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Abstract 24 

Structure-from-Motion (SfM) photogrammetry is rapidly becoming a key tool 25 

for morphological characterisation and change detection of the earth surface. 26 

This paper demonstrates the use of Terrestrial Structure-from-Motion (TSfM) 27 

photogrammetry to acquire morphology and roughness data at the reach-28 

scale in an upland gravel-bed river. We quantify 1) spatially-distributed error in 29 

TSfM derived Digital Elevation Models (DEMs) and 2) identify differences in 30 

roughness populations acquired from TSfM photogrammetry versus TLS. We 31 

identify an association between local topographic variation and error in the 32 

TSfM DEM. On flatter surfaces (e.g. bar and terrace surfaces), the difference 33 

between the TSfM and TLS DEMs are generally less than ±0.1 m. However, 34 

in areas of high topographic variability (>0.4 m) such as berm or terrace 35 

edges, differences between the TSfM and TLS DEMs can be up to ±1 m. Our 36 

results suggest that grain roughness estimates from the TSfM point cloud 37 

generate values twice those derived from the TLS point cloud on coarse berm 38 

areas, and up to four-fold those derived from the TLS point cloud over finer 39 

gravel bar surfaces. This finding has implications when using SfM data to 40 

derive roughness metrics for hydrodynamic modelling. Despite the use of 41 

standard filtering procedures, noise pertains in the SfM DEM and the time 42 

required for its reduction might partially outweigh the survey efficiency using 43 

SfM. Therefore, caution is needed when SfM surveys are employed for the 44 

assessment of surface roughness at a reach-scale. 45 
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 49 

1. Introduction 50 

The last ten years have seen a step-change in our ability to capture data 51 

remotely for geomorphological and hydrological applications (Entwistle et al., 52 

2018). In fluvial geomorphology, Terrestrial Laser Scanning (TLS) has 53 

established itself as a key tool in the retrieval of data that allows detection of 54 

morphological change at high resolution at the reach-scale (Milan et al., 2007, 55 

Heritage and Milan, 2012; Wheaton et al., 2013), and in the characterisation 56 

of grain-scale topographic and roughness data over dry (Heritage and Milan, 57 

2009; Hodge et al., 2009; Huang and Wang, 2012), and submerged (Smith et 58 

al., 2012; Miura and Asano, 2015) gravel surfaces capturing complex spatial 59 

patterns and changes after floods (Milan et al., 2009).  60 

 61 

More recently, however, Structure-from-Motion (SfM) photogrammetry has 62 

emerged as a more cost-effective alternative to TLS with the ability to retrieve 63 

high density point cloud data for a range of geomorphological applications 64 

(Westoby et al., 2012; Fonstad et al., 2013; Smith et al., 2015; Dietrich, 2016; 65 

Carrvick and Smith, 2019), with most studies employing the technique from an 66 

unmanned drone (e.g. Marteau et al., 2017; Carbonneau and Dietrich, 2017; 67 

Entwistle and Heritage, 2017). Photogrammetry is well established in 68 

geomorphology (Lane et al., 1993; Barker, et al., 1997; Butler et al., 1998; 69 

Heritage et al., 1998; Chandler, 1999; Westaway et al., 2001), as a rapid 70 

survey technique that can be used to generate highly accurate grain-scale 71 

DEMs (Wang et al., 2015). SfM photogrammetry utilises mathematical models 72 

derived from early photogrammetry studies, including coplanarity and 73 



collinearity, and self-calibrating bundle adjustment (Kenefick et al., 1972; Faig, 74 

1975; Ullman, 1979). The emergence of SfM photogrammetry has also been 75 

accompanied with the development of software (Snavely et al., 2006; Lague 76 

et al., 2013) capable of merging large digital image datasets, and the 77 

development of algorithms capable of producing dense point clouds from the 78 

imagery (Buscombe, 2016). SfM photogrammetry has been shown to produce 79 

reliable data for DEM production when survey design such as photo overlap, 80 

camera angle, distribution of ground control points, and environmental 81 

conditions is appropriate (see James and Robson, 2012 and James et al., 82 

2017a for details) or corrections are applied during processing (James and 83 

Robson, 2014). Additional corrections such as for refraction at the water 84 

surface even allows construction of high quality DEMs from submerged areas 85 

of the bed (e.g. Woodget et al., 2015; Entwistle and Heritage, 2017; Dietrich, 86 

