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Abstract 

 

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterised by 

scarring of the lung that is believed to result from an atypical response to injury of the 

epithelium. Genome-wide association studies have reported signals of association 

implicating multiple pathways including host defence, telomere maintenance, signalling and 

cell-cell adhesion. 

 

Objectives: To improve our understanding of factors that increase IPF susceptibility by 

identifying previously unreported genetic associations. 

 

Methods and measurements: We conducted genome-wide analyses across three 

independent studies and meta-analysed these results to generate the largest genome-wide 

association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed 

replication in two independent studies (1,457 IPF cases and 11,874 controls) and functional 

follow-up analyses (including statistical fine-mapping, investigations into gene expression 

and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine 

putatively causal genes. Polygenic risk scores were used to assess the collective effect of 

variants not reported as associated with IPF. 

 

Main results: We identified and replicated three new genome-wide significant (P<5×10−8) 

signals of association with IPF susceptibility (near KIF15, MAD1L1 and DEPTOR) and confirm 

associations at 11 previously reported loci. Polygenic risk score analyses showed that the 
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combined effect of many thousands of as-yet unreported IPF susceptibility variants 

contribute to IPF susceptibility. 

 

Conclusions: The observation that decreased DEPTOR expression associates with increased 

susceptibility to IPF, supports recent studies demonstrating the importance of mTOR 

signalling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a 

possible role of mitotic spindle-assembly genes in IPF susceptibility.  

 

Abstract word count: 

 

Key words: Genetics, Epidemiology, KIF15, MAD1L1, DEPTOR 
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Introduction 

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease characterised by the build-up 

of scar tissue. It is believed that damage to the alveolar epithelium is followed by an 

aberrant wound healing response leading to the deposition of dense fibrotic tissue, reducing 

the lungs’ flexibility and inhibiting gas transfer1. Treatment options are limited and half of 

individuals diagnosed with IPF die within 3-5 years1,2. Two drugs (pirfenidone and 

nintedanib) have been approved for the treatment of IPF, but neither offer a cure and only 

slow disease progression. 

 

IPF is associated with a number of environmental and genetic factors. Identifying regions of 

the genome contributing to disease risk improves our understanding of the biological 

processes underlying IPF and helps in the development of new treatments3. To date, 

genome-wide association studies4-8 (GWAS) have reported 17 common variant (minor allele 

frequency [MAF]>5%) signals associated with IPF; stressing the importance of host defence, 

telomere maintenance, cell-cell adhesion and signalling with respect to disease 

susceptibility. The sentinel (most strongly associated) variant, rs35705950, in one of these 

signals that maps to the promoter region of the MUC5B gene, has a much larger effect on 

disease susceptibility than other reported risk variants with each copy of the risk allele 

associated with a five-fold increase in odds of disease9. Despite this, the variant rs35705950 

has a risk allele frequency of only 35% in cases (compared with 11% in the general 

population) and so does not explain all IPF risk. Rare variants (MAF<1%) in telomere-related 

and surfactant genes have also been implicated in familial pulmonary fibrosis and sporadic 

IPF10,11. 
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In this study, we aimed to identify previously unreported genetic associations with IPF to 

improve our understanding of disease susceptibility and generate new hypotheses about 

disease pathogenesis. We conducted a large GWAS of IPF susceptibility by utilising all 

European cases and controls recruited to any previously reported IPF GWAS5-8 and meta-

analysing the results. This was followed by replication in individuals not previously included 

in IPF GWAS and bioinformatic analysis of gene expression data to identify the genes 

underlying the identified association signals. As specific IPF associated variants have also 

been shown to overlap with other related respiratory traits including lung function in the 

general population, chronic obstructive pulmonary disease (COPD, with genetic effects in 

opposite directions between COPD and IPF)12-14 and interstitial lung abnormalities (ILAs, 

which might be a precursor lesion for IPF)15, we tested for association of the IPF 

susceptibility variants with these respiratory phenotypes in independent datasets. Finally, 

using polygenic risk scores, we tested whether there was a still substantial contribution to 

IPF risk from genetic variants with as-yet unconfirmed associations with IPF susceptibility.  

 

Some of the results of these studies have been previously reported in the form of an 

abstract and preprint16-18. 

