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expression of microRnA in follicular 
fluid in women with and without 
pcoS
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Several studies have shown the expression of small non-coding microRNA (miRNA) changes in PCOS 
and their expression in follicular fluid has been described, though the number of studies remains 
small. In this prospective cohort study, miRNA were measured using quantitative polymerase chain 
reaction (qPCR) in 29 weight and aged matched anovulatory women with PCOS and 30 women without 
from follicular fluid taken at the time of oocyte retrieval who were undergoing in vitro fertilization 
(IVF); miRNA levels were determined from a miRNA data set. 176 miRNA were detected, of which 29 
differed significantly between normal women and PCOS women. Of these, the top 7 (p < 0.015) were 
miR-381-3p, miR-199b-5p, miR-93-3p, miR-361-3p, miR-127-3p, miR-382-5p, miR-425-3p. In PCOS, 
miR-382-5p correlated with age and free androgen index (FAI), miR-199b-5p correlated with anti-
mullerian hormone (AMH) and miR-93-3p correlated with C-reactive protein (CRP). In normal controls, 
miR-127-3p, miR-382-5p and miR-425-3p correlated with the fertilisation rate; miR-127-3p correlated 
with insulin resistance and miR-381-3p correlated with FAI. Ingenuity pathway assessment revealed 
that 12 of the significantly altered miRNA related to reproductive pathways, 12 miRNA related to the 
inflammatory disease pathway and 6 were implicated in benign pelvic disease. MiRNAs differed in the 
follicular fluid between PCOS and normal control women, correlating with age, FAI, inflammation and 
AMH in PCOS, and with BMI, fertilization rate (3 miRNA), insulin resistance, FAI and inflammation in 
control women, according to Ingenuity Pathway Analysis.

Polycystic ovarian syndrome (PCOS) affects 9-21% of the female population and results in anovulatory infertility1, 
and is associated with clinical and biochemical hyperandrogenism, and insulin resistance (IR), hypercholester-
olemia and type 2 diabetes2. The underlying pathophysiology of PCOS is unclear and complex metabolic path-
ways underlying PCOS, involving deregulated carbohydrate, fat and protein metabolism, have been described3. 
A single unifying mechanism to account for these disparate physiological and clinical observations has not been 
described, though noncoding RNA expression regulating gene expression may be a candidate4.

MicroRNAs (miRNAs) are small noncoding single-stranded RNA molecules 18-24 nucleotides in length that 
directly regulate gene expression post-transcriptionally. Canonical miRNA binding occurs at the 3’ untranslated 
regions of the target messenger RNAs (mRNAs), that leads to the repression of mRNA expression resulting in 
protein translation inhibition. Several critical regulatory functions common to many biological processes are reg-
ulated by miRNAs that include cell growth and turnover, and the stress response5. The miRBase miRNA registry 
now includes over 2600 mature human miRNAs, of which only approximately 600 are confidentially annotated 
and can be considered as validated microRNAs6. A single miRNA may modulate the expression and function of 
hundreds of downstream target genes7. Amplification or inhibition of the miRNA signal through feedback on 
gene regulation may cause dramatic deregulation of physiologic cellular functions by just a few miRNAs, such 
as that seen following obesity surgery8. There is increasing evidence showing the involvement of miRNA in the 
pathogenesis of both type 1 and type 2 diabetes, and their identification as novel disease biomarkers9. Circulating 
miRNA have been described in PCOS10–15 and the expression of 3 miRNAs have been suggested to have utility as 
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PCOS biomarkers10. However, whilst miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 have been reported 
to be differentially expressed in obesity and in PCOS13, their regulation is likely to be complex.

The intrafollicular environment is critical for oocyte development, maturation and quality; constituents of 
the follicular fluid reflect local secretory activity of the oocyte, granulosa and theca cells16. Studies on miRNAs in 
follicular fluid are limited and conflicting with, for example, one study finding miR-132 and miR-320 expression 
reduced in women with PCOS17, another finding miR-320 expression increased in PCOS18 and a third report-
ing no change in miR-320a in PCOS19. Another study found five miRNAs (miR-9, miR-18b, miR-32, miR-34c 
and miR-135a) to have increased expression in women with PCOS12. When PCOS was phenotypically stratified, 
decreased levels of miR-24-3p, miR-29a, miR-151-3p and miR-574-3p were found in PCOS women versus con-
trols, and differentially high expression of miR-518f-3p was found in hyperandrogenic versus normo-androgenic 
PCOS women20.

