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Abstract

The monitoring of bird populations can provide important information on the state of sensitive ecosystems; however,
the manual collection of reliable population data is labour-intensive, time-consuming, and potentially error prone. Au-
tomated monitoring using computer vision is therefore an attractive proposition, which could facilitate the collection
of detailed data on a much larger scale than is currently possible.

A number of existing algorithms are able to classify bird species from individual high quality detailed images often
using manual inputs (such as a priori parts labelling). However, deployment in the field necessitates fully automated
in-flight classification, which remains an open challenge due to poor image quality, high and rapid variation in pose,
and similar appearance of some species. We address this as a fine-grained classification problem, and have collected a
video dataset of thirteen bird classes (ten species and another with three colour variants) for training and evaluation. We
present our proposed algorithm, which selects effective features from a large pool of appearance and motion features.
We compare our method to others which use appearance features only, including image classification using state-of-
the-art Deep Convolutional Neural Networks (CNNs). Using our algorithm we achieved an 90% correct classification
rate, and we also show that using effectively selected motion and appearance features together can produce results
which outperform state-of-the-art single image classifiers. We also show that the most significant motion features
improve correct classification rates by 7% compared to using appearance features alone.

Keywords: Appearance Features, Motion Features, Feature Extraction, Feature Selection, Bird Species
Classification, Fine-Grained Classification

1. Introduction Duan et al.| 2012)). Robust automated classification would
be of potential benefit to ecologists studying bird popula-
tions; however, there are significant limitations with ex-
isting works, which are trained and tested on high quality
images. Such images are difficult to capture in real-world
settings. In addition, most existing methods are not fully
automated, limiting the data which can be processed. For
useful deployment, such systems need to classify birds in
" - flight, and this has also not yet been fully studied. In-flight
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Email address: john.atanborinottingham.ac.uk (John classification introduces challenges around image quality,
Atanbori) shape, and image noise, but also presents some opportu-

Fine-grained object classification is a well know chal-
lenge in computer vision, and there has been some previ-
ous work on bird species recognition using individual im-
ages (Gavves et al.|[2015} Berg et al.,|2014} Berg and Bel-
humeur, 2013} |Huang et al., 2013; Branson et al., |2014;
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nities: the flight patterns of birds are known to vary across
different species (Bruderer et al., 2010; Duberstein et al.,
2012) and are used by human observers to assist recog-
nition. Very few existing studies (Cullinan et al., 2015j
Matzner et al., [2015) have made use of motion features
in this way, and these have only differentiated small num-
bers of species. None has previously combined appear-
ance and motion features to facilitate improved classifica-
tion.

We focus on this challenge, and present our system
which can reliably classify thirteen bird classes in flight.
In our previous work (Atanbori et al., 2016), we presented
separate sets of appearance and motion features, and
showed that our appearance features out-performed the
state-of-the-art (Marini et al., 2013). We further showed
in|Atanbori et al.| (2015) that motion features can be used
for real-time classification. In this paper we present the
following new contributions:

1. We combine appearance and motion features to clas-
sify bird species in flight.

2. We introduce an extended dataset, which contains
video data of thirteen bird classes. This presents a
significant challenge, and is representative of real-
world monitoring contexts.

3. We compare feature selection methods, with four
standard classifiers, Random Forest (RF), Random
Tree (RT), Naive Bayes (NB), and Support Vector
Machines (SVM), and compare performance.

4. We compare our method with two state-of-the-art
deep learning models (VGG19 and MobileNet),
which are used to classify individual images from
our dataset.

5. We have demonstrated that the most significant mo-
tion features improve correct classification rate com-
pared to using appearance features only.

The remainder of this paper is structured as follows.
In Section 2} we review existing work, including appli-
cations to other species. In Section [3] we introduce our
dataset and processing architecture, then proceed to Sec-
tion [ which describes our motion and appearance fea-
tures. In Sections [} [5] and [6] we describe our feature se-
lection, classifiers, and experimental setup, and conclude
in Sections [/|and |8} by presenting our evaluation and re-
sults.

2. Related Work

A common approach taken by many computer vision
researchers in monitoring and identification of animals is
to exploit the feature selection techniques, e.g. (Matzner|
et al., 2015; Spampinato et al., 2010; Beyan, 2015).
Hence, in this section we review relevant papers from this
domain, and conclude with a review of feature selection
techniques.

2.1. Studies related to other Species

Colour features are generally undetectable in low-light,
and so applications to bat monitoring have looked more
closely at motion features. For example, (Cullinan et al.
(2015)); Matzner et al.|(2015)); Hristov et al.|(2010); Betke
et al.| (2008); [Lazarevic et al.| (2008) censused large bat
populations. Betke et al.| (2008) also estimated wing beat
frequencies of individuals using pose templates, and ap-
plying Fast Fourier Transform (FFT). Previous work by
ourselves, |Atanbori et al.| (2013)), also used FFT to deter-
mine wing beat frequency, but using a bounding box fitted
to the segmented silhouette. Like Betke et al., works by
Cullinan et al., Matzner et al., and |Lazarevic et al.| use
thermal imaging. |Cullinan et al| defined four classes
(bat, gull, tern, swallow), and using flight tracks reported
82% correct classification; however, this does not con-
sider fine-grained differentiation.

Lee et al.| (2003) used shape contour features to dis-
criminate between nine fish species, and achieved a classi-
fication rate of between 13% and 80%. |Spampinato et al.
(2010) also used texture and shape features, achieving a
92% correct rate. |Rodrigues et al.| (2010) used Scale-
Invariant Feature Transform (SIFT) and Principal Com-
ponent Analysis (PCA), achieving similar results to |[Lee
et al.| and|Spampinato et al.| (92% across six species).

2.2. Classification of Bird Species

Whilst|Cullinan et al.| (2015)), and [Matzner et al.|(2015)
used motion features to differentiate between small num-
bers of bird species, other existing works concerned with
automated classification of birds use appearance features
from a single image of an individual bird. These ap-
proaches can be further subdivided into those that make
use of the physical structure of the bird (which we refer to
as part-based), and those which do not. Non-part-based



methods use colour and shape features, without consid-
ering their relative position or orientation (Marini et al.|
2013 [Wah et al., |2011alb). For example, Marini et al.
uses colour features with SVM. Again, these have been
used to differentiate between small numbers of species,
and struggle to maintain performance as the number in-
creases. [Marini et al.| showed that when using colour fea-
tures alone on the Caltech-ucsd birds-200-2011 dataset,
accuracy reduces from approximately 85% when select-
ing between 2 species to 20% when differentiating be-
tween 17 species.

Part-based methods associate features with specific
body parts (Wah et al. |2011a; [Duan et al., 2012} Berg
and Belhumeur, 2013; [Huang et al., 2013} |Branson et al.}
2014; Wah et al., 2011b; Berg et al., 2014). This can
help differentiate between species with high visual cor-
relation, but almost all require manual inputs, and good-
quality images. Berg et al.| developed an online appli-
cation called Birdsnap; this requires manual annotation
of parts prior to segmentation and classification. |Krause
et al.| (2015), and |Gavves et al. (2013} [2015) both de-
veloped annotation-free parts-based methods. Their re-
sults compared favourably: based on CUB-2011, correct
classification rates were 62%, 82% and 67% respectively.
They used the Grab-Cut segmentation method (Rother|
et al.l 2004)), and so still require some manual interven-
tion. Another annotation free method was proposed by
Zhang et al| (2015), which detects parts using Convo-
lutional Neural Network (CNN). Whereas |[Krause et al.
align the co-segmented objects before labelling, [Zhang
et al.| (2015) uses CNN feature to detects parts automati-
cally, but did not improve significantly on other methods.

