencies are close to

that of the measured Raman band23 assigned to the intramolecular fundamental of (p-H2)2

in the large cage of the sII hydrate. The redshift of −23.64 cm−1 computed for the hydrate

domain with 98 H2O molecules is only ≈8% smaller by magnitude than the measured value23

of −25.7 cm−1. While such quantitative agreement may be somewhat fortuitous, it is also

notable that two important qualitative features of the experimental results are reproduced

by the calculated ones. First, the computed νa/νb splitting is small (∼ 0.5 cm−1) and is thus

consistent with the fact that only a single (p-H2)2 Raman band has been observed in the

experimental study. Second, the observed trend of decreasing (by magnitude) redshift of

the H2 stretch fundamental in going from H2@small cage to (H2)2@large cage is accurately

reproduced by the present calculations together with those from our previous work.47

It is of some interest to get a more complete picture of the nature of the |ψνa〉 and |ψνb〉

intramolecular excitations than is available from their energies alone. In particular, are the

excitations local within the dimer or delocalized? Equivalently, what portion of the νa/νb

splitting is due to site splitting as opposed to excitation exchange? We have addressed

these questions by computing the center-of-mass probability density corresponding to the

vibrationally excited H2 moiety in both the |ψνa〉 and the |ψνb〉 states. To do this, we
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projected out of each 8D eigenstate |ψνx〉, x = a, b, the 6D function

|ψ(v1,v2)
νx 〉 ≡

∑
κ

|κ〉
[∑
γ1,γ2

〈v1, v2|γ1, γ2〉〈κ, γ1, γ2|ψνx〉
]

=
∑
κ

|κ〉〈κ, v1, v2|ψνx〉 (17)

where |v1, v2〉 corresponds to an intramolecular excitation in which H2 moiety #1 has vi-

brational quantum number v1 and H2 moiety #2 has vibrational quantum number v2. The

〈v1, v2|γ1, γ2〉 were obtained by solving for the free H2-monomer vibrational states |vi〉 in the

|γi〉 basis. We then computed the single-particle c.m. PD

ρ(1,0)νx (R1) =

∫
|〈R1,R2|ψ(1,0)

νx 〉|
2dR2. (18)

This PD gives for each state the distribution in space of v = 1-excited H2 #1 for all possible

positions of v = 0-excited H2 #2. (Given H2-interchange symmetry the same functional

form applies to the PD of v = 1-excited H2 #2 for all possible positions of v = 0-excited H2

#1 – i.e., ρ
(0,1)
νx (R2).)

Table IV gives the dominant coefficients 〈κ, 1, 0|ψνx〉 and 〈κ, 0, 1|ψνx〉 in Eq. (17) com-

puted for x = a/b for the Ninter = 20 basis. From the sum of squares of these values (the

right-most column of Table IV) it is clear that the two eigenstates correspond overwhelm-

ingly to v1 + v2 = 1 intramolecular excitations, as assigned. Calculation of ρ
(1,0)
νx (R1) for the

two states from such coefficients yields the plots shown in Fig. 2. The striking feature of

these plots is the marked degree of spatial localization associated with each intramolecular

excitation. Further, if one compares these PDs with the ground state PD, ρ
(0,0)
ν0 (R1), which

is essentially ρ0+(R1) of Fig. 1(a), one sees that the “excitation locale” for |ψνa〉 matches

one of the high-density regions found for |ψ0〉, whereas that for |ψνb〉 matches the other such

ground-state region. One concludes that, for the PES we have employed, the splitting of the

intramolecular vibrational fundamentals in the encaged (H2)2 is dominated by effects due

to inequivalent H2 sites within the clathrate cage.

C. First-order perturbation theory treatment is accurate for caged (H2)2

Given the results in Table IV, it is pertinent to make one last point in closing this section.

Namely, if we were to choose an 8D basis consisting of just the four “zeroth-order” states,

|κ, v1, v2〉 = |0±, 1, 0〉 and |0±, 0, 1〉, and diagonalize Ĥ in that basis, we would capture the

bulk of the eigenvector content of both intramolecular vibrational fundamentals |ψνa〉 and
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|ψνb〉. Similarly, the character of the 8D ground state is almost entirely captured by a

single state in the |κ, v1, v2〉 basis: |〈0+, 0, 0|ψ0〉|2 = 0.9984. The upshot is that computing

the energies of these states, and hence the intramolecular stretch fundamental frequencies,

would seem to fall well within the reach of first-order perturbation theory (PT). We have

tested this as follows. We take the unperturbed Hamiltonian to be

Ĥ0 ≡ Ĥinter − 2VHH(r̄) +
2∑
i=1

(
− 1

2µ

∂2

∂r2i
+ VHH(ri)

)
. (19)

This has |0+, 0, 0〉, |0±, 1, 0〉 and |0±, 0, 1〉 as eigenstates. The perturbation then is