 

Methods 

Study cohorts 

We analysed genome-wide data from three previously described independent IPF case-

control collections (named here as the Chicago5, Colorado6 and UK8 studies, please refer to 

Appendix for summaries of these collections). Two more independent case-control 

collections (named here as the UUS and Genentech studies) were included as replication 
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datasets. The new UUS study recruited cases from the USA, UK and Spain and selected 

controls from UK Biobank19 (full details on the recruitment, genotyping and quality control of 

UUS cases and controls can be found in the Appendix). The previously described20 

Genentech study consisted of cases from three IPF clinical trials and controls from four non-

IPF clinical trials (Appendix). All studies were restricted to unrelated individuals of European 

ancestry and we applied stringent quality control measures (full details of the quality control 

measures of each study can be found in the Appendix and Figure E1). All studies diagnosed 

cases using American Thoracic Society and European Respiratory Society guidelines21-23 and 

had appropriate institutional review board or ethics approval.  

 

Genotype data for the Colorado, Chicago, UK and UUS studies were imputed separately 

using the Haplotype Reference Consortium (HRC) r1.1 panel24 (Appendix). For individuals in 

the Genentech study, genotypes were derived from whole-genome sequencing data. 

Duplicated individuals between studies were removed (Appendix). 

 

Identification of IPF susceptibility signals 

In each of the Chicago, Colorado and UK studies separately, a genome-wide analysis of IPF 

susceptibility, using SNPTEST25 v2.5.2, was conducted adjusting for the first 10 principal 

components to account for fine-scale population structure. Only bi-allelic autosomal variants 

that had a minor allele count ≥10, were in Hardy-Weinberg Equilibrium (P>1×10−6), and were 

well imputed (imputation quality R2>0.5) in at least two studies were included. A genome-

wide meta-analysis of the association summary statistics was performed across the Chicago, 

Colorado and UK studies using R v3.5.1 (discovery stage). Conditional analyses were 

performed to identify independent association signals in each locus (Appendix). 
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Sentinel variants (defined as the variant in an association signal where no other variants 

within 1 Mb showed a stronger association) of the novel signals reaching genome-wide 

significance in the meta-analysis (P<5×10−8), and nominally significant (P<0.05) with 

consistent direction of effect in each study, were further tested in the replication samples. 

We considered novel signals to be associated with IPF susceptibility if they reached a 

Bonferroni-corrected threshold (P<0.05 / number of signals followed-up) in a meta-analysis 

of the UUS and Genentech studies (replication stage, Appendix). Previously reported signals 

with P<5×10−8 in the discovery meta-analysis were deemed as a confirmed association. 

 

Characterisation of signals and functional effects 

To further refine our association signals to include only variants with the highest 

probabilities of being causal, Bayesian fine-mapping was undertaken. This approach takes all 

variants within the associated locus and, using the GWAS association results, calculates the 

probability of each variant being the true causal variant (under the assumptions that there is 

one causal variant and that the causal variant has been measured). The probabilities are 

then combined across variants to define the smallest set of variants that is 95% likely to 

contain the causal variant (i.e. the 95% credible set) for each IPF susceptibility signal 

(Appendix).  

 

To identify which genes might be implicated by the IPF susceptibility signals, we identified 

whether any variants in the credible sets were genic coding variants and defined as 

deleterious (using VEP26). In addition, we tested to see if any of the credible set variants 

were associated with gene expression using three eQTL resources (the Lung eQTL study 
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[n=1,111]27-29, the NESDA-NTR blood eQTL database [n=4,896]30 and 48 tissues in GTEx31 [n 

between 80 and 491], Appendix). Where IPF susceptibility variants were found to be 

associated with expression levels of a gene, we tested whether the same variant was likely 

to be causal both for differences in gene expression and IPF susceptibility. We only report 

associations with gene expression where the probability of the same variant driving both the 

IPF susceptibility signal and gene expression signal exceeded 80% (Appendix). 

 

To investigate whether the IPF susceptibility variants that were in non-coding regions of the 

genome might be in regions with regulatory functions (for example, in regions of open 

chromatin), we investigated the likely functional impact of those variants using DeepSEA32. 

Taking all of the IPF susceptibility variants together, we tested for overall enrichment in 

regulatory regions specific to particular cell and tissue types using FORGE33 and GARFIELD34. 

Finally, we investigated whether the genes that were near to the IPF susceptibility variants 

were more likely to be differentially expressed between IPF cases and controls in four lung 

epithelial cell types, using SNPsea35. More details are provided in the Appendix. 