Our objective is to develop a deployable system, capa-
ble of identifying birds in flight. Existing methods require
manual annotation and/or high quality images which ex-
ceed the quality available in real-world settings. In ad-
dition, we assert that birds far from the camera are less
easily classified using appearance features alone. This
motivates our approach of combining colour and motion
features. Of the other approaches mentioned, we consider
that |Marini et al| is an appropriate comparator for this
problem domain, being fully automated, non-parts based
(so more likely to be robust to reduced image quality), and
reporting good results. We therefore use this method as an
initial benchmark for our work. Deep learning is the cur-
rent state-of-the-art in image classification; we have thus

also used two recent CNN models as additional bench-
marks.

2.3. CNN Classification Methods

As mentioned in Section Krause et al.| and [Zhang
et al. (2015) used CNN methods for single image species
classification. CNN has become prevalent in computer
vision for image classification since (Krizhevsky et al.|
2012) won the ImageNet Challenge in 2012. Deep learn-
ing has been used to achieve state-of-the-art accuracy on
ImageNet (Deng et al.,[2009)), and the PASCAL VOC (Ev-
eringham et al.| 2012)) datasets. Important recent archi-
tectures include VGG16 and VGG19 (Simonyan and Zis-
serman) 2014)), which are very deep networks achieving
state-of-the-art classification on the 2014 ImageNet chal-
lenge. The original VGG19 model comprised 144 million
parameters; however, MobileNets (Howard et al., [2017)
is another state-of-the-art deep learning model that uses
depth-wise separable and point-wise convolutions to re-
duce the number of model parameters (to only 4.2 mil-
lion). This model trades accuracy against resources, but
still achieved classification accuracy comparable to very
deep networks with many large numbers of parameters.
We have evaluated our work against both state-of-the-art
networks (VGG19 and MobileNet) and presented results
in section[Zl

2.4. Feature Selection and Reduction

We make extensive use of feature selection and reduc-
tion in the method we present in this paper, and so include
a short review of relevant techniques here. Redundant
or irrelevant features may affect classification rates neg-
atively (Hall, [1999; Yu and Liu, 2003). Thus, feature re-
duction may be important for fine-grained identification.
Existing feature selection methods can broadly be divided
into filter and wrapper methods.

Filter methods rank the significance of proposed fea-
tures. A number of ranking criteria have been used includ-
ing Fisher score (Gu et al.,[2012)), Pearson correlation co-
efficient (Guyon and Elisseeff, [2003), mutual information
(Peng et al., 2005} |Yu and Liul [2003)) and Relief (Robnik-
§ikonja and Kononenkol [2003; |Moore and White, [2007).
Filter methods are efficient (Lee et al., [2012), and scale
well.



Wrapper methods use machine learning to evaluate the
effectiveness of feature subsets (Tang et al.,[2014). An ex-
ample was proposed by (2001), and is based on
Variable Importance (VI) derived from Classification and
Regression Trees (CART), and Random Forests. How-
ever, if the data contains groups of correlated features
of similar importance, then smaller groups are favoured
(Tolosi and Lengauer], 2011). [Halll (1999) and Hall et al.|
proposed some methods to combine the filter and
wrapper methods. reported the performance and ac-
curacy of this approach to be better than wrappers on
some datasets.

3. Dataset and Preprocessing

Figures|[T] [2Jand3]show samples from our video dataset,
recorded using a Casio Exilim ZR100 camera at 240
frames per second. There are thirteen classes in total,
made up of ten unique species and another (Melopsitta-
cus Undulatus) with three colour variants. The dataset is
made up of videos recorded over several days, from three
different sites and each class is made up of at least ten
individuals. Table[I] shows the number of videos and im-
ages per species. The majority (most represented) class
is the Black-headed Gull (Chroicocephalus ridibundus),
and the minority is the Common wood pigeon (Columba
palumbus).
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Blue Crowned parakeet (Thectocercus acuticaudatus) — (c)

Figure 1: Parakeet samples from our dataset. a) Alexandrine para-
keet (Psittacula eupatria), b) Nanday parakeet(Aratinga nenday) and c¢)
Blue-crowned parakeet (Thectocercus acuticaudatus)

Budgerigar (wild-type) (Melopsittacus
undulatus) — (h)
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Figure 2: Budgerigar samples from our dataset. f) Budgerigar (yel-
low) (Melopsittacus undulatus), h) Budgerigar (wild-type) (Melopsitta-
cus Undulatus) and 1) Budgerigar (blue) (Melopsittacus Undulatus)

For each frame in each video, we automatically ex-
tracted the target bird silhouette (Fig. [) using a back-
ground Gaussian Mixture Model (GMM)
[van der Heijden| (2006))). We used the method proposed
by [Suzuki et al.| (1985) to obtain contours and oriented

bounding boxes. A selection of metrics (height, width and
hypotenuse, centroid, silhouette and contour points) was
automatically determined. We also extracted and con-
catenated colour moments, shape moments, greyscale his-
togram, Gabor filter and log-polar features (see Section
H). For motion features, we formed a trajectory with the
2D centroid position, described as:

(xj,yj),..., (1)

Where N is the number of frames in 7', represented as a
series of x and y coordinates. We segmented the trajectory
(Equation [T into overlapping sub-trajectories #; of equal
length, where k = 1...N — Q + 1 is the total number of
sub-trajectories:

={(x1,y1) 5.5 (xn, yn)}

(2)
N, and applied a box

Iy = {(xk»)’k) P (xk+Q—1 ayk+Q—l)}
We used Q = 64, where Q <
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Figure 3: Other samples from our dataset. d) Common house martin (Delichon urbica), e) Eastern Rosella (Platycercus eximius), g) House
sparrow (Passer domesticus), i) Common wood pigeon (Columba palumbus), j) Black-headed gull (Chroicocephalus ridibundus), k) Cockatiel

(Nymphicus hollandicus), and m) Common starling (Sturnus vulgaris)

filter (Gonzalez and Woods| [2002)) with a 1 x 3 kernel to
reduce noise. We extracted motion features from the set
of smoothed short trajectories (see Equation 2)).

Figure 4: Flying birds segmented from our data.

Table 1: Number of videos and images of the thirteen classes

Species # of videos | # of images | # of images/total(%)
j = Black Headed Gull 147 38,764 24%
d=Common House Martin 139 25,517 16%
a = Alexandrine Parakeet 79 12,801 8%
I=Budgerigar (blue) 81 12,090 7%
g =House Sparrow 78 10,191 6%
b = Nanday Parakeet 60 10,025 6%
m=Common Starling 71 9,865 6%
k = Cockatiels 59 9,398 6%
c=Blue-crowned Parakeet 60 9,076 6%
f=Budgerigar (yellow) 54 7,667 5%
h=Budgerigar (wild-type) 48 6,283 4%
e=Eastern Rosella 44 5,929 4%
i=Common Wood Pigeon 37 4,301 3%
Total 957 161,907 100%

3.1. Additional Preprocessing for CNN Classifiers

For our benchmark comparisons, we used the
VGG19 (Simonyan and Zisserman|, [2014)) and MobileNet
(Howard et all, [2017) deep learning architectures: these
were used to classify individual image frames from the
video datasets. For each video frame, we fitted abounding




box around the tracked bird’s silhouette. We rescaled the
silhouette to a standard size for training and testing. In
our case, we used 32x32 image sections, as the majority
of the silhouettes in the database are of around this size.