Ĥ ′ = ∆VH2H2(R12, r1, r2; r̄) +
2∑
i=1

(
V

(4D)
H2−domain(Ri, ri)− V (4D)

H2−domain(Ri, r̄)

)
. (20)

We then compute (a) the ground-state energy by means of nondegenerate first-order PT

and (b) the energies of the |ψνx〉 (x = a, b) vibrationally excited states by using degenerate

first-order PT. The results for all three hydrate domains are given in Table V. Comparison

with the quantum 8D results in Table III shows that while the absolute energies of the

ground state from PT are ∼ 1 cm−1 higher, the frequencies of the intramolecular stretch

fundamentals from the PT and variational approaches are nearly identical. These results on

(H2)2 suggest that analogous implementations of perturbation theory might well be a viable

way forward in respect to the even more challenging problem of computing the intramolecular

vibrational fundamentals23 of (H2)3 and (H2)4 clusters in the large cage of sII clathrate.

V. CONCLUSIONS

We have performed fully coupled quantum 8D calculations of the intramolecular stretch-

ing fundamentals of (p-H2)2 confined inside the large cage of sII clathrate hydrate. The

calculations assume rotationless (j = 0) H2 moieties and a rigid clathrate hydrate frame-

work. The (H2)2-hydrate interaction potential employed is constructed in a pairwise-additive

fashion by combining the ab initio H2-H2O pair potential47 for flexible H2 and rigid H2O

and the 6D H2-H2 potential energy surface.49 The quantum 8D calculations are performed

for three clathrate hydrate domains of increasing size, with the number of water molecules

in them ranging from 28 to 98.

The computational methodology incorporates important elements of the full-dimensional

quantum treatment of the vibrational levels of weakly bound molecular dimers48 and the
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key insights gained from the quantum 6D calculations of the VRT levels of H2, HD, and D2

in the small cage of the sII hydrate.47 In this approach, we first solve for the eigenstates of a

reduced-dimension 6D intermolecular Hamiltonian, obtained from the full 8D Hamiltonian

by fixing the bond lengths of the two H2 moietes. An 8D (partially) contracted product basis

for the solution of the full problem is then constructed from a small number of the lowest-

energy 6D intermolecular eigenstates and two DVRs covering the H2-monomer internuclear

distances.

The approximation of treating the H2 moieties as rotationless (j = 0) is validated in

part by performing quantum 6D calculations of the intramolecular stretch fundamental for

a single p-H2 in the large sII hydrate cage for a rotationless (jmax = 0) basis and also for

the basis that allows for the H2 rotation (jmax = 4). We find that differences between the

jmax = 0 and jmax = 4 results, small to begin with, decrease further with the increase

of the number of H2O molecules in the domains. For the largest hydrate domain, the H2

vibrational fundamental changes by just −0.7 cm−1 in going from the small (jmax = 0) to

the large (jmax = 4) basis.

For the (H2)2 system the two intramolecular fundamentals are computed to be site-

split by about 0.5 cm−1 and to be red-shifted from the free-monomer stretch frequency by

−23.64 cm−1 (for the hydrate domain with 98 H2O molecules), only ≈8% less than the

value of −25.7 cm−1 observed experimentally.23 The agreement is excellent, given that the

treatment involves no adjustable parameters. Remarkably, an 8D basis as small as 128

functions, that includes just the two lowest-energy 6D intermolecular eigenstates, is found

to be sufficient to achieve convergence of the fundamental frequencies to within about 0.1

cm−1. In addition, we find that first-order perturbation theory, based on 8D zeroth-order

states consisting of products of intermolecular eigenstates and free-monomer vibrational

eigenstates, produces results for the fundamental intramolecular frequencies of (H2)2 that

match the variational results to within a few tenths of cm−1. The work thus provides reasons

to believe that accurate calculations of intramolecular vibrational frequencies in inclusion

compounds (clathrate hydrates, MOFs, and others) containing more than two H2 moieties

may now be within reach. What also remains to be explored in the future is the role

of non-additive, three-body H2-H2O-H2O interactions, missing from the pairwise-additive

interaction potential employed in this study.

Looking head, our recent accurate quantum calculations for a single p-H2 in the small cage
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of sII clathrate hydrate47 and (HF)2,
48 as well as the ones for (p-H2)2 presented in this paper,

allow us to draw conclusions that, we believe, have important implications for a much broader

range of weakly bound molecular clusters. What these three systems, quite different in their

nature, have in common is that they possess both high-energy intramolecular stretching

vibrational mode(s), those of H2 or HF, whose fundamentals happen to lie around 4000 cm−1,

and intermolecular vibrations with frequencies that are at least an order of magnitude lower.

