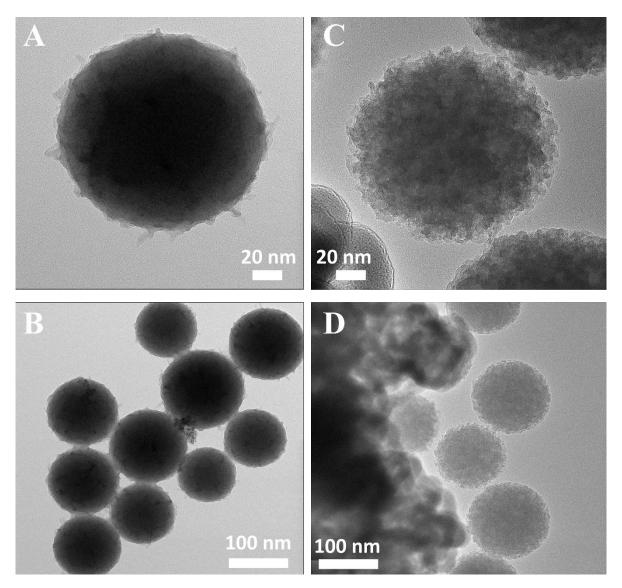
Supporting Information:

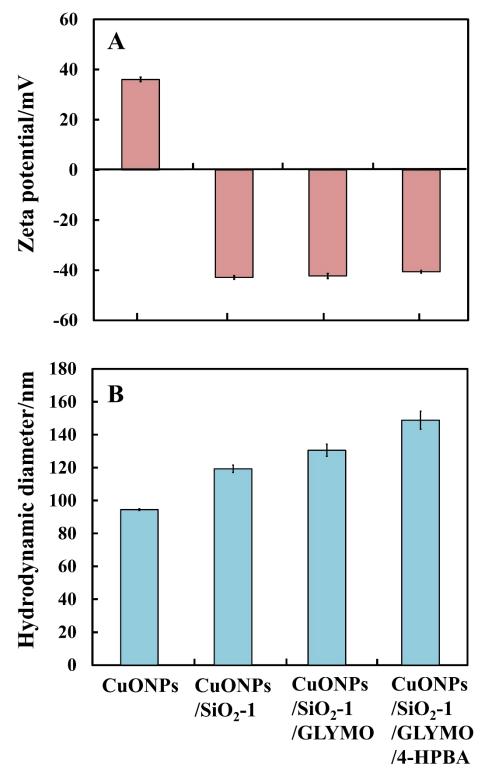
'Ghost' Silica Nanoparticles of 'Host'-Inherited Antibacterial Action

Ahmed F. Halbus,^{*a,b*} Tommy S. Horozov,^{*a*} Vesselin N. Paunov*^{*a*}


^a Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK.
^b Department of Chemistry, College of Science, University of Babylon, Hilla, IRAQ.
* Corresponding author contact details: Phone: +44(0)1482 465660, Fax: +44(0) 1482 466410; Email: v.n.paunov@hull.ac.uk

(ACS Applied Materials and Interfaces 2019)

Contents


TEM images of SiO ₂ -coated CuONPs and a surface-rough SiO ₂ NPs-23
The zeta potential and particle size of surface functionalized CuONPs by
SiO ₂ , GLYMO and 4-HPBA4
The zeta potential and particle size of surface functionalized rough SiO ₂ NPs-
2
Antibacterial activity of surface functionalized rough SiO_2NPs-2 on R .
rhodochrous
Antibacterial activity of free GLYMO and 4-HPBA7
HaCaT cell viability after incubation as a function of nanoparticle
concentration8
Antibacterial activity of surface functionalized rough SiO ₂ NPs and smooth
SiO ₂ NPs on <i>E.coli</i>

TEM images of SiO₂-coated CuONPs and a surface-rough SiO₂NPs-2.

