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ABSTRACT 

Two different methodologies for hydraulic head simulation were compared in this study. The first 
methodology is a classic numerical groundwater flow simulation model, Princeton Transport Code (PTC), 
while the second one is a black-box approach that uses Artificial Neural Networks (ANNs). Both methodologies 
were implemented in the Bavaria region in Germany at thirty observation wells. When using PTC, 
meteorological and geological data are used in order to compute the simulated hydraulic head following the 
calibration of the appropriate model parameters. The ANNs use meteorological and hydrological data as input 
parameters. Different input parameters and ANN architectures were tested and the ANN with the best 
performance was compared with the PTC model simulation results. One ANN was trained for every 
observation well and the hydraulic head change was simulated on a daily time step. The performance of the 
two models was then compared based on the real field data from the study area. The cases in which one 
model outperforms the other were summarized, while the use of one instead of the other depends on the 
application and further use of the model.   

Keywords: hydraulic head change simulation, groundwater modeling, Artificial Neural Network, Princeton 
Transport Code 

 
 
1. Introduction 

 
Various models have been used in the past to simulate the behavior of aquifers. Depending on their basis, 
they can be distinguished into three major categories, geomorphological, physically based and empirical. In 
brief, geomorphological models describe the dominant processes of a watershed and offer a close 
interpretation of the real world. The purpose of physically based models is to depict the underlying physics 
of the natural system. This type of models requires extensive knowledge of the physical characteristics of the 
system at study. The last category is empirical models, a main subcategory of which is black box models. These 
models rely on observation data with long time series of simple to acquire data, such as meteorological data 
(Pechlivanidis et al., 2011). 

Among the various model types, physically-based and black box models have been setup in different 
applications. In particular, the Princeton Transport Code (PTC) from the physically-based model group and 
the Artificial Neural Networks from the empirical model group have been favored. However, both models 
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have limitations depending on the modelling objectives. PTC is a classic numerical model that can only be 
used if geological information about the study area is available. While geological data are the cornerstone of 
this kind of models, if any other data are missing, assumptions can be made and data from nearby locations 
or neighbouring water bodies can be used with caution. In addition, the calibration process is time consuming 
and requires experience (both in terms of modelling and regional process understanding). However, after the 
successful calibration of the model, various scenarios can be studied concerning the aquifer parameters and 
the water management plans. On the contrary, ANNs do not require geological information, but they need 
long time series of data linked to the aquatic equilibrium. Without long time series of even a few parameters, 
it is impossible to train an ANN to identify patterns. ANNs can easily be implemented by non-experts, yet they 
can only be used for the study of parameters used during the training process. A basic assumption is that the 
effect of parameters for which data are not available is constant. This means that when data for one 
parameter are not available, it is not possible to study its effect on the aquifer or how it can change the 
simulation results if it differentiates.  

The Princeton Transport Code (PTC) is a 3-D classical physically based numerical model which simulates the 
groundwater flow and transport of contaminants in porous media by combining the finite element and finite 
difference methods. It has been developed as a Plug-In Extension (PIE) for the ArgusOne GIS program (Babu 
et al., 1987; Olivares, 2001). PTC uses partial differential equations to represent groundwater flow described 
by hydraulic head, groundwater velocity components and contaminant transport. A detailed description of 
the characteristics and functionality of PTC was presented in Babu et al., (1987) and Pinder (2002). The main 
advantage in using numerical models is that, after being calibrated, a model can be used to simulate various 
scenarios and to study the impact of different management plans on the aquifer. On the downside, a wide 
range of data and parameter values must be available for the entire study area. The time and the expertise 
needed for the calibration of the boundary conditions is also a major drawback for this modelling technique.  

PTC, together with Argus one, has been used in the past for groundwater simulation. In a study by Aivalioti 
and Karatzas (2006), it has been used in order to assess the impact of landfill leakage in the aquifer while in 
other studies it has been also used in order to determine the optimal water management scenario reducing 
saltwater intrusion (Papadopoulou et al., 2007). Furthermore, PTC has been used in the past, together with 
optimization algorithms, in order to determine the optimal groundwater management scenario, which will 
reduce the contamination in a specific area (Karatzas et al., 2007, Mergia and Kelly, 1994). 

