European Journal of Wildlife Research
https://doi.org/10.1007/510344-019-1318-y

SHORT COMMUNICATION

Improving daytime detection of deer for surveillance

and management

Thomas W. Logan' - Adham Ashton-Butt - Alastair I. Ward '

Received: 1 April 2019 /Revised: 29 July 2019 / Accepted: 26 August 2019
© The Author(s) 2019

Abstract

®
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updates

Maximising the detection of a target species reduces the uncertainty of survey results and can improve management outcomes.
Deer (Cervidae) populations are managed worldwide due to their impacts on anthropocentric interests. In the UK, deer can only
lawfully be shot during the daytime, from 1 h before sunrise to 1 h after sunset, when deer activity is at its lowest. We evaluated
performance of a thermal imager relative to binoculars for their ability to detect deer during the daytime and at twilight (1 h either
side of dawn and dusk). Transect surveys on Thorne Moors, UK, revealed that more roe and red deer were observed using a
thermal imager than when using binoculars. More deer in much larger groups were observed at twilight than during the other
daylight hours. Variation in animal detectability at different times of the day must be considered during wildlife surveys if their
outputs are to be as accurate and precise as possible. The results support the continued focus of deer culling efforts during the
hours of twilight. They also highlight the potential utility of thermal imagers for maximising detection probability at twilight.
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Introduction

Accurate estimates of animal occupancy and population size
depend on high detection probability (MacKenzie et al. 2002;
Field et al. 2007; Petrovan et al. 2011), yet many wildlife
surveys suffer low detection rates (Legg and Nagy 2006),
leading to elevated uncertainty (Nichols 2019). Detection
can be impacted by animal behaviour; animals that are crepus-
cular or nocturnal can be more difficult to detect than those
active during the daytime (Jiang et al. 2008). Consequently,
technology, including artificial light, night vision, and thermal
imagery, has been employed to improve the detection of wild
animals at night, (Gill et al. 1997; Allison and Destefano
2006), resulting in significant improvements in the accuracy
and precision of population estimates derived from field sur-
veys (Smart et al. 2004). However, daytime surveys have been
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used (Fragoso et al. 2016) and even advocated by some re-
searchers (Vincent et al. 1991; Trenkel et al. 1997), and in our
experience, such surveys are often preferred by land man-
agers. Nevertheless, the relative performance of technologi-
cally supported surveys during the hours of daylight and the
hours of darkness has not, to our knowledge, been evaluated.
Much of the focus of surveys for wild deer (Cervidae) has
been to support their management (Smart et al. 2004). Deer
populations are often culled to control their impacts on anthro-
pocentric interests (Putman and Moore 1998). Thermal imagery
has been used extensively to survey wild deer at night (Gill et al.
1997; Focardi et al. 2001; Wiber et al. 2013) since hunted pop-
ulations tend to be crepuscular or nocturnal (Beier and
McCullough 1990; Meng et al. 2002). However, its use for man-
agement by most hunters has only recently become feasible due
to declining costs and improving functionality. Nevertheless,
costs of hand-held thermal imagers suitable for hunting are cur-
rently comparable to the costs of high-end rifle telescopic sights,
so substantial enhancement of deer detection, leading to im-
proved culling efficiency, is required to justify the investment.
Across much of Europe deer may be hunted at night (Putman
etal. 2011a), but in the UK, primary legislation limits their lawful
shooting to the daytime only. The Deer Act 1991 requires that no
deer may be shot between 1 h after sunset until 1 h before sunrise.
To control or reverse the continuing growth and spread of British
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deer populations (Ward 2005; Mathews et al. 2018) and hence
their impacts on anthropocentric interests, deer managers may
benefit from enhanced deer detection rates during the daytime.
We sought to identify times of day when deer detection
rates were at their highest and compared the daytime deer
detection performance of a thermal imager with the more
traditional use of binoculars so that researchers and man-
agers alike can make informed choices about technologi-
cal aids and times of day when planning deer surveys.