Given the differing results of miRNA expression reported that could reflect PCOS alone, obesity, insulin resist-
ance, androgen levels and/or a metabolic phenotype among other factors, this study was undertaken to assess 
miRNA in the follicular fluid in age and BMI matched women with and without PCOS who underwent the same 
IVF protocol for subfertility.

Materials and Methods
“This prospective cohort study was performed from January 2014 to January 2016 within the Hull IVF Unit, UK 
following approval by the Yorkshire and the Humber NRES ethical committee, UK and all patients gave their 
written informed consent. Subject demographics are shown in Table 1. The PCOS subjects were recruited using 
the revised 2003 criteria21, namely any 2 out of 3 criteria were met; menstrual disturbance (oligo or amenor-
rhoea), clinical and/or biochemical signs of androgenism and polycystic ovaries on ultrasound, with the exclusion 
of other conditions. All women were on folic acid 400 mcg daily but not any other medication. Exclusion criteria 
were patients with diabetes, renal or liver insufficiency, acute or chronic infections, systemic inflammatory dis-
eases, age <20 or >45 years, or having known immunological disease. Liver ultrasound was performed at the 
same time to exclude non alcoholic fatty liver disease. Study participants had no concurrent illness and were 
not on any medication for the preceding nine months except study medications. None of the patients had had 
a successful pregnancy or miscarriage in at least five years prior to study entry. Diabetes was excluded by a 75 g 
oral glucose tolerance test. Non-classical 21-hydroxylase deficiency, hyperprolactinaemia, Cushing’s disease and 
androgen-secreting tumours were excluded by appropriate tests”22.

Sample Collection. “All patients underwent a standard IVF antagonist protocol. The patients commenced 
their rFSH stimulation on day 2 of their menstrual cycle using either Merional (Pharmasure) or Gonal-F (Merck 
Serono). A GnRH antagonist (Cetrotide: Merck Serono) was used to prevent a premature LH surge22”.

“The patients underwent ultrasound scans from day 7 to observe the ovarian response to stimulation and 
these were repeated every 48 hours. The scans were used to measure the diameters of the follicles, thus observing 
response and follicle numbers. Final maturation was triggered when two or more leading follicles were ≥18 mm 
using human chorionic gonadotrophin (hCG, Pregnyl (Merck Sharp and Dohme). Follicular fluid was collected at 
the same time as oocyte harvesting, was centrifuged at 3500 g for 15 minutes and placed into aliquots and frozen 
at −80 °C until analysis22”.

“Transcervical embryo transfer was performed and embryos were classified using standard criteria23 at the 
cleavage stage (day 2 to 3 after egg collection) and for blastocyst stage (day 5 to 6 after egg collection). Top Quality 
embryos were graded on Day 3 as per Alpha Consensus24. Embryo transfers were performed on either day 3 or 
ideally at day 5 (blastocyst) to give the best chance for implantation, as this timing is similar when compared to 
natural cycle embryos moving into the uterus”22.

“A fasting blood sample was taken on day 21of the luteal phase of the cycle before commencing IVF treat-
ment, and centrifuged at 3500 g for 15 minutes and placed into aliquots and frozen at −80 °C until analysis. 

Control (n = 30) PCOS (n = 29)

p-valueMean data ( ± SD) Mean data ( ± SD)