Artificial Neural Networks (ANNs) belong to the category of black-box models and have been proved to be an 
effective alternative to conventional groundwater modelling tool and a universal estimator (Tapoglou et al., 
2013; Trichakis et al., 2011). An ANN is a system of interconnected basic components called neurons. The way 
these neurons (nodes) connect to each other, the number of layers and the number of nodes within these 
layers define the final architecture of the network. A detailed description of the functionality of ANNs was 
presented by ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, (2000). ANNs 
can be used with the appropriate input parameters in order to simulate the aquatic equilibrium. The main 
advantage in using ANNs is that they do not require full geological characterization of the study area. On the 
other hand, they do require the use of long time series for all the data involved, which is the main 
disadvantage of this method (Haykin,1994). 

ANNs have been extensively used in the past for environmental parameter simulation (Benvenuto and 
Marani, 2000), as well as for hydrological parameter determination (Lekkas et al., 2004). In groundwater 
modelling, ANNs have been used in the past for temporal simulation of the hydraulic head (Trichakis et al., 
2009). They have also been used together with optimization algorithms in order to improve their results 
(Tapoglou et al., 2013; Trichakis et al., 2011) as well as for the spatiotemporal prediction of hydraulic head 
(Tapoglou et al., 2014; Rizzo and Dougherty, 1994). An extensive review of applications of artificial neural 
networks in water resources is presented by Maier and Dandy (2000). 
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The scope of the present study is to setup two different types of models in area around Munich in Bavaria, 
Germany, and compare the results and the general functionality. The paper is organized as follows. A 
presentation of the models and the methodology of the experiment in presented in Section 2 followed by a 
description of the case study and data is presented in Section 3. Results are presented in Section 4, and finally 
Section 5 states the conclusions of this inter-comparison experiment. 

 
2. Study area and data 

 
The two methodologies were applied to an area around Munich in Bavaria, Germany. The study area covers 
approximately 2400 km2 (Figure 1) and is dominated by Moraines and other Quaternary Pleistocene 
formations. The area has been studied on multiple occasions in the past, regarding both the quality and the 
quantity of the groundwater, due to its high significance. The hydraulic head can be characterized as medium 
to low, varying from 6.48 to 64.75 m d-1 (Bender et al., 2001; Heinrichs and Udkuft, 1999). The data available 
for this region spans a period from 1/11/2008 to 31/10/2012 (1456 days) and include daily time series of the 
hydraulic head in thirty (30) wells, the meteorological data from three weather stations (Augsburg, Munchen 
and Hohenpeibenberg), as well as the surface water elevation in two observation points (Munchen and 
Landshut Birket) across the Isar River (Figure 1). The meteorological data include series for average 
temperature, maximum and minimum daily temperature, daily snowfall, daily rainfall, wind speed and 
humidity.  

 

Figure 1. Study area (Google Maps, 2015) 

The data concerning the hydraulic head in the wells, as well as the surface water levels, were made available 
through the Bavarian State Office for Environment (Bayerische Landesamt fur Umwelt – Blfu), while the 
meteorological data were acquired from the German National Meteorological Service (Deutsche 
Wetterdienst-DWD). 

 
3. Methodology  

 

3.1. Groundwater simulation using PTC 

The first model used for the hydraulic head simulation was the PTC. PTC uses as a basis the Darcy’s law and 
the conservation of mass principles in order to simulate the groundwater flow in a study area (Babu et al., 



764  TAPOGLOU et al. 

1987). More specifically a system of partial differential equations are solved by the code, in order to describe 
the hydraulic head (Eq. 1), and the velocity components (Eq. 2).  
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where:  

h: hydraulic head [L] 

K
xx
,Kyy, Kzz : hydraulic conductivity in 𝑥, 𝑦 and 𝑧 directions [L T-1] 

S: specific storage coefficient [L-1] 

Q: source / sink term [L3 T-1] 

V
x
, V

y  , Vz
 : Darcy velocity 𝑥, 𝑦 and 𝑧 components [L T-1] 

θ: porosity (dimensionless) 

Knowledge of parameters, such as hydraulic conductivity, rainfall-infiltration and porosity is necessary for the 
solution of Eq. 1 and 2. The elevation, the permeability and any known boundary conditions in the study area 
are also used by the model. The initial conditions concerning the hydraulic head can be determined through 
the available hydraulic head data.  

In here, the simulation period is divided into three-month long stress periods. The results are presented as 
hydraulic head contour maps at the end of the stress period. Moreover the 4th stress period is used for model 
verification.  