 

Shared genetic susceptibility with other respiratory traits 

As previous studies have reported shared genetic susceptibility for IPF and other lung 

traits12,13,15, we investigated whether the new and previously reported IPF susceptibility 

signals were associated with quantitative lung function measures in a GWAS of 400,102 

individuals36 or with ILA in a GWAS comparing 1,699 individuals with an ILA and 10,247 

controls37. Lung function measures investigated were, FEV1 (volume of air an individual can 

forcibly exhale in the first second), FVC (total volume of air that can be forcibly exhaled), the 

ratio FEV1/FVC (used in the diagnosis of COPD) and PEF (the peak expiratory flow). We 
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applied a Bonferroni corrected P value threshold to define variants also associated with ILA 

or lung function.  

 

Polygenic risk scores 

The contribution of as-yet unreported variants to IPF susceptibility was assessed using 

polygenic risk scores. For each individual in the UUS study, the weighted score was 

calculated as the number of risk alleles, multiplied by the effect size of the variant (as a 

weighting), summed across all variants included in the score. Effect sizes were taken from 

the discovery GWAS and independent variants selected using an LD r2≤0.1.  As we wanted to 

explore the contribution from as-yet unreported variants, we excluded variants within 1Mb 

of each IPF susceptibility locus from the risk score calculation (Appendix).  

 

The score was tested to identify whether it was associated with IPF susceptibility, adjusting 

for 10 principal components to account for fine-scale population structure, using PRSice 

v1.2538. We altered the number of variants included in the risk score calculation using a 

sliding P-threshold (PT) such that the variant had to have a P value<PT in the genome-wide 

meta-analysis to be included in the score. This allows us to explore whether variants that do 

not reach statistical significance in GWAS of current size contribute to disease susceptibility. 

We used the recommended significance threshold of P<0.001 for determining significantly 

associated risk scores38. 

 

Data availability statement 

Full summary statistics for the genome-wide meta-analysis can be downloaded at 

https://github.com/genomicsITER-developers/PFgenetics/blob/master/README.md 
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Results 

Following quality control, 541 cases and 542 controls from the Chicago study, 1,515 cases 

and 4,683 controls from the Colorado study and 612 cases and 3,366 controls from the UK 

study were available (Table 1, Figure E1) to contribute to the discovery stage of the genome-

wide susceptibility analysis (Figure 1). For the replication stage of the GWAS, after quality 

control, there were 793 cases and 10,000 controls available in the UUS study and 664 cases 

and 1,874 controls available in the Genentech study (Appendix). 

 

To identify new signals of association, we meta-analysed the genome-wide association 

results for IPF susceptibility for the Chicago, Colorado and UK discovery studies. This gave a 

maximum sample size of up to 2,668 cases and 8,591 controls for 10,790,934 well imputed 

(R2>0.5) variants with minor allele count ≥10 in each study and which were available in two 

or more of the studies (Figure E2).  

 

Three novel signals (in 3p21.31 [near KIF15, Figure 2i], 7p22.3 [near MAD1L1, Figure 2ii] and 

8q24.12 [near DEPTOR, Figure 2iii]) showed a genome-wide significant (P<5x10-8) association 

with IPF susceptibility in the discovery meta-analysis and were also significant after adjusting 

for multiple testing (P<0.01) in the replication stage comprising 1,467 IPF cases and 11,874 

controls (Tables 2 and E1). Two additional loci were genome-wide significant in the genome-

wide discovery analysis but did not reach significance in the replication studies. The sentinel 

variants of these two signals were a low frequency intronic variant in RTEL1 (MAF=2.1%, 

replication P=0.012) and a rare intronic variant in HECTD2 (MAF=0.3%, replication P=0.155).  
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Conditional analyses did not identify any additional independent association signals at the 

new or previously reported IPF susceptibility loci (Figure E5).  