Materials and methods

Transect surveys for red deer (Cervus elaphus) and roe deer
(Capreolus capreolus) took place on Thorne Moors, UK
(53.636654, —0.898764) from 21 February 2018 to 14
March 2018 between the hours of 05.00 and 19.00. The site is
a National Nature Reserve of approximately 19 km?, managed for
its nationally and seasonally important populations of water birds,
but with significant areas of scrub and deciduous woodland.
Transects were approximately 500 m in length, with at least
1 km between the end of one and the start of the next to avoid
double-counting deer fleeing between transects and hence to
avoid pseudo-replication (Focardi et al. 2002). Each transect
was surveyed on foot eight times; twice with binoculars (10 x

Red group

50 magnification, SkyGenius, Massachusetts, USA) and twice
with the thermal imager (FLIR BHS-XR, FLIR Systems, Inc.,
OR, USA) during each of the hours of daylight (between sunrise
and sunset) and at twilight (the hour before sunrise and after
sunset). The thermal imager was chosen since it is an older model
with a lower specification than many more recent products, but
which nevertheless had a sensitivity of 30 mK. The choice to
start a survey with binoculars or thermal imager was decided by a
coin toss, with the subsequent survey of the same transect con-
ducted with the other detection method. A period of at least 24 h
was maintained between surveys of the same transect. Data col-
lected were species, number of groups detected, number of ani-
mals per group, and time of day.

To compare the detection of deer between detection methods
(I =binoculars and 2 = thermal imager) and time of day (either
as a covariate: the absolute number of hours from 07.00 or the
signed number of hours from 07.00, or as a binary factor: 1=
daylight and 2 =twilight), general linear mixed models
(GLMMs) with a Poisson distribution and a log link function
were fitted to the count data (Zuur et al. 2007) using R package
“Ime4” (Bates et al. 2014). Separate models were built for each
deer species when detections were summarised as the number of
deer groups per transect and number of individuals per transect.
‘Transect’ and ‘date sampled’ were fitted as random effects and
‘detection method’ and ‘time of day’ as fixed effects, including
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Fig. 1 Number of deer detection events per transect, for groups of red and roe deer and total individuals, using binoculars and thermal imaging cameras.

Mean values are in red with bars showing the standard deviation
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(Mitchell et al. 1977) caused the lack of difference in the
number of red deer groups detected despite the higher number
of individual deer observed at twilight. Red deer simply
formed fewer, larger groups at twilight. Differences in behav-
iour and hence detectability at different times of day have
important implications for wildlife surveys since high detect-
ability is required for accurate estimates of a species’ occur-
rence and population size (MacKenzie et al. 2002; Nichols
2019). Moreover, users of the results of wildlife surveys
should also consider the consequences of these sources of
variability in detection. Increasingly, researchers seeking to
estimate wildlife distribution and abundance patterns use third
party data, often produced during surveys undertaken by am-
ateur surveyors (Horns et al. 2018; Massimino et al. 2018).
Surveys that are not designed to account for, or take advantage
of, variation in detectability within and between species risk
mis-estimating species occurrence and abundance, with errors
being perpetuated or amplified in modelled outputs (Legg and
Nagy 2006).

In countries where the shooting of wildlife at night is
lawful and considered acceptable by society (see Putman
et al. 2011a), thermal imagers offer the clear advantage of
detecting animals while the observer remains concealed by
darkness. However, even in more restrictive countries such
as the UK, thermal imagers offer tactical advantages over
binoculars. We have demonstrated that during twilight,
when deer can lawfully be shot, the number of deer and
roe deer groups detected was significantly higher using the
thermal imager. In a management context, this could trans-
late as more shooting opportunities per day, or a higher
probability of at least one successful shooting opportunity
per day. While it is illegal to use thermal imaging telescop-
ic rifle sights to shoot deer in the UK, a hand-held thermal
imager can lawfully be used at any time of the day or
night. It is thus conceivable that thermal surveillance of
land for deer during the hours immediately before they
can lawfully be shot could inform the deer manager on
whether they should remain in position to await twilight
or should move to a different location where deer are de-
tected. Either way, thermal imagers offer significant poten-
tial for improving the culling efficiency of deer popula-
tions, at a time when their distributions and abundances
(Mathews et al. 2018) and hence probably their impacts
too (Putman et al. 2011b) have never been greater.
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