Age 32.6 ± 4.7 30.9 ± 4.8 0.14

BMI 25.5 ± 3.6 26.0 ± 3.8 0.56

Menarche 13.0 ± 2.0 13.0 ± 1.1 0.99

Total Antral Follicle Count 17.2 ± 6.8 38.4 ± 17.8 0.0001*

Testosterone (nmol/l) 0.8 ± 0.4 1.4 ± 0.8 0.0004*

Free androgen index 1.35 ± 0.6 4.21 ± 2.9 0.0001*

Fasting Insulin (mIU/ml) 7.68 ± 4.0 8.13 ± 4.7 0.69

Fasting Glucose (mmol/L) 4.81 ± 0.4 4.62 ± 0.4 0.06

HOMA-IR 1.71 ± 1.0 1.72 ± 1.0 0.97

SHBG (mmol/l) 110.9 ± 82.4 63.9 ± 49.8 0.01*

AMH (pg/ml) 21.9 ± 10.4 55.8 ± 14.5 0.001*

Table 1. Mean Demographic and biochemical data. BMI = body mass index; HOMA-IR = insulin resistance; 
SHBG = sex hormone binding globulin; AMH = antimullerian hormone. * = statistically significant result.
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All PCOS women were oligomenorrheic, none having had a period within the preceding 6 weeks. Serum and 
plasma was stored frozen at −80 °C pending analysis. Serum testosterone was measured by isotope dilution liq-
uid chromatography- tandem mass spectrometry (Waters Corporation, Manchester, UK). Sex hormone binding 
globulin (SHBG) was determined by an immunometric assay with fluorescence detection on the DPC Immulite 
2000 analyzer using the manufacturer’s recommended protocol. The free androgen index was obtained as the 
total testosterone x100/SHBG. Serum insulin was assayed using a competitive chemiluminescent immunoassay 
performed on the manufacturer’s DPC Immulite 2000 analyzer (Euro/DPC, Llanberis, UK). The analytical sensi-
tivity of the insulin assay was 2 µU/ml, the coefficient of variation was 6%, and there was no stated cross-reactivity 
with proinsulin. Plasma glucose was measured using a Synchron LX 20 analyzer (Beckman-Coulter), using 
the manufacturer’s recommended protocol. The coefficient of variation for the assay was 1.2% at a mean glu-
cose value of 5.3 mmol/liter during the study period. The insulin resistance was calculated using the HOMA 
method [HOMA-IR = (insulin × glucose)/22.5], and pancreatic beta cell sensitivity measured by HOMA-β 
[HOMA-β = (20 × insulin)/glucose −3.5]22”.

MicroRnA analysis
“Currently, due to accuracy, simplicity, and greater reproducibility, quantitative polymerase chain reaction 
(qPCR) is the favored method for determining microRNA expression when compared to other hybridization or 
sequencing-based technologies25. MicroRNA was isolated from 200 µl EDTA plasma using the miRCURY™ RNA 
Isolation Kit (Exiqon A/S, Denmark) following the manufacturer’s instructions and applying an RNA Spike-in 
kit (Exiqon A/S, Denmark) for assessment of hemolysis and contamination with blood cells and RNA isolation 
efficiency. The yield of microRNA preparation from plasma samples was monitored by including carrier RNA 
from the bacteriophage MS2. The quality and the integrity of the RNA were assessed by a 2100 Bioanalyzer instru-
ment (Agilent Technologies), equipped with the small RNA specific chip. The expression of microRNA levels was 
retrieved from a microRNA data set generated by RNA sequencing of more than 390 different human tissue and 
primary cell samples8,26”

Statistics
There was no information regarding changes in miR on which to base a sample size calculation. For such 
pilot studies, Birkett and Day27 suggest a minimum of 20 degrees of freedom to estimate variance from which 
a larger trial could be powered, hence 24 subjects in each group were recruited. Statistical analysis was per-
formed using SPSS (v22, Chicago, Illinois). Descriptive data is presented as mean ± SD for continuous data 
and n (%) for categorical data. T-tests or Mann Whitney tests were used to compare means/medians where 
appropriate. Linear associations were assessed using the Spearman’s correlation test. Mean normalization was 
performed before analysis using the global mean of each miRNA. Using GenEx software that accompanied 
the Bioanalyzer, normalization was performed to achieve a global mean of all miRNAs with Ct below 35. An 
unpaired t-test was used to test the paired changes between PCOS and controls in miRNA levels. False dis-
covery rates (FDR) of q < 0.0528 were considered significant. Pathway analysis was performed using Ingenuity 
Pathway Analysis (Qiagen), and those pathways over-represented by the FDR-significant miRNA changes at 
q < 0.0528 were identified.