 

To identify the likely causal genes for each new signal, we investigated whether any of the 

variants were also associated with changes in gene expression. The sentinel variant 

(rs78238620) of the novel signal on chromosome 3 was a low frequency variant (MAF=5%) in 

an intron of KIF15 with the minor allele being associated with increased susceptibility to IPF 

and decreased expression of KIF15 in brain tissue and the nearby gene TMEM42 in thyroid31 

(Figure E7, Tables E2 and E3i).  The IPF risk allele for the novel chromosome 7 signal 

(rs12699415, MAF=42.0%) was associated with decreased expression of MAD1L1 in heart 

tissue31 (Figure E8, Tables E2 and E3ii).  For the signal on chromosome 8, the sentinel variant 

(rs28513081) was located in an intron of DEPTOR and the IPF risk allele was associated with 

decreased expression of DEPTOR (in colon, lung and skin27-29,31) and RP11-760H22.2 (in colon 

and lung31). The risk allele was also associated with increased expression of DEPTOR (in 

whole blood30), TAF2 (in colon31), RP11-760H22.2 (in adipose31) and KB-1471A8.1 (in adipose 

and skin31, Figure E9, Tables E2 and E3iii). There were no variants predicted to be highly 

deleterious within the fine-mapped signals for any of the loci. 

 

We confirmed genome-wide significant associations with IPF susceptibility for 11 of the 17 

previously reported signals (in or near TERC, TERT, DSP, 7q22.1, MUC5B, ATP11A, IVD, 

AKAP13, KANSL1, FAM13A and DPP9; Table E1, Figure E4). The signal at FAM13A, whilst 

genome-wide significant in the discovery meta-analysis, was not significant in the Chicago 

study. This was the only signal reaching genome-wide significance in the discovery genome-

wide meta-analysis that did not reach at least nominal significance in each study in the 
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discovery analysis. Three further previously reported signals at 11p15.5 (near MUC5B) were 

no longer genome-wide significant after conditioning on the MUC5B promoter variant (Table 

E1), consistent with previous reports6,39. 

 

Of the 14 IPF susceptibility signals (i.e. the 11 previously reported signals we confirmed and 

three novel signals), the only variant predicted to have a potential functional effect on gene 

regulation through disruption of chromatin structure or transcription factor binding motifs 

(using DeepSEA) was rs2013701 (in an intron of FAM13A), which was associated with a 

change in DNase I hypersensitivity in 18 cell types and FOXA1 in the T-47D cell line (a breast 

cancer cell line derived from a pleural effusion, Table E4). The 14 IPF susceptibility signals 

were found to be enriched in DNase I hypersensitivity site regions in multiple tissues 

including foetal lung tissue (Figure E10 and E11). No enrichment in differential expression in 

airway epithelial cells between IPF cases and healthy controls was observed for the 14 IPF 

susceptibility signals when using SNPsea (Table E5).  

 

Previous studies have reported an overlap of genetic association loci between lung function 

and IPF40. We undertook a look-up of the 14 IPF susceptibility loci in the largest GWAS of 

lung function in the general population published to date36. The sentinel variants of 12 of the 

14 IPF susceptibility loci were at least nominally associated (P<0.05) with one or more lung 

function trait in general population studies (Table E6). After adjustments for multiple testing 

(P<5.2×10−4), the previously reported variants at FAM13A, DSP and IVD were associated with 

decreased FVC and variants at FAM13A, DSP, 7q22.1 (ZKSCAN1) and ATP11A were associated 

with increased FEV1/FVC. Similarly, for the three novel susceptibility variants, all showed at 

least a nominal association with decreased FVC and increased FEV1/FVC. We observed a 
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nominally significant association of the MUC5B IPF risk allele with decreased FVC and 

increased FEV1/FVC. The IPF risk alleles at MAPT were significantly associated with both 

increased FEV1 and FVC. To determine whether the variants identified for IPF susceptibility 

are driven by differences in lung function between cases and controls, we investigated 

whether variants known to be associated with lung function show an association in our IPF 

GWAS. Of the 279 variants reported36 as associated with lung function (Table E7), eight 

showed an association with lung function after corrections for multiple testing (located in or 

near MCL1, DSP, ZKSCAN1, OBFC1, IVD, MAPT and two signals in FAM13A). 

 

As interstitial lung abnormalities may be a precursor to IPF in a subset of patients, and there 

have been previous reports of shared genetic aetiology between IPF and ILA37,41,42, we 

investigated whether our three new signals, and the 11 previously reported signals, were 

associated with ILA in the largest ILA GWAS reported to date37. Eight of the IPF susceptibility 

loci were at least nominally significantly associated with either ILA or subpleural ILA with 

consistent direction of effects (i.e. the allele associated with increased IPF risk was also 

associated with increased ILA risk). The new KIF15, MAD1L1 and DEPTOR signals were not 

associated with ILA (although the rare risk allele at HECTD2 that did not replicate in our 

study showed some association with an increased risk of subpleural ILA [P=0.003] with a 

large effect size similar to that observed in the IPF discovery meta-analysis). 