4. Feature Extraction

In this section, we describe a pool of appearance and
motion features extracted to form our method, which we
did not use in the benchmark methods.

4.1. Appearance Features

Appearance features are collated from existing related
works and comprise colour moments and log-polar val-
ues, shape moments, Gabor filters and greyscale his-
tograms. We have previously shown in |[Atanbori et al.
(2016) that this feature set is useful for bird classification.

4.1.1. Colour Moment Features

Histogram features have been used widely to charac-
terise colour images, by constructing histograms across
multiple colour channels (Sergyanl 2008; [Huang et al.,
2010). Statistical features have also been extracted from
such histograms and used to describe colour-based fea-
tures of bird species. We compute colour moment fea-
tures from each bird silhouette by first transforming the
colour image from RGB to HSV space, and then building
a histogram to represent the distribution of values across
each channel. We compute colour moment features by
transforming the image from RGB to HSV and forming a
histogram of colour values. We use 30 bins for the Hue
channel, and 32 each for Saturation and Value, then nor-
malise and calculate statistics for each ( Mean, Standard
Deviation, Skewness, Energy and Entropy, see |Sergyan
(2008); Huang et al.|(2010)). Each bin value and statistic
is used as a single-valued feature, providing 109 in total.

4.1.2. Image Moment Features

Image moments are used in computer vision to find the
area (or total intensity) of the segmented object including
information about its centroid and orientation. We used
spatial moments (Jacob et al.,|2001) and Hu moments (Du
et al [2007), to represent the shape of the silhouette in
each frame. We first extract the contours (Suzuki and Abel,
1985)) followed by the seven Hu moments and ten spatial
moments

4.1.3. Greyscale Histogram Features

Greyscale Histogram Features are constructed by first
converting the extracted silhouette into a greyscale image.
A 256-bin histogram is then created from the greyscale
silhouette (excluding background), to form a representa-
tion of the greyscale distribution of pixels. We then com-
pute statistics from the bins: mean, standard deviation,
skewness, kurtosis, energy, entropy, and Hu’s 2nd gpd 3rd
moments, providing eight features.

4.1.4. Gabor Wavelet Features

Gabor wavelet features have both multi-resolution and
multi-orientation properties, are optimal for measuring lo-
cal spatial frequencies and yield distortion tolerance space
for pattern recognition tasks. The Gabor wavelet trans-
form (Lee, |1996) is the convolution between the function
g and image I(x, y), given by Equation

2.2 ’
g = exp (_—x Yy )exp (i (Zﬂ% + w)) 3)

202

where X' = xcos#+ysinf,y = —xsin@+ycos @ and 6
, A, ¥, ¥ and o are orientation, wavelength, phase, aspect
ratio and standard deviation respectively.

We extract these, using 4 = 1, ¢ = 0, y = 0.02,

o = 1, and Scale = 31. We use four different values
for6 = {0, 7%, 7, %7”}. The result is four greyscale wavelet

images, from which we extract mean, standard deviation,
skewness, kurtosis, energy, entropy, yielding 20 features.

4.1.5. Log-Polar Features

Pun and Lee|(2003) demonstrated that log-polar images
can eliminate transformation effects. An image / is trans-
formed into a log-polar form dst(6,p) using Equation 4]

p =log \/x2+y?

dst (6, ,
$t(6.p) « sre(x y)for{9 = arctan(i)ifx >0

“

We convert the segmented image to HSV space and ap-
ply a log-polar transform to each channel. We then com-
pute mean, standard deviation, skewness, entropy and en-
ergy, for each.



4.2. Motion Features

We extracted motion features using a time window de-
scribed by Equation [2] and detailed these features in this
section.

4.2.1. Curvature Scale Space (CSS)

Both Beyan and Fisher| (2013) and Mai et al.| (2010)
used Curvature Scale Space (CSS) to distinguish trajec-
tories; these are robust to noise (Mai et al.l 2010), and
calculated using Equation [5}

ron

XY X

K; 3
(52 +52)

&)

where x,, x;, y, and y, are first and second derivatives
of x; and y; respectively.

We formed 22 CSS features which includes ten statis-
tics (mean, standard deviation, skewness, kurtosis, en-
tropy, minimum, maximum, local minima, local maxima
and zero crossings) from the absolute curvature, the num-
ber of curves in the CSS image, the total length of all the
curves and ten statistics computed from the CSS maxima
(as for the absolute curvature). The CSS feature was con-
sidered important for two reasons: Firstly, the datasets
consist of birds flying in different directions and orienta-
tions. Therefore, similar trajectories may appear as a dif-
ferent relative orientation with respect to the optical axis.
Secondly, they may appear at different scales due to vary-
ing distances from the camera.

4.2.2. Turn Based Features

Trajectory turnings were used to represent the shape of
flight, and are calculated by computing the slope of the
trajectory between consecutive frames. They have been
used, similar to those in |Li et al.| (2006) and |Beyan and

Fisher (2013) and were computed using equation [6}

. Yk Vk-1
arc tan(—xk ——— ),

if ()Ck - xk—l) > 0.

arctan(%) + 7,

O = 1.
if (xx — x=1) <0, k= yr-1) = 0.

(6)

Vic—Vk-
arctan(ﬁ) -,

if (v — x-1) <0, % — yi-1) < 0.

Where (x; — x-1)*> — (% — yk—1)> # 0. A histogram
(with bin of size 3) was used to calculate the ten statistical
features, forming a subset of 30 features.

4.2.3. Wing Beat Frequency Features

The periodicity of wings beats is known to vary among
bird species (Lazarevic et al., 2008). In |Atanbori et al.
(2013)) we show that for bat species, a bounding box tted
to the silhouette of a tracked individual can be used to
measure the periodicity of wing beats. We used the same
approach in this work and extracted three metrics (height,
width and diagonal length) from a bounding box fitted to
the bird silhouette. For each frame, we then computed the
frequency components of the signal using a sequence of
values computed from a time window of N frames, cen-
tred on the current frame. Each frequency component is
computed using the Fast Fourier Transform (FFT) [/] for
each metric separately:

(N=1)
Fky= ) fye™ N )
1=0

Where f(¢) is the signal in the spatial domain, ¢ ranges
fromO0...N—1, and N is the number of frames in the time
window. F(k) is the k" frequency domain component (en-
coding both amplitude and phase) withk =0...N—1.In
our case, we used N = 64 frames but added padding of
32 zeroes before and after, to produce a total sequence
length of N = 128. The zero padding is added to increase
the resolution of the computed frequencies (as this may
help discriminate species with closely related frequen-
cies). This value of N was appropriate for our dataset, but
for longer sampled trajectories, large values of N could



be used to increase resolution. Having generated the fre-
quency components, the nine most dominant frequencies
for each metric (excluding the DC component) were used
to form a set of 27 features for the frame.

4.2.4. Centroid Distance Function (CDF)

The centroid distance function (CDF) represents tra-
jectory shape (Beyan and Fisher} [2013)) and is invariant
to translation and rotation. Since the flying bird’s trajec-
tory are subject to rotational deformation, we used CDF
features which we computed using Equation [§] We then
extracted the ten statistical moments (as with the CSS fea-
tures) to form this feature set.

CDF; = (i = x* + (= yo)? (8)
where:
1 N-1 1 N-1
X = N;xﬁ ye = N;yj ©

i=0,1,..N -1, and N is the number of points.