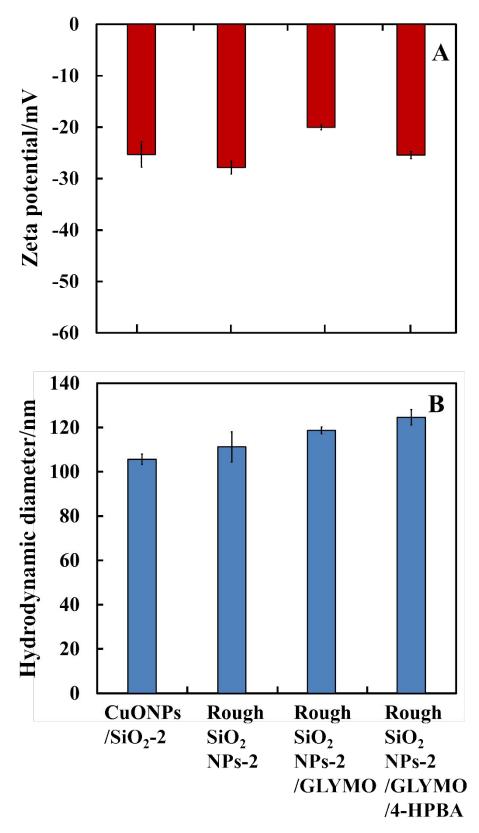


Figure S1. TEM images of (A and B) SiO₂-coated CuONPs producing a surface-rough SiO₂NPs-2 and (C and D) mesoporous ghost SiO₂NPs-2 at different magnifications.

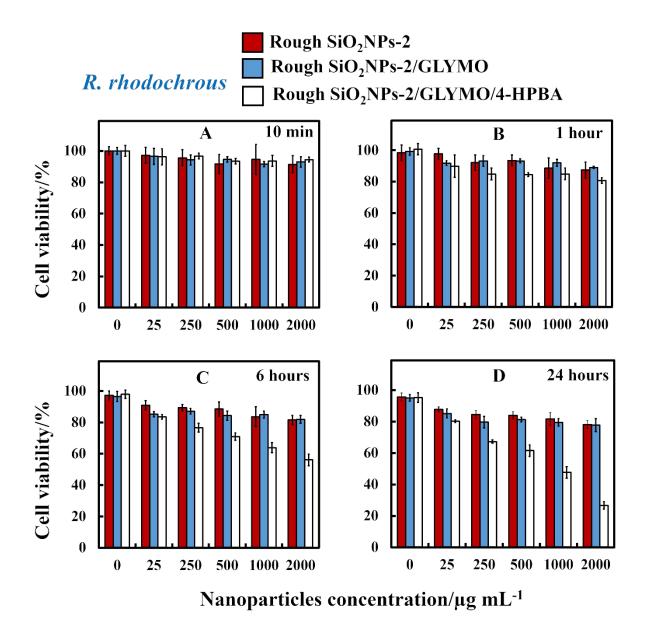
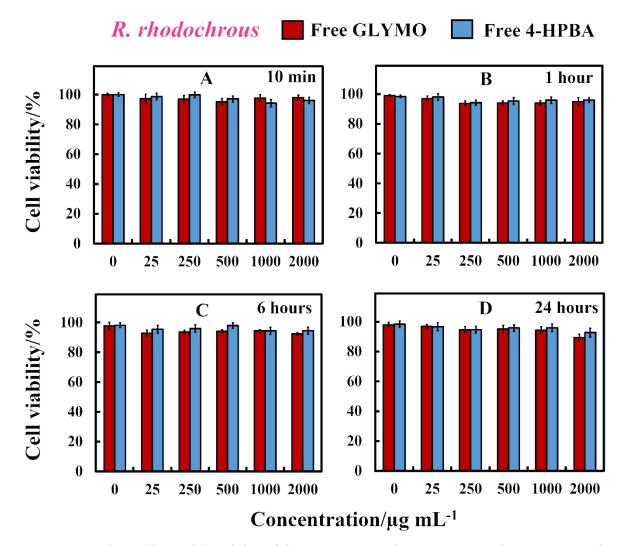
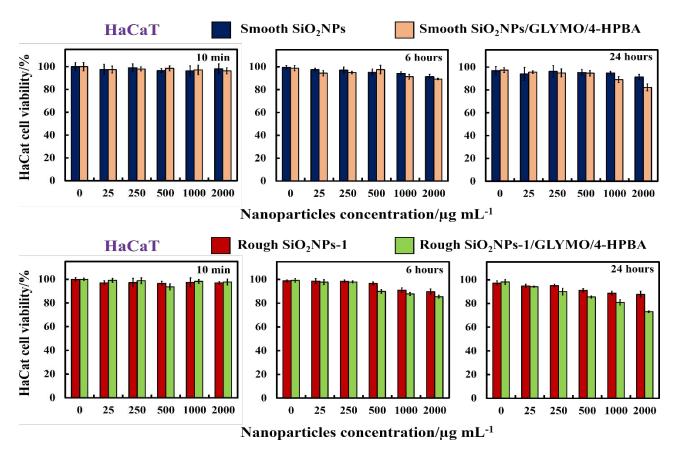

The zeta potential and particle size of surface functionalized CuONPs by SiO₂, GLYMO and 4-HPBA.