 

To quantify the impact of as-yet unreported variants on IPF susceptibility, polygenic risk 

scores were calculated excluding the 14 IPF susceptibility variants (as well as all variants 

within 1Mb). The polygenic risk score was significantly associated with increased IPF 

susceptibility despite exclusion of the known genetic association signals (including MUC5B). 
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As the P-threshold (PT) for inclusion of variants in the score was increased, the risk score 

became more significant reaching a plateau at around PT=0.2 with risk score P<3.08×10−23 

and explaining around 2% of the phenotypic variation (Figure E12), suggesting that there is a 

modest but statistically significant contribution of additional as-yet undetected variants to 

IPF susceptibility. Further increasing PT beyond 0.2 did not improve the predictive accuracy 

of the risk score.  

 

 

Discussion 

We undertook the largest GWAS of IPF susceptibility to date and identified three novel 

signals of association that implicated genes not previously known to be important in IPF. 

 

The strongest evidence for the new signal on chromosome 8 implicates DEPTOR, which 

encodes the DEP Domain containing MTOR interacting protein. DEPTOR inhibits mTOR 

kinase activity as part of both the mTORC1 and mTORC2 protein complexes. The IPF risk 

allele at this locus was associated with decreased gene expression of DEPTOR in lung tissue 

(Table E2). TGFβ-induced DEPTOR suppression can stimulate collagen synthesis43 and the 

importance of mTORC1 signalling via 4E-BP1 for TGFβ induced collagen synthesis has 

recently been demonstrated in fibrogenesis44. MAD1L1, implicated by a new signal on 

chromosome 7 and eQTL analyses of non-lung tissue, is a mitotic checkpoint gene, mutations 

in which have been associated with multiple cancers including lung cancer45,46. Studies have 

shown that MAD1, a homolog of MAD1L1, can inhibit TERT activity (or possibly enforce 

expression of TERT when the promoter E-box is mutated)46,47. This could suggest that 

MAD1L1 may increase IPF susceptibility through reduced telomerase activity. Another 
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spindle-assembly related gene48, KIF15, was implicated by the new signal on chromosome 3 

(along with TMEM42).  

 

The genome-wide study also identified two signals that were not replicated after multiple 

testing adjustments. RTEL1, a gene involved in telomere elongation regulation has not 

previously been identified in an IPF GWAS, however the collective effect of rare variants in 

RTEL1 have been reported as associated with IPF susceptibility52-55. The ubiquitin E3 ligase 

encoded by HECTD2 has been shown to have a pro-inflammatory role in the lung and other 

HECTD2 variants may be protective against acute respiratory distress syndrome56. However, 

the lack of replication for these signals in our data suggests that further exploration of their 

relationship to interstitial lung diseases is warranted.  

 

By combining the largest available GWAS datasets for IPF, we were able to confirm 11 of 17 

previously reported signals. Conditional analysis at the 11p15.5 region indicated that 

previously reported signals at MUC2 and TOLLIP were not independent of the association 

with the MUC5B promoter variant. Previously reported signals at EHMT2, OBFC1 and 

MDGA2 were only found to be associated in one of the discovery studies, and showed no 

evidence of an association with IPF susceptibility in the other two discovery studies. Only the 

11 signals that we confirmed in our data were included in subsequent analyses. 

 

The IPF susceptibility signals at DSP, FAM13A, 7q22.1 (ZKSCAN1) and 17q21.31 (MAPT) have 

also been reported as associated with COPD, although with opposite effects (i.e. the allele 

associated with increased risk of IPF being associated with decreased risk of COPD). 

Spirometric diagnosis of COPD was based on a reduced FEV1/FVC ratio. In an independent 
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dataset of 400,102 individuals, eight of the IPF signals were associated with decreased FVC 

and with a comparatively weaker effect on FEV1. This is consistent with the lung function 

abnormalities associated with IPF, as well as the decreased risk of COPD. Of note, only 

around 3% of previously reported lung function signals36 also showed association with IPF 

susceptibility in our study. This suggests that whilst some IPF susceptibility variants might 

represent genes and pathways that are important in general lung health, others are likely to 

represent more disease-specific processes.  