4.2.5. Vicinity

We also included normalised vicinity features which
were previously used in [Liwicki et al.| (2006), and cal-
culate ten statistical moments from each (Vicinity curli-
ness, slope, aspect and linearity) to form a subset of 40.
Vicinity features were selected to represent part of the mo-
tion features since they consist of features extracted from
each point and takes into consideration their neighbouring
points and are very robust to noisy data.

4.2.6. Curvature

Birds flight have directional bearings, which can be
measured between frames using curvature. The curva-
ture is computed as the cosine of the angle between
the line from a point to its predecessor, and the fol-
lowing line. Given a trajectory #;, and successive points
Py_1, PrandPy, 1, the curvature cos (6y) is given by Equa-

tion 10

2 —a*-b?
O) = —— 10
cos (6k) db (10)
Where: a is the distance from trajectory
point  Pri(xe-1,yk-1)  to  Prlxg,yx)  given by

(vt = 2% + iy —90?) . Similarly, b s given

) 2\05 L
by ((xk—xk+1) +(yk—yk+1)) and ¢ is given by

(Gt = 3t + i =)~ k= 2.0~ 1 and
Q = 64 is the length of the short trajectory defined in
Section 3]

Ten statistical features including mean, maximum,
minimum, standard deviation, number of zero crossings,
local minima and maxima, skewness, energy and entropy
of the curvature were extracted.

5. Feature Selection

Our feature set, described in Section ] totals 320. We
hypothesise that some of these are redundant, and have in-
vestigated two selection strategies: correlation-based and
classifier-based. We describe each below.

5.1. Correlation-based Feature Selection

The correlation-based method is based on |Hall et al.
(2009). We calculated a matrix of feature-to-class and
feature-to-feature Pearsons correlations, and search the
subset space (Hall,1999) to determine the most effective.
The merits of each feature subset are then computed using

equation[TT]

erf
M= ——— (11D
vk + k(k = Dryy
Where M, is the merit of k features, 7y is the mean cor-
relation (f € S) and 75y is the average feature-to-feature
inter-correlation. The feature-to-feature correlation can
be expressed as:

k=1 k
iy = (Z Z rff{fi’fj}) e

i=1 j=it+l

(12)

Where ryy(s 5 18 the pairwise correlation of feature f;
with fj, and kC, is the number of combinations possible
from the subset S. The feature-class correlation is calcu-
lated as:

k
e = (Z rfc{f[,c,-}) /k (13)
i=1

Where ry.(s.,) is the pairwise correlation of feature f;

with class c;.



5.2. Classifier-based Feature Selection Method

The classifier-based method uses a Random Forest
classifier Breiman| (2001) with “Bagging” (Breiman,
1996)), Like Breiman| (2001), we use permutation impor-
tance to calculate tree splits.

6. Experiments

In this section, we describe our experiments, including
setup, methodology and benchmarks. For our evaluation
we have performed three separate sets of experiments:

e We have quantified the effectiveness of our complete
feature set across our dataset using four well-known
classifiers.

e Evaluated the two feature selection methods, and
have identified the most effective subsets from our
pool of features.

e We have compared the results of our method with
that of image classification using two deep learning
networks (VGG19 and MobileNet).

e We demonstrated that most significant motion fea-
tures contribute to classifier effectiveness.

6.1. Setup and Method

For experiments using our proposed method, we com-
puted the full set of appearance and motion features for
the frames in each video, for each class of bird. These fea-
tures were concatenated to create our full feature set (total
of 320 features: 169 appearance and 151 motion features).
We sampled individual image frames from the dataset for
all and split the dataset into 80% for training and 20%
for testing, which was used to evaluate the effectiveness
of the features using four classifiers: the Naive Bayes
(NB), Random Forest (RF), Random Tree (RT) and Sup-
port Vector Machine (SVM). The SVM classifier is base
on LibSVM proposed by [Chang and Lin| (2011}, which is
comparable to the one used in |Marini et al.| (2013) and
implemented using a radial basis function kernel. The
gamma and cost parameters were optimised using a grid
search. We used K = int(logy(#features) + 1) randomly
chosen attributes at each node for the RT classifier, with
unlimited depth. Convergence of the out of bag errors

for RF occurred at 20 trees. The NB classifier assumed
a Gaussian mixture model over the whole training data
distribution, one component per class, and estimated pa-
rameters from the training data. All our experiments
were performed on a Mac book pro laptop running OS X
10.9.5, with 2.5 GHz Processor and 4GB RAM. We used
C++ with XCode 5.1.1 and OpenCV 3.0 to implement all
our pre-processing and feature extraction algorithms and
WEKA 3.7 (Hall et al., 2009) for the classification and
feature selection algorithms. The results are reported in
Section

To investigate performance after feature selection, the
correlation-based merits M, (see Equation were
sorted in descending order. Starting with the complete
set of 320 features, we iteratively removed the ten least
significant until only ten remained, and used the classi-
fication rate to plot a learning curve. We used a simi-
lar scheme for the classifier-based method and used the
curves to identify the optimal parameters and reported the
results in Section [/} We applied these techniques to our
169 appearance features only to help to compare our best
appearance features to the full feature set and evaluate the
contribution of our motion features to classification per-
formance. We applied a cost matrix of pairwise class er-
ror weightings based on the degree of taxonomic relat-
edness of the bird classes (see Table [2) for both feature
selection and classification. The cost matrix used taxo-
nomic relatedness weightings of 0.25, 0.5, 0.75 and 1 for
species, family, order and class respectively. We used the
approach from [Domingos| (1999) as it is independent of
the actual classifying technique that is used and has a sim-
ilar implementation in Weka. The algorithm introduces a
bias based on a cost matrix C(i, j) in the training data and
predicts the class with the minimum expected misclassifi-
cation cost using the values in the cost matrix. Given an
example, z and the probability P(j|z) of each class j, the
Bayes optimal prediction for z is the class i that minimizes
the conditional risk in equation[T4]

R(ilz) = Z P(jl)C(, j) (14)
j

6.2. Benchmarks

For benchmarking, we first use the method proposed
by Marini et al.| (2013) to obtain an initial result using
our entire feature set. However, our primary benchmarks



Table 2: Cost matrix of pairwise class error weightings based on the degree of taxonomic relatedness of bird classes.

a b c d e f g h i j k 1 m

a = Alexandrine Parakeet 0.50 | 0.50 | 1.00 | 0.75 | 0.75 | 1.00 | 0.75 | 1.00 | 1.00 | 0.75 | 0.75 | 1.00
b = Nanday Parakeet 0.50 0.50 | 1.00 | 0.75 | 0.75 | 1.00 | 0.75 | 1.00 | 1.00 | 0.75 | 0.75 | 1.00
c=Blue-crowned Parakeet | 0.50 | 0.50 1.00 | 0.75 | 0.75 | 1.00 | 0.75 | 1.00 | 1.00 | 0.75 | 0.75 | 1.00
d=Common House Martin | 1.00 | 1.00 | 1.00 1.00 | 1.00 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.75
e=Eastern Rosella 0.75 ] 0.75 | 0.75 | 1.00 0.50 | 1.00 | 0.50 | 1.00 | 1.00 | 0.75 | 0.50 | 1.00
f=Budgerigar (yellow) 0.75 | 0.75 | 0.75 | 1.00 | 0.50 1.00 | 0.25 | 1.00 | 1.00 | 0.75 | 0.25 | 1.00
g =House Sparrow 1.00 | 1.00 | 1.00 | 0.75 | 1.00 | 1.00 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.75
h=Budgerigar (wild-type) | 0.75 | 0.75 | 0.75 | 1.00 | 0.50 | 0.25 | 1.00 1.00 | 1.00 | 0.75 | 0.25 | 1.00
i=Common Wood Pigeon | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 1.00 | 1.00 | 1.00 | 1.00
j = Black Headed Gull 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 1.00 | 1.00 | 1.00
k = Cockatiels 0.75 ] 0.75 | 0.75 | 1.00 | 0.75 | 0.75 | 1.00 | 0.75 | 1.00 | 1.00 0.75 | 1.00
1=Budgerigar (blue) 0.75 ] 0.75 | 0.75 | 1.00 | 0.50 | 0.25 | 1.00 | 0.25 | 1.00 | 1.00 | 0.75 1.00
m=Common Starling 1.00 | 1.00 | 1.00 | 0.75 | 1.00 | 1.00 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