Results
Baseline characteristics of the 59 patients, 29 PCOS and 30 normal controls, are shown in Table 1 where it can 
be seen that patients were non-obese, age and weight matched and did not differ in their insulin resistance. 
There were significant differences in ovarian reserve parameters antral follicle count (AFC) and anti-Mullerian 
Hormone, (AMH), and androgen status between the groups; however, there was no significant difference in fast-
ing insulin or HOMA-IR (Table 1).

IVF parameters are shown in Table 2, where it can be seen that more follicles were aspirated and eggs retrieved 
(p < 0.05) and the fertilization rate was higher for PCOS (p < 0.0003).

Control (N = 30) PCOS (N = 29)

p-valueMean ( ± S.D.) Mean ( ± S.D.)

Endometrium at oocyte 
retrieval (mm) 10.31 ± 1.78 10.72 ± 2.06 0.42

Follicles aspirated 11.47 ± 5.11 15.96 ± 5.30 0.002**

Eggs Retrieved 8.47 ± 5.08 11.29 ± 5.02 0.04*

Fertilisation rate 4.82 ± 2.65 8.43 ± 3.87 0.0003***

Cleavage 4.68 ± 2.72 7.26 ± 4.40 0.01*

G3D3 3.00 ± 2.29 4.17 ± 3.47 0.16

Blastocyst 1.46 ± 1.77 2.91 ± 3.01 0.05*

Clinical Pregnancy 10 7 0.24

Table 2. Mean outcome data for stimulated ovarian cycle for Control and PCOS groups. G3D3: Top Quality 
embryos on Day 3 as per Alpha Consensus24. * = statistically significant result.
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176 miRNAs were detected, of which 29 differed significantly (Table 3, Fig. 1) between normal women and 
PCOS; all of the miRNA detected are shown in Supplementary Table 1.

The top 7 of these (p < 0.015) were miR-381-3p, miR-199b-5p, miR-93-3p, miR-361-3p, miR-127-3p, miR-
382-5p, miR-425-3p. In PCOS, miR-382-5p correlated with age and FAI, miR-199b-5p correlated with AMH 
and miR-93-3p correlated with C-reactive protein (CRP). In normal controls, miR-127-3p, miR382-5p and miR-
425-3p correlated with the fertilisation rate; miR-127-3p correlated with insulin resistance, and miR-381-3p cor-
related with FAI (Table 4).

Ingenuity pathway assessment. When Ingenuity pathway analysis was undertaken to look at the func-
tional relationships, it was seen that 12 of the significantly altered miRNA related to reproductive pathways, as 
is shown in Fig. 2. Twelve miRNAs were related to the inflammatory disease pathway, as is shown in Fig. 3. Six 
miRNAs were related to the pathways implicated in benign pelvic disease: miR-212-3p, miR-32-5p, miR-200c-3p, 
miR-125b-5p, miR-206 and miR-9-5p.

Discussion
Ovulatory dysfunction, increased IR, an elevated FAI and inflammation are hallmarks of PCOS and, in line 
with the objective, this study has shown that miRNA found in the follicular fluid were related to these param-
eters. In PCOS, miR-199b-5p correlated with AMH that is recognized to be elevated in PCOS and, indeed, 
AMH has been suggested by some studies, but not others, to be a biomarker of PCOS29,30 where it has a four 
fold association with a diagnosis of PCOS although with low sensitivity. miR-382-5p correlated with FAI that 
is classically elevated, and miR-93-3p correlated with C-reactive protein (CRP), a marker of inflammation, that 
has consistently been shown to be greater in PCOS than controls31,32. In addition, in normal subjects, miR-
127-3p, miR-382-5p and miR-425-3p correlated with the fertilisation rate, whilst miR-127-3p correlated with 
IR and miR-381-3p correlated with FAI. Whether these miRNAs are involved in the associated processes would 
seem to be supported by the Ingenuity pathways showing the involvement of these miRNA specifically in the 
reproductive pathways (12 miRNAs) and inflammation (12 miRNAs). However, given that miRNA action is 
essentially inhibitory by inducing degradation or inhibition of protein translation5, their roles, either direct or 