 

Using polygenic risk scores, we demonstrated that, despite the relatively large proportion of 

disease susceptibility explained by the known genetic signals of association reported here, 

IPF is highly polygenic with potentially hundreds (or thousands) of as-yet unidentified 

variants associated with disease susceptibility.   

 

A strength of our study was the large sample size compared with previous GWAS and the 

availability of an independent replication data set. A limitation of our study was that the 

controls used were generally younger in all studies included and there were differences in 

sex and smoking distributions in some of the studies. As age, sex and smoking status were 

not available for all individuals in four of our datasets, we were unable to adjust for these 

variables without substantially reducing our sample size. However, cases and controls in the 

UUS and UK datasets were matched for age, sex and smoking. The three novel signals 

replicated in all of the discovery and replication datasets providing reassurance that the 

signals we report are robust despite differences between the data sets. As we had limited 

information beyond IPF diagnosis status for a large proportion of the individuals included in 

the studies, we cannot rule out some association with other age-related conditions that are 
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comorbid with IPF. However, other age-related conditions were not excluded from either 

the cases or controls.  For the signals near KIF15 and MAD1L1, there was substantial 

evidence for an association with gene expression in non-lung tissues but not in either of the 

two (non-fibrotic) lung tissue eQTL datasets. This could reflect cell type-specific effects that 

are missed when studying whole tissue or effects that are disease dependent. Finally, our 

study was not designed to identify rare functional variant associations. As both common and 

rare variants are known to be important in IPF susceptibility39, this is a limitation of our 

study. 

 

In summary, we report new biological insights into IPF susceptibility and demonstrate that 

further studies to identify the genetic determinants of IPF susceptibility are needed. Our 

new signals of association with IPF susceptibility provide increased support for the 

importance of mTOR signalling in pulmonary fibrosis as well as the possible implication of 

mitotic spindle-assembly genes. 

 



17 
 

Acknowledgements 

This research has been conducted using the UK Biobank Resource under application 8389. 

This research used the ALICE and SPECTRE High Performance Computing Facilities at the 

University of Leicester. Genome-wide summary statistics are available on request via the 

corresponding author. 

 

 

 

 



18 
 

Table 1: Demographics of study cohorts 
 

 
a Age only available for 103 Chicago controls 
b Age available for 602 UK cases 
c Sex only available for 500 Chicago cases 
d Sex only available for 510 Chicago controls 
e Smoking status only recorded for 236 UK cases 
f Smoking status only recorded for 753 IPF cases in UUS 
g Smoking status only recorded for 481 of the Genentech controls 
 
 

 Chicago Colorado UK UUS Genentech 
 Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls 
n 541 542 1,515 4,683 612 3,366 793 10,000 664 1,874 

Genotyping array 
/sequencing Affymetrix 6.0 SNP array Illumina Human 660W Quad 

BeadChip 
Affymetrix UK 
BiLEVE array 

Affymetrix UK 
BiLEVE and UK 
Biobank arrays 

Affymetrix UK 
Biobank and 

Spain Biobank 
arrays 

Affymetrix UK 
BiLEVE and UK 
Biobank arrays 

HiSeq X Ten platform (Illumina) 

Imputation panel HRC HRC HRC HRC - 
Age (mean) 68 63 a 66 - 70 b 65 69 58 68 - 
Sex (% males) 71% c 47% d 68% 49% 71% 70% 75.2% 72.1% 73.5% 27.1% 
% ever smokers 72% 42% - - 72.9% e 70% 68.7% f 68% 67.3% 18.1% g 
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Table 2 - Discovery and replication association analysis results for the five signals reaching significance in the discovery GWAS that have not previously 
reported as associated with IPF 
The minor allele is the effect allele and the minor allele frequency (MAF) is taken from across the studies used in the discovery meta-analysis. 
 