are single image classification using the VGG19 and Mo-
bileNet deep networks, which were used to compare our
results after feature selection. A Linux server with three
GeForce GTX TITAN X GPUs (12 GB memory each)
was used to train all the networks. The networks were im-
plemented using Python 3.5.3 and Keras 2.0.6 with Ten-
sorflow backend. We used all of the images in the dataset
with an 80/20 split for training and testing.

We used a transfer learning approach, utilising a ver-
sion of the VGG-19 network pre-trained on the Ima-
geNet dataset (Krizhevsky et al., [2012). The ImageNet
dataset contains some bird classes, so we reasonably ex-
pect higher-level features in the pre-trained network to be
applicable to ours. We replaced the input layer with our
own (32x32x3) since many of our extracted silhouettes
are small. We also replaced the fully connected (FC) layer
with our own 13 output classes layer. We also introduced
two dropouts, which were used to regularise the network
to avoid over-fitting by randomly set a fraction (0.5) of
FC layers (fcl and fc2) units to zero at each update during
training. The VGG19 model was trained using a stochas-
tic gradient descent (SGD) optimizer, with a learning rate
of 0.001 and momentum of 0.9. We used early stopping to
interrupt training when the validation loss stops improv-
ing, by allowing a patience of 5 epochs. The pre-trained
MobileNets model was also used: as with the VGG19 net-
work, we removed the input layer (224x224x3) and re-
placed it with an input of shape (32x32x3). We replaced
the FC layer with a new layer and introduced a dropout
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(0.5) to regularise the network to avoid over-fitting. Mo-
bileNet has the same setup as the VGG-19 network, ex-
cept that we reduced the learning rate to 0.0001 and set
the two additional hyper-parameters (width and resolution
multipliers) to one.

7. Results

Table [3| shows the summary results of the four classi-
fiers (NB, RF, RT and SVM) using our full feature set,
alongside those obtained using Marini et al.s features.
The results show the overall correct classification rates,
which are averaged across the 13 species for each classi-
fier.

Table[3|suggests that the Random Forest classifier is su-
perior, with the highest correct classification rate based on
both our full feature sets and that of[Marini et al.. Compar-
ing ours with the method used by Marini et al.| (2013)) also
aligns with our previous results in |Atanbori et al.| (2016).

Table 3: The overall correct classification rates (averaged across 13
classes) using Marini et. al and our full feature set, without feature

selection for the four classifiers.
Marini et. al  Our feature Set
Naive Bayes 49% 69 %
Random Forest 77% 83%
Random Tree 62% 66%
SVM 57% 74 %




We provide a confusion matrix for the RF classifier in Ta-
ble

7.1. Feature Selection

As mentioned, we have evaluated two methods of fea-
ture selection [Hall| (1999)), and |Breiman| (2001)), using all
four classifiers. In this section, we describe how we de-
termined the optimal subset and its composition. We used
the following procedure to determine the optimal feature
subset, for both methods:

‘We used the feature selection method to rank the fea-
tures.

We iteratively removed the 10 lowest ranked features
from the list.

For each iteration, we evaluated the performance of
each of the four classifiers, using the remaining fea-
tures.

This was repeated until only the 10 highest ranked
features remained.

We plotted a graph of correct classification rates and
estimated the maxima for each classifier.

Figures[5]and[6] show the resulting graphs. Each classi-
fier is shown as a separate curve. Peaks in the classifier-
based method occur at 80 features for RF, 70 for RT and
100 for SVM and NB respectively. Likewise, peaks using
the correlation-based method occurred at 80 features for
RF classifier, and 70, 90 and 100 for RT, SVM and NB
respectively.

We use RF for our analyses as overall it is the best per-
forming classifier. Based on the RF, the mode of both fea-
ture selection techniques occurred at 70 features, which
is 89% for the classifier-based method and 90% for the
correlation-based method. Table [5] shows feature groups
by type, before and after selection, for both methods. The
classifier-based method selected 62 appearance features,
from four feature groups and the 18 motion features from
two groups. The correlation-based method selected 68 ap-
pearance features from four groups, and 12 motion fea-
tures from one group. Wingbeat frequency was selected
by both methods which suggest that they are significant
for differentiating species. The highest ranked features
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for both classifier-based and correlation-based methods
are the width of the FFT peaks (eight width peaks each).
These relate directly to the periodicity of wing beats and
therefore suggests that flight characteristics may be cru-
cial for classifying species.

Birds are usually identified at close distance using their
appearances (colour and shape). It is no surprise that
most of the features selected were appearance features
(62 for the classifier based method and 68 in the case of
correlation-based). However, both methods selected only
four shape features which strongly suggest the importance
of the colour features compared with the shape.

Finally, our proposed feature reduction methods have
shown improvement in performance with all classifiers
apart from SVM. The results of these are therefore some-
what inconclusive, though we note that the improved per-
formance with Random Forest is significant in the sense
that this is consistently shown as the best classification
method (with reduced features, full features, or Marini’s
features).

Table 6] shows the results of our full feature set ob-
tained using correlation-based feature selection, which
summarises the overall correct classification rate for each
classifier. We have also provided a confusion matrix for
RF (the best performing) in Table[7] to detail misclassifi-
cation between species. Overall, the results of our full fea-
ture set with feature selection (90%) outperformed those
without (83%), which asserts the efficacy of feature selec-
tion.

To help investigate misclassification between species,
we considered Order and Family of the birds. We group
species into:

1. Four Orders: Psittaciformes(Alexandrine Para-
keet, Nanday Parakeet, Blue-crowned Parakeet,
Budgerigar (wild-type), Budgerigar (yellow),
Budgerigar (blue), Eastern Rosella and Cock-
atiel), Charadriiformes(Black-headed  Gull),
Columbiformes(Common Wood Pigeon) and
Passeriformes(Common House Martin, Common
Starling and House Sparrow).