PCOS vs Control Fold change P-Value

hsa-miR-381-3p 1.95136 0.0018

hsa-miR-199b-5p 2.2861 0.0040

has-miR-650 −2.45385 0.0053

hsa-miR-93-3p 3.47102 0.0060

has-miR-663b −2.47917 0.0095

hsa-miR-361-3p 2.10148 0.0104

hsa-miR-127-3p 2.15942 0.0132

has-miR-1238-3p 1.78509 0.0149

hsa-miR-382-5p 2.4991 0.0150

hsa-miR-425-3p 2.41375 0.0161

hsa-miR-212-3p 2.91193 0.0183

hsa-miR-423-3p 1.59576 0.0189

hsa-miR-891b −2.95618 0.0198

hsa-miR-187-3p 1.41842 0.0229

hsa-miR-513c-5p 2.21283 0.0262

hsa-miR-510-5p 1.1463 0.0300

hsa-miR-507 2.07081 0.0305

hsa-miR-509-3-5p 1.62364 0.0366

hsa-miR-638 1.18991 0.0375

hsa-miR-532-5p 1.93401 0.0375

hsa-miR-1271-5p 1.55672 0.0375

hsa-miR-193a-5p 1.58387 0.0377

hsa-miR-32-5p −2.14067 0.0396

hsa-miR-200c-3p 2.08148 0.0459

hsa-miR-33b-3p 1.23812 0.0460

hsa-miR-675-5p 1.94931 0.0462

hsa-miR-125b-5p 1.31108 0.0481

hsa-miR-206 −1.23035 0.0486

hsa-miR-9-5p −1.53421 0.0500

Table 3. Significant differences (fold change) in the miRNA in follicular fluid between PCOS (n = 29) versus 
control women (n = 30).
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indirect, require further clarification. It is recognized that miRNA may be affected by BMI13 and, to account for 
this, PCOS and normal controls were weight matched in this study; however, despite this, in normal controls, 
miR-1238-3p correlated with BMI.

Recent reports have indicated that dysregulated miRNAs may be key players in the ovulatory dysfunction of 
women with PCOS. MiRNAs have been reported to be differentially expressed in follicular fluid of women with 
PCOS12,17. Upregulated miRNAs include miRNA-9, miRNA-18b, miRNA-32, miRNA-34c and miRNA-135a, 
and, by analysis of target genes, these have been shown to be involved in carbohydrate metabolism, beta-cell 

Figure 1. Volcano plot of microRNA detected in the follicular fluid between those women with PCOS (n = 29) 
versus normal women without PCOS (n = 30). Altered expression of microRNAs in a comparison between 
PCOS and controls are shown as fold change on the x-axis and the significance (p-value) of that fold change 
on the y-axis. Both are shown in log scale. Red dots: miRs with >2-fold change (+ or −) but not changing 
significantly. Yellow dots: miRs with >2-fold change and also changing significantly (p < 0.05).

PCOS

miR-199b-5p miR-127-3p miR-361-3p miR-382-5p miR-425-3p miR-381-3p miR-93-3p

R P-value R P-value R P-value R P-value R P-value R P-value R P-value

Age 0.348 0.095 0.215 0.29 −0.039 0.875 0.436 0.023 0.198 0.333 −0.088 0.744 −0.363 0.105

BMI 0.075 0.728 −0.091 0.658 −0.172 0.481 −0.149 0.459 −0.124 0.547 −0.088 0.745 0.04 0.862

AMH −0.591 0.002 0.023 0.911 0.069 0.779 −0.152 0.449 −0.143 0.485 −0.073 0.789 −0.106 0.647

Fertilisation rate 0.191 0.408 0.152 0.51 −0.133 0.638 −0.095 0.674 0.023 0.92 −0.159 0.586 0.156 0.536

HOMA-IR −0.163 0.445 −0.08 0.699 −0.244 0.314 −0.148 0.462 −0.286 0.156 −0.2 0.458 0.143 0.537

CRP 0.101 0.655 −0.056 0.796 0.221 0.393 0.247 0.233 −0.147 0.492 0.089 0.751 0.637 0.003

FAI 0.012 0.955 −0.077 0.708 −0.366 0.124 −0.419 0.03 −0.306 0.129 −0.395 0.13 −0.321 0.156

CONTROLS

miR-199b-5p miR-127-3p miR-361-3p miR-382-5p miR-425-3p miR-381-3p miR-93-3p

R P-value R P-value R P-value R P-value R P-value R P-value R P-value

Age 0.034 0.887 0.06 0.77 0.191 0.533 0.382 0.072 0.133 0.535 0.629 0.028 −0.265 0.405