As a result, the intramolecular vibrational fundamentals are embedded in the dense set of

highly excited intermolecular vibrational states belonging to the intramolecular ground-state

manifold. The widely held view has been that all these high-lying intermolecular eigenstates

have to be converged in order to obtain accurate intramolecular excitations, which would

pose a formidable, nearly intractable computational problem.

However, our previous47,48 and present calculations have demonstrated that this assump-

tion is incorrect for the three systems considered. Converged intramolecular stretch funda-

mentals (and overtones in the case of the HF dimer48), have been obtained by means of fully

coupled quantum calculations that converged only a small number of low-lying intermolec-

ular vibrational eigenstates in the intramolecular ground-state manifold with the energies

several thousand wave numbers below those of the intramolecular vibrational fundamentals

and overtones. The density of highly excited intermolecular vibrational states in the vicinity

of the intramolecular excitations must be high. The fact that not including any of them in

the calculations has a negligible effect on the accuracy with which the intramolecular funda-

mentals and overtones are computed, can be explained only by the extremely weak coupling

between the intra- and intermolecular vibrational DOFs of the systems. This greatly reduces,

by order(s) of magnitude, the total size of the basis set required, and the computational effort

involved. The large disparity between the energies of the intra- and intermolecular vibra-

tional modes, and hence their weak coupling, present in hydrogen clathrate hydrates and

(HF)2, is a general feature of weakly bound, hydrogen-bonded and vdW molecular clusters.

This suggests that the computational approach developed in this study and in our earlier

papers47,48 has a wide scope of applicability, and will allow computing accurate intramolec-

ular vibrational eigenstates, and the low-energy intermolecular vibrational states associated

with them, of many weakly bound molecular dimers, and perhaps trimers as well, that would

otherwise be beyond reach of rigorous quantum treatments.
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18D. Colognesi, M. Celli, L. Ulivi, M. Xu and Z. Bačić, J. Phys. Chem. A 117, 7314 (2013).
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45A. Sarsa, Z. Bačić, J. W. Moskowitz and K. E. Schmidt, Phys. Rev. Lett. 88, 123401

(2002).

46H. -S. Lee, J. M. Herbert and A. B. McCoy, J. Chem. Phys. 110, 5481 (1999).

47D. Lauvergnat, P. Felker, Y. Scribano, D. M. Benoit and Z. Bačić, J. Chem. Phys. 150,
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TABLE I. Properties of the low-energy eigenstates of Ĥinter for the sII clathrate hydrate domain

with NH2O = 98. (Energies in cm−1 and distances in bohr.)

κ± ∆Ea X̄b (∆X)c Ȳ (∆Y ) Z̄( ∆Z) R̄12 (∆R12)
d

0+ 0.000 −0.026 (0.648) −0.335 (0.407) 0.045 (0.533) 6.155 (0.573)

0− 0.000 −0.026 (0.648) −0.335 (0.407) 0.045 (0.533) 6.155 (0.573)

1+ 10.361 0.465 (0.731) −0.311 (0.408) −0.096 (0.501) 6.121 (0.562)

1− 10.361 0.465 (0.731) −0.311 (0.408) −0.096 (0.501) 6.121 (0.562)

2+ 22.268 0.376 (0.561) −0.197 (0.372) 0.761 (0.610) 6.016 (0.549)

2− 22.267 0.376 (0.561) −0.197 (0.372) 0.761 (0.610) 6.016 (0.549)

3+ 42.034 0.054 (0.677) −0.328 (0.407) 0.400 (0.650) 6.102 (0.571)

3− 42.036 0.054 (0.677) −0.328 (0.407) 0.399 (0.650) 6.102 (0.571)

4+ 47.833 0.325 (0.639) −0.254 (0.424) 0.294 (0.614) 6.074 (0.554)

4− 47.847 0.325 (0.639) −0.254 (0.423) 0.295 (0.614) 6.074 (0.554)

5+ 53.822 0.536 (0.594) −0.188 (0.423) 0.173 (0.632) 6.045 (0.550)

5− 53.833 0.535 (0.594) −0.187 (0.423) 0.172 (0.632) 6.045 (0.550)

6+ 55.512 0.298 (0.714) −0.201 (0.415) −0.027 (0.582) 6.095 (0.561)

6− 55.501 0.320 (0.703) −0.199 (0.414) −0.017 (0.602) 6.090 (0.561)

7+ 55.679 −0.008 (0.675) −0.160 (0.479) 0.117 (0.649) 6.095 (0.568)

7− 55.654 −0.027 (0.676) −0.161 (0.481) 0.107 (0.631) 6.099 (0.568)

8+ 61.361 0.319 (0.706) −0.198 (0.465) 0.204 (0.680) 6.079 (0.562)

8− 61.350 0.320 (0.705) −0.197 (0.465) 0.204 (0.679) 6.078 (0.562)

9+ 63.695 0.104 (0.734) −0.207 (0.447) 0.109 (0.786) 6.070 (0.561)