Eight Families: Psittacidae(Alexandrine Parakeet,
Nanday Parakeet and Blue-crowned Parakeet),
Psittaculidae(Budgerigar (wild-type), Budgeri-
gar (yellow), Budgerigar (blue) and Eastern
Rosella), Cacatuidae(Cockatiel), Laridae(Black-



Table 4: The confusion matrix based on the Random Forest classifier without feature selection, using the combined features on the thirteen
classes dataset (ten bird species and another with three colour forms). %CC is the percentage correctly classified.

a b c d e f g h i j k 1 m % CC | S 1

a = Alexandrine Parakeet 81.2% | 64% | 20% | 0.5% | 0.3% 1.3% | 06% | 07% | 0.1% 1.8% 1.6% | 32% | 04% | 81% 2611
b = Nanday Parakeet 93% | 719.7% | 2.4% 1.9% 0.3% 1.4% 0.2% 0.4% 0.3% 0.6% 1.7% 0.9% 0.7% 80% 2041
c=Blue-crowned Parakeet 87% | 42% | 822% | 0.6% | 04% | 0.6% | 03% | 07% | 0.1% | 08% | 02% | 08% | 02% | 82% 1209
d=Common House Martin 0.1% 0.2% 0.0% | 98.7% | 0.0% 0.0% 0.3% 0.0% 0.0% 0.4% 0.1% 0.0% 0.2% 99% 6351
e=Eastern Rosella 3.8% | 39% | 2.6% 1.1% 663% | 1.7% | 1.0% | 0.6% | 00% | 85% | 28% | 7.1% | 0.6% | 66% 1051
f=Budgerigar (yellow) 51% | 2.8% 1.5% 12% | 03% | 80.9% | 1.4% 1.2% | 0.1% | 2.6% 1.2% 1.2% | 04% | 81% 1202
g =House Sparrow 08% | 01% | 03% | 195% | 04% | 09% | 61.1% | 05% | 0.0% | 5.6% 1.1% | 13% | 85% | 61% 1952
h=Budgerigar (wild-type) 112% | 47% | 42% | 2.9% 1.1% | 6.7% | 29% | 41.5% | 0.5% | 9.6% | 43% | 35% | 09% | 47% 1097
i=Common Wood Pigeon 0.9% 1.0% 1.2% 3.3% 0.7% 0.7% 1.8% 0.8% | 81.9% | 2.4% 0.7% 0.3% 4.4% 82% 888
j = Black Headed Gull 0.1% | 0.0% | 0.0% 1.7% | 01% | 0.0% | 01% | 0.0% | 0.0% | 950% | 15% | 1.6% | 0.0% | 95% 7419
k = Cockatiels 1.4% 1.4% 0.1% 9.1% 0.4% 0.5% 1.4% 0.2% 0.1% 5.6% | 74.8% | 1.7% 3.3% 75% 1871
I=Budgerigar (blue) 2.6% 1.0% | 03% | 2.1% | 09% | 0.5% 13% | 05% | 0.0% | 16.1% | 2.0% | 72.5% | 0.3% | 72% 2142
m=Common Starling 09% | 0.8% | 03% | 39% | 02% 1.0% | 153% | 02% | 02% | 12% | 2.7% | 04% | 72.8% | 73% 2180
Overall Correctly Classified 83% 32014
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Table 5: Number of features remaining in each group, before and after applying the classifier-based (CBfs) and correlation-based (CoBfs) Feature
Selection, including the top features selected.

Feature Group # b;gore #Cegtfzr #ég]f;f:; Top Selected Feature (CBfs) | Top Selected Feature (CoBfs)
Hue color features 37 22 18 o of Hue Mean of Hue
g Saturation colour features 35 15 15 Mean of Saturate Mean of Saturate
S | Value colour features 37 21 31 Entropy of value Entropy of value
5 Shape 17 4 4 Hu’s First invariant Hu’s First invariant
& | Gabor 20 0 0 N/A N/A
< | Grayscale 8 0 0 N/A N/A
LogPolar 15 0 0 N/A N/A
FFT (Wingbeat) 27 16 12 First Peak of FFT (width) First Peak of FFT (width)
. CSS 22 0 0 N/A N/A
£ CDF 10 0 0 N/A N/A
§ Turn 62 2 0 Turn (6;=55) N/A
Vicinity 20 0 0 N/A N/A
Curvature 10 0 0 N/A N/A
Total Features 320 70 70
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headed Gull), Columbidae(Common Wood
Pigeon), Hirundinidae(Common House Mar-
tin), Sturnidae(Common Starling) and Passeri-
dae(House Sparrow)

We then aggregate the results from the confusion ma-
trices of the thirteen classes to form a four-class order and
eight class family confusion matrices (see results in sup-
plementary materials). We grouped birds belonging to the
same order together to create the order confusion matrices
and likewise those belonging to the same family.

The full feature set without feature selection misclassi-
fied 9% Columbiformes as Passeriformes whiles this was
only 4% with feature selection (see Table 1 in supple-
mentary materials). The full feature set also misclassi-
fied Psittaciformes as Charadriiformes(6%) and Columb-
iformes as Psittaciformes (6%). These misclassifications
reduced to 4% each with feature selection. The worse
case misclassifications when considering family without
feature selection is Passeridae versus Hirundinidae(19%)
and Sturnidae versus Passeridae (15%). Again, with fea-
ture selection, these were reduced to 6% and 8% respec-
tively.

7.2. Contribution of Motion Features to Classification
Rates

Table [8] shows the results of using appearance versus
full-features, with feature selection, which summarises
the overall correct classification rate for each classifier.
We have provided a confusion matrix for the Random For-
est classifier (the best performing classifier) in Table
to detail misclassification between species when we use
only appearance features. Results suggest that using both
appearance and motion features yields the best classifica-
tion rates.

We reconsider the challenge of species recognition us-
ing (poor quality) in-the-field data. Our method and those

Table 6: Correct classification rates across all species, with and without
correlation-based feature selection (FS) based on the full feature set.

Without Feature Selection With Feature Selection
Naive Bayes 69% 71%
Random Forest 83% 90%
Random Tree 66% 77 %
SVM 74 % 72%
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Table 8: Correct classification rates across all species, with feature se-
lection: Appearance versus the full feature set.

Appearance Features Full features
Naive Bayes 67% 71%
Random Forest 84% 90%
Random Tree 73% 77 %
SVM 70% 72%

used for benchmarking are all challenged by similari-
ties in appearance between particular species, casting the
recognition problem as that of “fine-grained” classifica-
tion. We propose that motion features can act as a weak
classifier and assist with differentiation, and there is evi-
dence to support this by comparing our combined motion
and appearance feature set with that of Marini et al| in
Table [3| (our features out-perform those of |[Marini et al.
(2013) with all classifiers).

The contribution of motion features in resolving
species may be considered limited with relatively short
video clips: however, we note that this is likely to be the
case in real in-the-field operation. Furthermore, we re-
mark that the retained features in Table [3] include a num-
ber of motion features (wingbeat frequencies), which sug-
gests that some of these features are significant. Indeed
improvements in some species with a similar appearance
are evident in Table [/} such as between Parakeet species,
and between the Common Starling and House Sparrow.
Overall, feature selection with the Random Forest classi-
fier introduces a 7% improvement in classification.

We also considered the Order of birds and noted that
the appearance feature set with feature selection misclas-
sified more birds from different Orders compared with
the full feature set (see Tables 7 and 8 in supplementary
materials). For example, Columbiformes versus Psittaci-
formes (7%) and Columbiformes versus Passeriformes
(9%) were both reduced to only 4% with the full feature
set. The worse misclassification when considering family
were Passeridae versus Hirundinidae(13%) and Passeri-
dae vs Sturnidae (9%) with the appearance feature set (see
Table 3 in supplementary materials). These were reduced
to 6% and 7% respectively with the full feature set, which
reconfirms the importance of motion features to aid clas-
sification of bird species.