2017). Retrieval of grain size and roughness data using SfM photogrammetry 87 

is a recent further development (Langhammer et al., 2017; Woodget and 88 

Austrums, 2017; Pearson et al., 2017; Woodget et al., 2018). The ability to 89 

retrieve morphology data from dry and submerged parts of the bed, and grain 90 

roughness information, allows for seamless surveys of the aquatic 91 

environment that may not be achieved using red-wavelength LiDAR systems, 92 

thus providing new opportunities for assessing spatial patterns in sediment 93 

budgets at the reach-scale, and improved hydrodynamic modelling within river 94 

systems.  95 

 96 

Despite the increasing number of studies deploying SfM photogrammetry from 97 

unmanned drones, the challenges that exist when using this platform have 98 



received only limited attention. A number of potential issues exist (e.g. Duffy 99 

et al. 2017) as follows. 1) Access to a drone and a trained operator requires 100 

considerable initial cost and reliance on the availability of the drone operator. 101 

2) The trained drone operator may not always be familiar with 102 

geomorphological or hydrological processes, and may therefore not capture 103 

the required information to the satisfaction of the geomorphologist. 3) Time 104 

needs to be taken for pre-flight planning of the site (Duffy et al., 2017). 4) 105 

Flights need to comply with local legislation, and permissions may not always 106 

be granted to fly at certain sites, and may take considerable time before being 107 

secured. It may therefore not be possible to retrieve data at short notice, as is 108 

often required in fluvial and hydrological projects (e.g. during or immediately 109 

after a flood event). Furthermore, drone flights are not possible at all in no-fly 110 

zones. 5) Weather conditions may not be suitable for drone flights. For 111 

example, it may not possible to deploy a drone during high wind speeds, yet 112 

still possible to take photographs form a terrestrial platform. 6) Shadow and 113 

sun angle effects caused by vegetation or coarse sediment can be 114 

problematic. 7) Drone battery life may limit photograph data retrieval, 115 

particularly when working in remote areas, where it may be difficult to 116 

recharge batteries. As a consequence, deployment of SfM photogrammetry 117 

from a terrestrial platform (TSfM) could offer a more reliable and cost-effective 118 

alternative in some instances. Indeed, some sites with steep slopes and near-119 

vertical surfaces, such as river banks and landslides, might be more suitable 120 

for ground-based approaches (Westoby et al., 2012).  121 

 122 



Although SfM has made it easier for non-specialists to use photogrammetry 123 

for landform measurement and change detection, this simplification has 124 

resulted in the introduction of new types of measurement errors, previously 125 

precluded by the strict application of camera calibration techniques and other 126 

controls in classical photogrammetry. Studies quantifying SfM 127 

photogrammetric errors, particularly at the reach-scale are lacking, largely due 128 

to the difficulties in acquiring suitable control datasets. Assessing the 129 

accuracy of SfM-derived point clouds and DEMs and appropriate error 130 

analyses are fundamental to the success of the approach in geomorphological 131 

change detection studies (e.g. Hugenholtz et al., 2013; Javernick et al., 2014; 132 

Entwistle and Heritage, 2017; James et al., 2017a; Cook, 2017), and grain 133 

size assessment (Westoby et al., 2015). Although SfM photogrammetry can 134 

have geometric distortion issues (e.g. James et al., 2017a), occlusion is less 135 

of an issue due to the multi-view geometry achieved thanks to the high 136 

number of photograph loci. In contrast, TLS does not suffer from systematic 137 

warping, although can suffer from occlusion issues, particularly when 138 

insufficient scans are taken with adequate overlap. In this paper we use a 139 

TLS-derived DEM as ground-truth data to assess the spatial distribution of 140 

SfM photogrammetric error. This paper aims to 1) interrogate spatial error in 141 

both morphology and grain roughness data, and 2) critically evaluate the 142 

ability of SfM photogrammetry with a terrestrial platform (TSfM) to capture 143 

morphology and roughness data.  144 

 145 

2. Study site 146 



This investigation focused on a 500 m reach of the Thinhope Burn, a small 147 

tributary catchment to the River South Tyne situated in the north Pennines in 148 