BMI 0.342 0.14 −0.087 0.674 −0.41 0.164 0.142 0.517 0.167 0.435 −0.109 0.737 −0.196 0.54

AMH −0.186 0.431 −0.168 0.413 0.022 0.943 −0.019 0.93 −0.16 0.455 0.224 0.484 -0.182 0.572

Fertilisation rate 0.395 0.104 0.449 0.024 0.119 0.712 0.537 0.012 0.424 0.049 0.436 0.18 0.073 0.83

HOMA-IR −0.108 0.65 −0.387 0.050 0.121 0.694 0.013 0.954 −0.065 0.762 0.196 0.542 0.126 0.697

CRP 0.198 0.402 0.123 0.56 0.33 0.271 0.099 0.66 0.166 0.448 −0.209 0.537 0.333 0.29

FAI −0.002 0.993 −0.213 0.296 −0.06 0.847 −0.308 0.153 −0.005 0.983 −0.655 0.021 0.27 0.395

Table 4. Spearman’s correlation of the top 7 microRNA (p < 0.015) in follicular fluid taken at the time of oocyte 
retrieval during IVF in 59 age and weight matched women, 29 with PCOS and 30 normal control women. 
BMI = body mass index; AMH = Antimullarian Hormone; HOMA-IR = insulin resistance; FAI = free androgen 
index; CRP = C reactive protein.
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function and steroid synthesis, so may have direct relevance to the phenotype of women with PCOS12. Insulin 
resistance is a fundamental underlying issue in PCOS; whether it is primary metabolite dysregulation in PCOS 
having a secondary effect such as increased free fatty acids enhancing insulin resistance33 or the converse that 
insulin resistance reflects metabolite is unclear, but miRNA may have a fundamental role such as miRNA-122 
association with insulin resistance34, miRNA-361 is affected by a low glycemic diet that would impact on insu-
lin resistance35, and miRNA-382 is involved in changes in insulin resistance with exercise36. MiRNAs reported 
to be downregulated in follicular fluid of PCOS women include miRNA-132 and miRNA-32017. This report 
was, however, discrepant with the findings of a later study which reported upregulation of miRNA-320 in fol-
licular fluid, potentially explaining the hyperandrogenemia found in women with PCOS through downregula-
tion of E2F1/SF-1 proteins which, in turn, cause inhibition of estradiol release into follicular fluid18. Therefore, 
despite the inconsistencies between studies which may relate to differing populations of women with varying 
ages37 or severity on the spectrum of PCOS38, miRNAs in follicular fluid appear to play a central role in the 
ovulatory dysfunction of PCOS.

Strengths of this study were the well-matched groups of women with and without PCOS, who were all under-
going in vitro fertilization, and the relatively large patient cohort for a study of this nature. The fact that the 
study was based upon follicular fluid samples as opposed to peripheral blood samples is also a major strength. 
Limitations were that this was a relatively small study and the women with PCOS did not have the most severe 
PCOS phenotype in terms of BMI and insulin resistance, and this may have reduced differences in their miRNA 
profiles when compared with the control women. Despite this, distinct differences were found and may be gen-
eralizable to all PCOS women.

Figure 2. Ingenuity pathway analysis of the significantly altered miRNA found in the follicular fluid showing 
that 12 of these miRNA were related to the genes involved in the Organismal Injury and Abnormalities, 
Reproductive System Disease pathway. Strongly upregulated and downregulated miRNA are represented with 
dark red and green color and vice versa.
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In conclusion, miR differed in the follicular fluid between PCOS and normal control women, correlating with 
age, FAI, inflammation and AMH in PCOS, and with fertilization rate, insulin resistance and FAI and inflamma-
tion in control women, in accord with the Ingenuity pathway assessment.

Data availability
The data that support the findings of this study are available from the corresponding author upon request.
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