Table 7: Confusion matrix based on the Random Forest classifier with selected combined features. Results using the correlation-based selection.

a b c d e f g h i j k 1 m % CC | Samples
a = Alexandrine Parakeet 853% | 52% | 1.0% | 05% | 02% | 1.0% | 07% | 08% | 01% | 1.1% | 1.2% | 2.7% | 03% | 85% 2611
b = Nanday Parakeet 7.6% | 843% | 1.8% | 13% | 07% | 09% | 01% | 04% | 03% | 04% | 09% | 09% | 05% | 84% 2041
c=Blue-crowned Parakeet 52% | 2.2% | 88.1% | 03% | 05% | 0.7% | 03% | 0.8% | 0.1% | 05% | 02% | 08% | 02% | 88% 1209
d=Common House Martin 01% | 01% | 0.0% | 943% | 00% | 00% | 39% | 00% | 0.0% | 0.5% | 0.1% | 0.0% | 1.0% | 94% 6351
e=Eastern Rosella 21% | 29% | 19% | 08% | 755% | 1.2% | 09% | 08% | 0.1% | 49% | 1.6% | 65% | 0.8% | 76% 1051
f=Budgerigar (yellow) 25% | 20% | 11% | 0.6% | 02% | 81.5% | 1.3% | 07% | 01% | 1.6% | 07% | 14% | 03% | 88% 1202
g =House Sparrow 05% | 02% | 0.1% | 58% | 02% | 08% | 815% | 04% | 0.0% | 1.9% | 09% | 1.0% | 69% | 81% 1952
h=Budgerigar (wild-type) 4.9% 1.8% 2.6% 0.5% 0.9% 1.8% 05% 79.0% | 0.5% 0.4% 1.9% 4.1% 1.0% 79% 1097
i=Common Wood Pigeon 0.3% 0.5% 0.2% 1.5% 0.3% 0.7% 0.9% 0.8% | 90.0% | 2.0% 0.2% 0.7% 1.9% 90% 888
j = Black Headed Gull 01% | 0.0% | 0.0% | 03% | 0.1% | 00% | 0.1% | 00% | 0.0% | 992% | 0.1% | 02% | 0.0% | 99% 7419
k = Cockatiels 05% | 07% | 0.1% | 51% | 05% | 03% | 09% | 01% | 0.0% | 3.5% | 83.6% | 1.1% | 3.6% | 84% 1871
1=Budgerigar (blue) 18% | 07% | 02% | 12% | 07% | 06% | 13% | 04% | 0.0% | 84% | 13% | 82.5% | 09% | 83% 2142
m=Common Starling 02% | 01% | 0.1% | 2.8% | 00% | 03% | 82% | 02% | 01% | 12% | 12% | 05% 85.1% | 85% 2180
Overall Correctly Classified ‘ 90 % 32014
7.3. Results using the VGGI9 and MolbileNet Image bles 7, 9 and 10 in supplementary materials). Again

Classifiers

Tables[9and [[0]show the classification results obtained
using the VGG-19 and MobileNet classifiers respectively.
The overall correct classification rates for this classifiers
were 84% and 80% respectively.

Comparison with the VGG-19 and MobileNet image
classifiers are also noteworthy. VGG-19 outperformed
MobileNet by 4%, which may be attributed to the fewer
parameters of MobileNet since this deep learning model
runs on devices with a limited resource (trading-off la-
tency against accuracy). Both deep learning methods mis-
classified species with a similar shape. However, Mo-
bileNet misclassified more of these species than VGG-
19. Another interesting observation is that MobileNet net-
work misclassified more than 16% of Alexandrine Para-
keet as Budgerigar (wild-type). Visualising the higher
level filter of this model shows that it relies less on colour
than VGG-19, which may explain some differences in per-
formance.

Considering the overall classification accuracies us-
ing the random forest with feature selection (90% cor-
rect classification) outperformed both deep learning ap-
proaches. We analyse the results by examining the Order
and Family of bird species to investigate this. The worse
misclassification for both VGG-19 and MobileNet oc-
curred with Psittaciformes versus Passeriformes (4%) and
Charadriiformes versus Psittaciformes (5% for MobileNet
and 2% for VGG), whiles our approach for these were
3% and 0% respectively. Our method also struggles with
Columbiformes versus Passeriformes (4%) but VGG-19
was 3% and MobileNet, 2% for these Orders (see Ta-

ours misclassified Columbiformes versus Psittaciformes
(4%) whiles these were respectively 1% for both VGG-19
and MobileNet. Both Deep Networks misclassified more
Families especially Passeridae versus Hirundinidae (22%
VGG-19 and 15% MobileNet) and Psittacidae versus Psit-
taculidae (12% VGG-19 and 21% MobileNet) whiles ours
only misclassified 7% and 4% respectively (see Tables 2,
4 and 5 in supplementary materials). There were very few
Families for which the deep learning methods were better
than ours.

Whilst we do not claim that our approach will outper-
form all deep-learning methods, we do think that this ev-
idences the potential of motion-based features to assist
with the classification problem, especially when dealing
with noisy data. We propose that future work could focus
on exploring motion features over longer trajectories, and
also look at network architectures which include temporal
features.
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Table 9: VGG-19 Confusion Matrix

I a b c d e f g h i j k 1 m %CC | Samples
a=Alexandrine Parakeet ~ 56.57% | 5.44% | 12.45% | 0.54% 0.69% 1.26% 241% | 13.10% | 1.99% 0.04% 0.92% 4.21% 0.38% | 57% 2611
b=Nanday Parakeet 4.12% | 83.05% | 441% | 0.24% | 0.24% | 3.04% | 0.05% | 2.06% | 2.40% | 0.00% | 0.29% | 0.10% | 0.00% | 83% 2041

c=Blue-crowned Parakeet | 1.57% 1.82%  80.40% | 1.24% 3.56% | 0.00% | 2.65% 1.82% 1.24% | 0.74% 1.65% | 0.41% | 2.89% | 80% 1209
d=Common House Martin | 0.00% | 0.00% | 0.02% | 96.98% | 0.00% | 0.00% 124% | 0.03% | 0.00% | 0.14% | 0.14% | 0.00% 1.45% | 97% 6351

e=Eastern Rosella 2.09% | 2.57% 1.90% | 0.10% 70.22% | 0.38% | 4.57% | 3.24% | 029% | 029% | 2.09% | 11.80% | 0.48% | 70% 1051
f=Budgerigar (yellow) 6.07% | 0.42% 1.58% | 0.00% | 0.08% | 82.28% | 0.17% | 7.90% | 0.00% | 0.08% | 0.00% 1.41% | 0.00% | 82% 1202
g=House Sparrow 0.05% | 0.00% | 031% | 0.87% | 0.15% | 0.15% | 72.59% | 0.61% | 0.15% | 0.10% | 0.36% | 2.51% | 22.13% | 73% 1952

h=Budgerigar (wild-type) | 3.28% | 2.83% | 474% | 0.64% | 7.11% | 33.27% | 3.28% | 30.54% | 0.55% | 0.64% | 2.01% | 10.85% | 0.27% | 31% 1097
i=Common Wood Pigeon | 0.79% | 0.23% | 0.00% | 0.45% | 0.00% | 0.00% | 0.00% | 0.00% | 95.50% | 0.34% | 0.00% | 0.34% | 2.36% | 95% 888

j=Black-headed Gull 0.34% | 0.05% | 0.00% | 0.00% | 0.31% | 0.01% | 0.08% | 0.03% | 0.11% | 98.06% | 0.23% | 0.74% | 0.04% | 98% 7419
k=Cockatiel 1.87% 0.75% 0.32% 0.27% 2.83% 0.05% 0.91% 3.10% 1.12% 2.67% | 74.56% | 5.40% 6.15% | 5% 1871
I=Budgerigar (blue) 093% | 1.03% | 033% | 0.89% | 1.07% | 0.09% | 1.59% | 0.98% | 042% | 0.79% | 0.28% | 90.57% | 1.03% | 91% 2142
m=Common Starling 0.09% | 0.00% | 0.00% | 0.87% | 0.00% | 0.09% | 16.88% | 0.18% | 0.69% | 0.50% | 0.14% | 0.37% | 80.18% | 80% 2180
Overall Correctly Classified 84%