Cumbria, UK (OS National grid reference NY680550, latitude 54º 52’ 48.31” 149 

N, longitude 2º 31’ 09.57” W, 180-595 m Above Ordnance Datum, catchment 150 

area 12 km2; Fig. 1). The river here is a sinuous single thread channel, 151 

displaying pool-riffle and rapid morphology, with a mean bed slope of 0.031 m 152 

m-1. The role of high flow events is significant in this catchment, with coarse 153 

berm deposits with a typical D50 of 200 mm mobilised by infrequent 154 

catastrophic events (Macklin et al., 1992; Milan, 2012), and finer more mobile 155 

deposits (~D50 30 mm) in the annually inundated areas of the channel making 156 

up the bed and point bars that are typically reworked by winter high flow 157 

events. The channel at this location has a Strahler (1952) stream order of 3, 158 

and drains a catchment underlain by Carboniferous sandstones, limestones, 159 

and shales, overlain by glacial diamicton. In the headwaters of the catchment, 160 

peat overlays the diamicton with depths of up to 2 m. The variety of grain 161 

sizes and morphological units in the reach provided an excellent opportunity 162 

to test the utility of TSfM photogrammetry to detect fluvial form and 163 

roughness. 164 

 165 

The morphological development of Thinhope Burn over the Holocene and the 166 

more recent flood history has been reconstructed by Macklin et al. (1992), 167 

where three phases of incision were identified over the late Holocene, 168 

resulting in the formation of a series of terraces. Superimposed on these 169 

terraces were a series of boulder berm deposits, which Macklin et al. (1992) 170 

linked to 21 different large flood events occurring post 1766. In 2007, a large 171 



flood event caused significant mobilisation to the valley floor, fully reworking 172 

many of the old berms reported in Macklin et al. (1992), however depositing 173 

new berms and reconfiguring channel morphology (Milan, 2012; Milan and 174 

Schwendel 2019). 175 

 176 

3. Methods 177 

 178 

3.1. Field based approach 179 

Smith (2015) reviewed TLS error sources, highlighting random and systematic 180 

instrument errors, error relating to the imaging geometry, the nature of the 181 

reflecting surface (e.g. shiny versus dull objects), environmental errors (e.g. 182 

atmospheric conditions), and methodological error (including registration and 183 

georeferencing errors) as possible sources. Despite this, TLS is still 184 

considered to currently be the best method available for producing accurate 185 

point clouds and DEMs, and has been shown to produce DEMs with 186 

millimetric accuracy which have been used for morphological and boundary 187 

roughness characterisation and change detection in a range of fluvial studies 188 

(e.g. Milan et al., 2007; Hodge et al., 2009; Williams et al., 2014). TLS has 189 

also been used to produce 'control' DEMs whereby the spatial error found in 190 

other survey techniques can be quantified (e.g. Heritage et al., 2009; Nadal-191 

Romero et al., 2015). A GLS 2000 red-pulse TLS (Topcon Corporation, 192 

Tokyo, Japan) was used to gather sub-aerial data for the control DEM in this 193 

study. Eight overlapping scans were taken of the 500 m reach of Thinhope 194 

Burn from the valley sides and high terraces, where clear unobstructed views 195 

to the reach were available (Fig. 2). A series of overlapping tiepoints were 196 



surveyed, allowing the scans to be merged using Scanmaster software 197 

(Topcon Corporation, Tokyo, Japan). Topcon (2019) report a ‘single point 198 

accuracy of 3.5 mm surveyed between 1 and 150 m (1V) away from the 199 

scanner (as in this study), with a spot size of 4 mm at 20 m.  200 

 201 

In union with the TLS survey, a total of 365 overlapping photographs were 202 

taken from 55 vantage points overlooking the channel (Fig. 2), using a Lumix 203 

TZ30 camera (Panasonic Corporation, Osaka, Japan). Thirty-six Ground 204 

Control Points (GCPs), scattered throughout the study site (Fig. 2), were used 205 

to help merge the photographs and produce a point cloud using Agisoft 206 

Photoscan software (Agisoft LLC, St. Petersburg, Russian Federation). 207 

Overlap between individual adjacent images was >70%, with all parts of the 208 

valley floor covered from at least nine camera stations. The average distance 209 