3.2. Groundwater simulation using ANNs 

The second methodology relies on the use of ANNs for the temporal simulation of groundwater hydraulic 
head at multiple locations separately. One ANN was trained for every location and the available data. The 
ANNs were implemented in MATLAB, and in particular in the ANN toolbox and the Neural Network Fitting 
Tool (Demuth et al., 2009). The Levenberg-Marquardt method was used for training as it can provide good 
training results with low computational cost (White, 1989).  

The inputs for the ANNs were chosen by performing correlation analysis of the parameters under various time 
lags. All parameters linked to the aquatic equilibrium, such as rainfall, snowfall and surface water levels, can 
be used as inputs in the ANNs. Furthermore, the use of the hydraulic head value on the day before the one 
simulated as input parameter can improve the performance (Trichakis et al., 2009). The architecture of the 
ANNs, i.e. the number of hidden layers and nodes within them, also plays a crucial role. In order to determine 
the number of nodes and hence the number of synaptic weights between them, a rule presented by Fine 
(1999) was used, according to which the number of synaptic weights capable of been adequately trained is 
the 1/3 of the total number of available datasets. Based on this rule, two architectures were examined in this 
study, the first with one hidden layer and the second with two hidden layers. The use of more than two hidden 
layers is not recommended as it adds considerable computational cost without furtherly improving the 
training result. In this way, the hydraulic head is simulated at multiple locations. In order to allow a 
comparison of the ANN results with those from the PTC model, the results were spatially interpolated for 
every time step.  

3.3. Modelling parameters 

The components of the water balance introduced to each model were related to the needs of each model 
separately. PTC needs geological meteorological and hydrological parameters, hence the conductivity of the 
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study area, porosity, rainfall, pumping activity were used. On the other hand, ANNs use data that can affect 
the hydraulic head and do not have constant values. For this reason rainfall, temperature relative humidity, 
hours of daily sunshine and surface water elevation data were used. 

When PTC is used for the simulation of the hydraulic head, the characteristics of the study area are introduced 
to the model and the appropriate boundary conditions are manually calibrated through a trial and error 
process. The first parameter determined in the model is the hydraulic conductivity, derived by the 
hydrogeological maps of the region. Three main areas of hydraulic conductivity were identified: region 1 with 
hydraulic conductivity 64.75 m d-1, region 2 with hydraulic conductivity 6.48 m d-1, and region 3 with hydraulic 
conductivity 16.51 m d-1 (regions 1-3 are shown in Figure 2). The elevation as well as storativity and porosity 
in the study area were determined. The infiltration of the rainfall was set equal to 30% of the total 
precipitation at the Munich meteorological station and was calculated through the average daily rainfall for 
every stress period separately. Limited, not daily, pumping activity data were also available for the study area 
and were used as calibration parameters.  

In ANNs, the choice of input parameters plays a crucial role in the performance of the simulation. All 
parameters with available data, which temporally vary and are linked to the water budget, can be used as 
input parameters. However, in order to reduce the complexity of the model, parameters that have low 
correlation with the hydraulic head itself must first be tested for their ability to improve the model. The use 
of snowfall as input parameter in the ANN development was questionable, since a large part of the time series 
has zero value, providing no pattern for the ANN to learn, while at the same time adding complexity to the 
model. Moreover, the correlation between snowfall and the hydraulic head change time series was low and 
the time lags considered very large. For this reason, two cases were studied, with and without the use of 
snowfall data. The following data were chosen as input for the simulation of the hydraulic head on day k: 
rainfall (four time series for four consecutive time lags), snowfall (three time series for consecutive time lags), 
surface water level (two time series for two consecutive time lags), temperature, relative humidity, hours of 
daily sunshine and hydraulic head on day k-1. This amounts to a total of thirteen (13) input parameters in the 
case where snowfall data is taken into consideration. Otherwise, the number of input parameters used is 
equal to ten. In both cases, the output parameter is the hydraulic head change per time step. The reason for 
using the hydraulic head change as output parameter instead of the hydraulic head itself is the high 
correlation between the hydraulic head on day k and on day, k-1, which can lead to high synaptic weights for 
this parameter, and thus diminishing the importance of the remaining parameters. 

Two ANN architectures were tested in the case where snowfall data is taken into consideration: (a) an 
architecture with one hidden layer with 35 nodes, and, (b) an architecture with two hidden layers with 19 
nodes in hidden layer 1 and 12 nodes in hidden layer 2. Similarly, two architectures were tested in the case 
without snowfall data: (a) an architecture with one hidden layer with 44 nodes, and, (b) an architecture with 
two hidden layers with 20 nodes in hidden layer 1 and 13 nodes in hidden layer 2. 