Table 10: MobileNet Confusion Matrix
3 .

a | b c e f g h i j k 1 m %CC | Samples
a=Alexandrine Parakeet 47.03% ‘ 4.52% | 10.46% | 0.23% 0.96% 3.64% 4.98% | 16.47% | 1.72% 0.38% 3.06% 6.24% 0.31% 47 % 2611
b=Nanday Parakeet 225% 68.15% | 5.14% | 020% | 4.31% 9.95% 0.10% 7.15% 1.42% 0.05% | 098% | 0.24% | 0.05% | 68% 2041

c=Blue-crowned Parakeet | 2.07% 1.41% | 82.55% | 0.25% | 4.14% | 025% | 2.81% | 2.73% | 033% | 041% | 2.32% | 0.66% | 0.08% | 83% 1209
d=Common House Martin | 0.00% | 0.02% | 0.03% | 95.10% | 0.00% | 0.00% 197% | 0.38% | 0.03% | 0.03% 1.45% | 0.00% | 0.99% | 95% 6351

e=Eastern Rosella 0.38% | 0.67% 1.33% | 0.29% | 62.13% | 0.00% | 542% | 7.711% | 0.00% | 0.57% 371% | 17.60% | 0.19% | 62% 1051
f=Budgerigar (yellow) 2.08% | 0.33% 1.25% | 0.00% 1.75% | 86.69% | 0.42% | 4.66% | 0.00% | 0.42% | 0.50% 191% | 0.00% | 87% 1202
g=House Sparrow 0.00% | 0.00% | 0.20% | 2.51% | 0.05% | 046% | 75.712% | 2.10% | 0.31% | 0.20% 1.38% 1.69% | 1537% | 76% 1952

h=Budgerigar (wild-type) | 0.73% | 0.64% | 7.38% | 0.18% | 4.47% | 34.46% | 447% | 34.82% | 0.18% | 0.46% | 2.01% | 9.75% | 0.46% | 35% 1097
i=Common Wood Pigeon 0.45% | 0.45% | 0.34% | 0.45% | 0.00% | 0.00% | 0.45% | 0.11% 95.72% | 1.01% | 0.00% | 0.00% 1.01% | 96% 888

j=Black-headed Gull 0.04% 0.01% 0.01% 0.04% 0.12% 0.05% 0.61% 0.18% 0.03% 93.95% | 1.78% 3.03% 0.15% 94% 7419
k=Cockatiel 021% | 0.59% | 0.00% | 0.05% | 1.87% | 021% | 3.05% | 2.14% | 1.07% | 2.51% | 79.32% | 5.13% | 3.85% | 79% 1871
1=Budgerigar (blue) 2.15% 0.37% 0.75% 0.70% 1.26% 1.73% 2.24% 2.38% 1.54% 0.98% 0.42% | 84.45% | 1.03% 84% 2142
m=Common Starling 0.00% 0.14% 0.05% 1.06% 0.09% 0.09% | 32.71% | 0.46% 1.01% 0.18% 1.56% 0.46% | 62.20% | 62% 2180
Overall Correctly Classified 80%

Table 11: Confusion matrix based on the Random Forest classifier with selected appearance features only. Results based on the correlation-based
feature selection method.

a b c d e f g h i j k 1 m % CC | Samples
a = Alexandrine Parakeet 84.3% | 5.4% 1.2% | 05% | 03% | 09% | 0.7% 1.2% | 0.2% 1.1% 1.3% | 2.7% | 0.3% 84% 2611
b = Nanday Parakeet 72% | 83.5% | 2.1% 1.1% | 04% 13% | 0.1% | 0.7% | 0.6% | 0.6% | 09% | 08% | 0.6% 83% 2041
c=Blue-crowned Parakeet 62% | 22% | 85.9% | 0.2% 1.0% | 0.8% | 0.8% 1.0% | 0.1% | 02% | 02% 1.1% | 0.2% 86% 1209
d=Common House Martin 01% | 02% | 0.0% | 90.0% | 0.0% | 0.0% | 46% | 00% | 00% | 44% | 0.1% | 0.1% | 0.5% 90% 6351
e=Eastern Rosella 21% | 2.0% | 21% | 04% 774% | 0.8% 1.1% 1.0% | 0.1% | 42% 1.8% | 68% | 0.4% 77% 1051
f=Budgerigar (yellow) 24% | 23% | 09% | 0.6% | 02% | 86.3% | 1.5% 1.7% | 0.1% 1.8% | 0.6% 1.2% | 0.3% 86% 1202
g =House Sparrow 02% | 0.1% | 01% | 13.1% | 03% | 0.7% | 684% | 0.6% | 0.0% | 4.7% 1.1% 1.8% | 8.8% 68% 1952
h=Budgerigar (wild-type) 71% | 3.5% | 28% | 2.5% 1.1% | 62% | 3.6% | 60.1% | 0.5% | 3.7% | 3.4% | 4.0% 1.5% 60% 1097
i=Common Wood Pigeon 08% | 0.6% | 07% | 37% | 07% | 0.6% | 08% | 0.7% | 81.4% | 2.0% 1.9% 14% | 4.8% 81% 888
j = Black Headed Gull 0.0% | 0.0% | 0.0% 16% | 01% | 0.0% | 31% | 0.6% | 00% | 90.4% | 14% | 2.7% | 0.0% 90% 7419
k = Cockatiels 07% | 05% | 01% | 5.1% | 0.5% | 0.5% 1.1% | 04% | 0.1% | 2.5% | 83.0% | 12% | 4.5% 83% 1871
1=Budgerigar (blue) 21% | 0.7% | 0.4% 1.1% 1.0% | 0.6% 1.7% 1.0% | 0.0% | 9.1% 1.8% | 80.0% | 0.6% 80% 2142
m=Common Starling 04% | 05% | 02% | 52% | 0.1% | 0.6% | 93% | 02% | 0.2% 1.1% | 24% | 02% | 79.6% | 80% 2180
Overall Correctly Classified 84% 32014
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8. Conclusion

We have presented our work on the automated classifi-
cation of bird species in flight. Little comparable existing
work addresses this problem domain. Those that do are
mainly semi-automated, and use high-quality individual
images, and so not suitable for field deployment. Ours is
the first to adequately address this challenge as a robust
fine-grained classification problem, and to consider com-
bining motion and appearance features for classification
in flight.

We defined a total set of 320 appearance and motion
features, in conjunction with standard classifiers, on a
thirteen classes dataset. The Random Forest classifier
showed the best all-around performance (90% classifi-
cation rate). We used feature selection to improve per-
formance, which retained about 80 features and improv-
ing correct classification rates by around 7%. Compar-
ison with state-of-the-art deep learning image classifiers
(VGG, MobileNet), trained and tested on the same image
frames of our video dataset, showed that our classification
method compares favourably on our dataset.

Our future work focusses on further improving classi-
fier performance, and expanding our dataset of species,
through deployment in different contexts (such as migra-
tion). In particular, we consider that motion features will
be most effective at a range were appearance features are
not discernable. We wish to investigate the use of motion
features with different temporal resolutions to improve
species classification at this distances.
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