Chr Pos rsid Locus Major 
allele 

Minor 
allele MAF 

 
Discovery meta-analysis 

 
Replication meta-analysis 

 Meta-analysis of discovery and 
replication 

OR [95% CI] P OR [95% CI] P OR [95% CI] P 

3 44902386 rs78238620 KIF15 T A 5.3% 1.58 [1.37, 1.83] 5.12×10−10 1.48 [1.24, 1.77] 1.43×10−5 1.54 [1.38, 1.73] 4.05×10−14 

7 1909479 rs12699415 MAD1L1 G A 42.0% 1.28 [1.19, 1.37] 7.15×10−13 1.29 [1.18, 1.41] 2.27×10−8 1.28 [1.21, 1.35] 9.38×10−20 

8 120934126 rs28513081 DEPTOR A G 42.8% 0.82 [0.76, 0.87] 1.20×10−9 0.87 [0.80, 0.95] 0.002 0.83 [0.79, 0.88] 1.93×10−11 

10 93271016 rs537322302 HECTD2 C G 0.3% 7.82 [3.77, 16.2] 3.43×10−8 1.75 [0.81, 3.78] 0.155 3.85 [2.27, 6.54] 6.25×10−7 

20 62324391 rs41308092 RTEL1 G A 2.1% 2.12 [1.67, 2.69] 7.65×10−10 1.45 [1.08, 1.94] 0.012 1.82 [1.51, 2.19] 2.24×10−10 
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Table 3 – Gene expression and spirometric results for the three novel IPF susceptibility loci 
Annotation of the variant was taken from VEP. A list of all variants included in the credible sets with their annotations and eQTL results can be found in 
Table E3. For colocalisation, only genes where there was a greater than 80% probability of colocalisation between the IPF risk signal and gene expression of 
that gene are reported in this table. In the colocalisation column, ↑ denotes that the allele that increases IPF risk was associated with increased expression 
of the gene, ↓ denotes that the IPF risk allele was associated with decreased expression of the gene and ↕ denotes that the IPF risk allele was associated 
with increased expression in some tissues and decreased expression in others. Full results from the eQTL and colocalisation analyses can be found in Table 
E2. The spirometric results for the three novel IPF risk loci are taken from Shrine et al using the allele associated with increased IPF risk as the effect allele 
with β being the change in Z-score units. Results for all IPF risk variants can be found in Table E6. 
 

Chr rsid of  
sentinel variant Annotation 

eQTL FEV1 FVC FEV1 / FVC 

Lung tissue Non-lung tissue 
β 

[95% CI] P 
β 

[95% CI] 
P 

β 
[95% CI] 

P 

3 rs78238620 Intron (KIF15) - ↓ KIF15 
↓ TMEM42  

−0.011 
[−0.022, 0.000] 

0.069 
−0.022 

[-0.033, 0.011] 2.92×10−4 
0.017 

[0.006, 0.028] 0.005 

7 rs12699415 Intron (MAD1L1) - ↓ MAD1L1 
−0.007 

[−0.012, −0.002] 
0.011 

−0.011 
[−0.016, −0.007] 1.41×10−5 

0.008 
[0.003, 0.012] 0.005 

8 rs28513081 Intron (DEPTOR) ↓ DEPTOR 
↓ RP11-760H22.2 

↕ DEPTOR 
↕ RP11-760H22.2 

↑ KB-1471A8.1 
↑ TAF2 

0.001 
[−0.004, 0.006] 

0.822 
−0.005 

[−0.010, −0.001] 0.045 
0.011 

[0.006, 0.016] 4.22×10−5 
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Figure 1 - Manhattan plot of discovery analysis results 
X axis shows chromosomal position and the y axis shows the −log(P value) for each variant in the discovery genome-wide analysis. The red line shows 
genome-wide significance (P<5×10-8) and variants in green met the criteria for further study in the replication analysis (i.e. reached genome-wide 
significance in the discovery meta-analysis and had P<0.05 and consistent direction of effects in each study). Genes labelled in grey are previously reported 
signals that reach significance in the discovery genome-wide meta-analysis. Genes labelled in black are the novel signals identified in the discovery analysis 
that reach genome-wide significance when meta-analysing discovery and replication samples. The signals which did not replicate are shown by red labels. 
For ease of visualisation the y axis has been truncated at 25. 
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Figure 2 - Region plots of three novel IPF susceptibility loci from discovery genome-wide meta-
analysis 
Each point represents a variant with chromosomal position on the x axis and the −log(P value) on the 
y axis. Variants are coloured in by LD with the sentinel variant. Blue lines show the recombination 
rate and gene locations are shown at the bottom of the plot. Region plots are shown for the three 
replicated novel IPF susceptibility loci, i.e. i) the susceptibility signal on chromosome 3 near KIF15, ii) 
the susceptibility signal on chromosome 7 near MAD1L1 and iii) the susceptibility signal on 
chromosome 8 near DEPTOR. 
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