 
4. Results 

 

4.1. PTC results 

As a first step, all the necessary data are imported to Argus one - PTC PIE, including the hydraulic conductivity, 
initial conditions, meteorological data and infiltration and available pumping rates. The calibration of the 
model was performed by trial and error, using type 1 and type 2 boundary conditions. Wells with known 
hydraulic head, in close proximity to the domain outline, were used as type 1 boundary conditions. All other 
wells with known hydraulic head values within the study area were used in the calibration process and for 
the verification of the model. The initial hydraulic head at locations where data were available was set equal 
to the value on the first day of the simulation. Linear interpolation was used to determine the initial hydraulic 
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head at locations throughout the study area where data were not available. In the perimeter of the study 
area other type 1 and 2 boundary conditions were introduced, representing the inflow and outflow of the 
water. Moreover, taking into consideration the limited pumping activity data available and their location, type 
2 boundary conditions were also introduced inside the study area. Unknown or uncertain, due to data 
availability, boundary conditions were calibrated in order to improve the simulation and validation results. 
For the validation of the model, the simulation at the end of the 1st simulation year (4th stress period) are 
calculated and depicted in Figure 2. 

 

Figure 2. Hydraulic head contours at the end of the 4th stress period evaluated by using PTC 

Various error indicators were calculated for the evaluation of the derived results. These error indicators used 
the hydraulic head data recorder in the field in the thirty wells with available data and the simulated values 
at the exact same locations. The Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), which has proved very 
effective for hydrological data, was calculated equal to 0.98, while the mean absolute relative error (MARE) 
equal to 0.62·10-2. These values indicate the successful modelling and simulation by using PTC. The average 
deviation between observed and simulated values at locations where data were available, calculated equal 
to 1.5 m, can be considered low, considering the complexity of the study area and the lack of pumping activity 
data. 

4.2. ANN results 

The parameters defined through the training process are the synaptic weights connecting the nodes of each 
ANN layer to the ones on the next layer.  

Table 1. Characteristic MSE values for simulations which include snowfall 

 
One hidden layer Two hidden layers 

Training 
Error (m2) 

Testing Error 
(m2) 

Evaluation 
Error (m2) 

Training Error 
(m2) 

Testing Error 
(m2) 

Evaluation Error 
(m2) 

Mean 9.79·10-4 1.19·10-3 1.40·10-3 9.27·10-4 1.42·10-3 1.19·10-3 

Maximum 2.67·10-3 3.12·10-3 3.22·10-3 2.00·10-3 2.95·10-3 3.41·10-3 

Minimum 3.25·10-4 4.43·10-4 3.55·10-4 3.73·10-4 3.67·10-4 3.44·10-4 

Overall 
Mean 

1.19·10-3 1.18·10-3 

After the training process is completed three types of errors can be calculated training error, which 
corresponds to the error at the training dataset, testing error which corresponds to the error in the testing 
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dataset and validation error. Simulation results for four separate cases are summarized in terms of mean 
squared error (MSE) in Table 1 and 2. The results presented in Table 1 are for the ANN architectures that 
include snowfall as input parameter, whereas the results presented Table 2 are for the case where snowfall 
is ignored. 

As expected, the use of snowfall as an input parameter did not improve the ANN performance. Between the 
ANN architectures that did not use snowfall data, the architecture with one hidden layer resulted in slightly 
better performance and will be used henceforth.  

Table 2. Characteristic MSE values for simulations which do not include snowfall 

 

One hidden layer Two hidden layers 

Training 
Error (m2) 

Testing Error 
(m2) 

Evaluation 
Error (m2) 

Training Error 
(m2) 

Testing Error 
(m2) 

Evaluation 
Error (m2) 

Mean 1.03·10-3 8.73·10-4 9.11·10-4 9.48·10-4 6.47·10-4 1.24·10-3 

Maximum 1.94·10-3 2.06E·10-3 2.79·10-3 1.88·10-3 1.70·10-3 2.11·10-3 

Minimum 4.01·10-4 3.97·10-4 3.90·10-4 3.46·10-4 3.93·10-4 4.70·10-4 

Overall 
Mean 

9.38·10-4 9.44·10-4 

For the presentation of the derived simulation results, the 30 wells/data points were organized into three 
categories (groups) according to performance in terms of average training, testing and evaluation error. Wells 
that belong to the same category have similar performance. Results are presented for one representative well 
from each group, the one that has the average performance in its group. Wells with poor performance results 
were included in group 1, while those with best performance results were included in group 3. The results for 
the representative wells from each group are summarized in Table 3. 