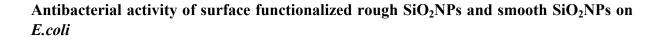
Figure S2. The (A) zeta potential and (B) particle size of bare CuONPs, CuONPs/SiO₂, CuONPs/SiO₂/GLYMO and CuONPs/SiO₂/GLYMO/4-HPBA.

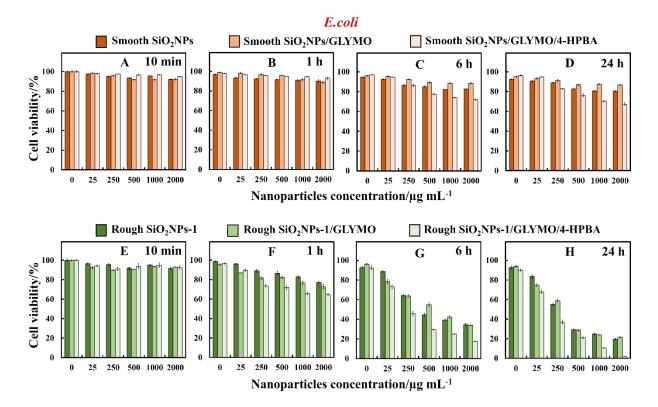

Figure S3. The (A) zeta potential and (B) particle size of CuONPs/SiO₂-2, rough SiO₂NPs-2, rough SiO₂NPs-2/GLYMO and rough SiO₂NPs-2/GLYMO/4-HPBA.


Figure S4. Representative the cell viability of *R. rhodochrous* upon incubation of bare and surface functionalized of rough SiO₂NPs-2 of different particle concentrations. The *R. rhodochrous* cells were incubated with the rough SiO₂NPs-2, rough SiO₂NPs-2/GLYMO and rough SiO₂NPs-2/GLYMO/4-HPBA at 10 min, 1 hour, 6 hours and 24 hours of exposure times.

Antibacterial activity of free GLYMO and 4-HPBA.

Figure S5 shows the cytotoxicity assay of the free GLYMO and 4-HPBA on *R. rhodochrous* for up to 24 hours of exposure. Antibacterial activity experiments were done at the varying overall GLYMO and 4-HPBA concentration and different incubation times. One can see a very small effect on the presence of free GLYMO on the *R. rhodochrous* viability over a period of up to 24 hours (Figure S5D). One can conclude that the free GLYMO and 4-HPBA does not measurably impact the *R. rhodochrous* viability up to 2000 μ g mL⁻¹. Note that in our rough SiO₂NPs/GLYMO/HPBA nanoparticles there is not ant free HPBA and free GLYMO as the particles have undergo multiple washing/centrifugation cycles after their surface functionalization. However, at these concentrations of the HPBA- grafted on rough SiO₂NPs, the effect of the rough SiO₂NPs on *R. rhodochrous* is very significant – see Figure 11. Therefore, one may conclude that the HPBA- grafted rough SiO₂NPs shows excellent antibacterial with this bacteria which is not related to free HPBA.




Figure S5. The antibacterial activity of free GLYMO and 4-HPBA at various concentrations (0, 25, 250, 500, 1000 and 2000 μ g mL⁻¹) on *R. rhodochrous*. The *R. rhodochrous* was incubated with the GLYMO and 4-HPBA at 10 min, 1 h, 6 h and 24 h of exposure before being washed and tested for their cell viability.

HaCaT cell viability after incubation as a function of nanoparticle concentration

Figure S6. HaCaT cell viability after incubation as a function of nanoparticle concentration for up to 24 hours at with bare and surface functionalized SiO₂NPs with GLYMO and 4-HPBA.

Figure S7. Cell viability of *E.coli* as a function of the nanoparticle concentration with (A-D) smooth SiO_2NPs , $SiO_2NPs/GLYMO$ and $SiO_2NPs/GLYMO/4$ -HPBA. (E-H) Cell viability of *E.coli* upon incubation of bare and surface functionalized of rough SiO_2NPs of different particle concentrations. The incubation times were (A,E) 10 min, (B,F) 1 h, (C,G) 6 h and (D, H) 24 h, respectively.