9− 63.685 0.100 (0.734) −0.208 (0.447) 0.107 (0.785) 6.070 (0.561)

a Relative to E0 = −1028.736 cm−1.

b X̄, Ȳ , and Z̄ are expectation values of the cartesian components of (R1 + R2)/2.

c ∆X ≡
√
X̄2 − (X̄)2 with analogous definitions for ∆Y and ∆Z.

d R̄12 is the expectation value of R12. ∆R12 ≡
√
R̄2

12 − (R̄12)2.
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TABLE II. Quantum 6D frequencies ν (in cm−1) of the intramolecular stretch fundamental (v = 1)

of a single p-H2 inside the large cage within three sII hydrate domains having different numbers of

H2O molecules (NH2O). Also shown are their respective frequency shifts ∆ν relative to the free-H2

stretch fundamental. E0 (in cm−1) denotes the ground-state energy of H2 in the given domain from

the quantum 6D calculations, relative to that of the free H2 monomer, computed for each of the

three domains. Two values are displayed for every ν and ∆ν, as well as E0, the first corresponding

to the jmax = 0 basis, and the second to jmax = 4. For additional explanations, see the text.

NH2O 28 44 98

E0 −517.6,−523.8 −535.0,−539.1 −562.2,−563.7

ν 4134.7, 4132.7 4133.9, 4132.5 4133.1, 4132.4

∆ν −26.5,−28.5 −27.3,−28.7 −28.1,−28.8
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TABLE III. Energies (in cm−1) from the quantum 8D calculations (jmax = 0 basis), for the ground

state E0 (relative to that of two free H2 monomers) and the two v1 + v2 = 1 intramolecular

stretching excited states νa and νb of (p-H2)2 inside the large cage within three sII hydrate domains

having different numbers of H2O molecules (NH2O). νa and νb denote the low- and high-energy

intramolecular stretch fundamentals, respectively, while ∆ν is the shift of the average of νa and

νb from the stretch fundamental of the free H2 monomer. For all computed quantities, the values

shown in parentheses correspond to Ninter = 2, and all others to Ninter = 20. The measured value

of intramolecular stretch fundamental for (H2)2 in the large sII hydrate cage is from Ref. 23; νa/b

are not resolved experimentally. For additional explanations, see the text.

NH2O 28 44 98 Exp.

E0 −961.74 (−961.72) −999.45 (−999.42) −1056.17 (−1056.15)

νa 4139.24 (4139.28) 4138.26 (4138.31) 4137.34 (4137.39) 4135.5

νb 4139.77 (4139.87) 4138.82 (4138.92) 4137.79 (4137.89) —

∆ν −21.70 (−21.63) −22.66 (−22.59) −23.64 (−23.56) −25.7
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TABLE IV. Dominant values of 〈κ, v1, v2|ψνx〉 for x = a and b. For additional information see Eq.

(17) in the text.

x 〈0+, 1, 0|ψνx〉 〈0+, 0, 1|ψνx〉 〈0−, 1, 0|ψνx〉 〈0−, 0, 1|ψνx〉 Sum of Squares

a 0.5844 0.5844 0.3952 −0.3952 0.9955

b −0.3941 −0.3941 0.5840 −0.5840 0.9927
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TABLE V. First-order perturbation theory energies (in cm−1), for the ground state E0 (relative

to that of two free H2 monomers) and the two v1 + v2 = 1 intramolecular stretching excited

states νa and νb of (p-H2)2 inside the large cage within three sII hydrate domains having different

numbers of H2O molecules (NH2O). νa and νb denote the low- and high-energy intramolecular

stretch fundamentals, respectively, while ∆ν is the shift of the average of νa and νb from the

stretch fundamental of the free H2 monomer. The values shown in parentheses are from Table III,

resulting from the quantum 8D calculations with Ninter = 20. The experimental value of ∆ν for

(H2)2 in the large sII hydrate cage is from Ref. 23. For additional explanations, see the text.

NH2O 28 44 98 Exp.

E0 −960.88 (−961.74) −998.52 (−999.45) −1054.78 (−1056.17)

νa 4139.33 (4139.24) 4138.36 (4138.26) 4137.44 (4137.34)

νb 4139.90 (4139.77) 4138.95 (4138.82) 4137.92 (4137.79)

∆ν −21.59 (−21.70) −22.55 (−22.66) −23.52 (−23.64) −25.7
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(a) (b)

(c)(d)

FIG. 1. Single-H2 center-of-mass probability densities for the intermolecular eigenfunctions (a)

|0+〉, (b) |2+〉, (c) |4+〉, and (d) |9+〉.
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FIG. 2. Single-H2 center-of-mass probability densities corresponding to the vibrationally excited

H2 moiety in the eigenstates (a) |ψνa〉 and (b) |ψνb〉.
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