Table 3. Characteristic values for the representative wells 

 Representative wells 
 Group 1 (well no. 23) Group 2 (well no. 25 ) Group 3 (well no. 6 ) 

Absolute value of difference between real and simulated HHC 

Average (m) 1.23·10-2 9.86·10-3 6.69·10-3 

Minimum (m) 9.71·10-6 1.09·10-5 3.45·10-6 

Maximum (m) 3.15·10-1 1.43·10-1 1.72·10-1 

ANN MSE error 

Training (m2) 1.15·10-3 8.10·10-4 4.60·10-4 

Testing (m2) 8.48·10-4 5.67·10-4 3.97·10-4 

Evaluation (m2) 1.03·10-3 6.54·10-4 4.44·10-4 

Simulation results for the hydraulic head change per time step for the three representative wells are 
presented in Figure 3. 

Simulation results for the hydraulic head change were derived for all 30 wells with data available. The 
hydraulic head per time step for each well in the field was calculated from the hydraulic head change results 
and the initial hydraulic head value. The hydraulic head contours were generated by using the Argus One 
environment and the linear interpolation method. The results for the hydraulic head at the end of the 1st 
simulation year (corresponding to the 4th stress period in PTC) are depicted in Figure 4. 

4.3. Model intercomparison - Discussion 

The choice of model depends on the scope of the simulation. ANNs yield better performance in the case 
where accurate point simulations are required. In the case of spatial simulations, the accuracy of the model 
depends on the interpolation method applied. PTC and other classic numerical models can result in better 
overall performance for spatial simulation, but lack accuracy in the case of point simulation. Their overall 
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performance depends on the calibration process, which can be a time-consuming and sometimes a difficult 
process.  

 

Figure 3. Hydraulic head change per time step for wells No. 23, 25 and 6 using ANNs 

 

Figure 4. Hydraulic head contours at the end of the 1st simulation year evaluated by using ANNs 

Another factor that determines the choice of model is the data availability. ANNs require long time series of 
easily available data. Meteorological, surface water and pumping data can all be used, as long as they are 
available. There is no requirement for specific essential data, on the contrary, all available data related to the 
water budget can be used. PTC, on the other hand, requires a smaller amount of data than ANNs, which, 
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however, are more expensive to collect, if not available. Geological data such as hydraulic conductivity and 
porosity and information about boundary conditions are necessary for the construction of the PTC model.  

In every case, the decision upon the use of each model depends on the purpose of the study and their further 
use. After a successful calibration process, numerical models, such as PTC, can be used to study various water 
management and climate change scenarios. In many cases these kind of models are used to examine the 
effect of alteration of pumping activity or climate change in the aquifer. When using black box models, like 
ANNs, it is only possible to examine the effect of alteration of parameters which are used as inputs to the 
model. In order to study the effect of any other parameter on the simulation results, a new training of the 
ANNs is necessary, incorporating data for this parameter. 

In order to achieve the best possible simulation results within the objective of a study, all the advantages and 
limitations of both models should be considered in order to use the most appropriate type of model. 

 
5. Conclusions 
 
In this paper, two different methodologies, one based on the numerical model PTC and one using artificial 
neural networks, were applied for the hydraulic head simulation in a study area around Munich in Germany. 
Results for the hydraulic head at the end of the 1st simulation year were presented for the comparison of the 
two models. Both models are capable of providing good performance results for the simulation of the 
hydraulic head. In the case of ANNs, the average MSE at locations with data available was equal to 
9.38·10-4 m2, while in the case of, PTC the average deviation between observed and simulated values was 
equal to 1.5 m. This difference can be attributed to the fact that in PTC the hydraulic head is simulated, while 
in ANNs the hydraulic head change per daily time step is studied. 

While both modelling methods have both advantages and disadvantages, the final selection of the most 
appropriate is based on the purpose of the study at hand and the data availability. If the management of the 
groundwater in the study area is the goal of the study, numerical models are more appropriate, while if 
precision at a specific location is of essence, ANNs can yield better results. Moreover, if the geology of the 
study area is not specified in detail or the spatial variability is high ANNs may be more appropriate, while if 
long time series of data are not available, numerical models are more accurate.    
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