between the camera stations and the study area was 72.5 m with a total area 210 

of 0.036 km2 covered. Both the tiepoints for the TLS survey and the GCPs 211 

were surveyed using a Leica dGPS 1200 (Leica Geosystems, Heerbrugg, 212 

Switzerland), allowing both point clouds to be georeferenced into the same 213 

coordinate system. The reported static accuracy of post-processed dGPS 214 

data is 5 mm + 0.5 ppm for horizontal, and is 10 mm + 0.5 ppm for vertical 215 

(Leica, 2008). Whilst the photogrammetric survey was carried out over a little 216 

more than one hour, the scanning required a full day. 217 

 218 

3.2. Data analysis and processing 219 

The images taken were aligned and underwent the Scale-Invariant-Feature-220 

Transform (SIFT) algorithm using high accuracy setting in Photoscan. The 221 



sparse SFM point cloud (1777170 points) was subject to removal of points 222 

that did not suffice certain criteria (e.g. reprojection error) which reduced the 223 

sparse cloud by 7.5%. This resulted in an RMSE value of all tie points on all 224 

images of 1.76 pixels with an effective ground resolution of 8.93 mm per pixel, 225 

and ensured every point was projected based on the overlap of more than 226 

nine images. After application of the Multi-View Stereo (MVS) algorithm to the 227 

sparse SFM cloud, both, the dense TSFM and the TLS point cloud, underwent 228 

manual and automated low pass filtering (search radius 1 m, maximal 229 

variation in elevation 2 m and angle of <30° between a ground class point and 230 

a preliminary ground surface consisting of the lowest point in each search) in 231 

order to remove outlying points below and above the actual ground surface. 232 

The TSfM-derived point cloud was additionally classified by pixel colour in 233 

order to identify vegetation and points scattered below the coherent layer of 234 

ground surface points (i.e. the latter as identified by their grey gravel colour). 235 

This resulted in a point density of 1237 m-2 and 7322 m-2 for the TLS and 236 

TSfM clouds respectively. These clouds were subsequently reduced to the 237 

valley floor and the channel area. DEMs were produced in Surfer (Golden 238 

Software, Golden, USA) using triangulation with linear interpolation as the 239 

interpolation algorithm (Schwendel et al., 2012), with a grid spacing of 0.1 m 240 

for the entire reach and 0.05 m for separately investigated patches within the 241 

reach. 242 

 243 

It is arguable whether remote sensing approaches actually measure grain size 244 

(e.g. Woodget and Austrums, 2017; Pearson et al., 2017; Woodget et al., 245 

2018), as grains on a natural river bed are imbricated, partially buried and the 246 



particle edges partially obscured by neighbouring clasts. However, remote 247 

sensing approaches can measure roughness height of clasts, reflecting the 248 

degree of protrusion into the flow. Heritage and Milan (2009) demonstrated a 249 

linear relationship between twice the standard deviation of local elevation 250 

(2Vz) and ground-truth measurements of clast c-axes, reflecting flow 251 

orientation of the primary axis in the streamwise direction exposing the 252 

shortest axis to the flow. We adopt this approach as a roughness measure in 253 

this study. 254 

 255 

Grain roughness grids were produced through interrogating the point cloud by 256 

measuring the standard deviation of elevations in a moving window equivalent 257 

to the largest clast in the area of interest (Heritage and Milan, 2009). Within 258 

the entire reach the search radius was 0.8 m, while for the two selected 259 

coarser grained patches (S5 and S6) the search radius was 0.6 m, and for 260 

two finer-grained patches (S7 and S8) the search radius was 0.15 m. The 261 

standard deviation statistic is a measure of spread within the sample 262 

population, and is unaffected by sample size, thus allowing this statistic to be 263 

used on point clouds with different densities, and in situations where there are 264 

spatial differences in point density. However, standard deviation values 265 

become more stable with increasing sample size, and as such we deployed a 266 

minimum sample size of 30 points within the moving window. Populations of 267 

grain roughness values for these patches were produced through both survey 268 

methods, and the grain roughness populations were compared to identify 269 

differences. 270 

 271 



3.3. Spatial error analysis 272 

Spatial variation in difference (error) between the TSfM and TLS datasets 273 

were assessed by subtracting the latter from the former with the TLS surface 274 

regarded as reference (Heritage et al., 2009; Nadal-Romero et al., 2015). This 275 

permitted a visual assessment of the spatial patterns and magnitude of the 276 

differences throughout the reach (Fig. 3a). Cross-sections from the DEM of 277 

difference were also taken from a sub-reach containing several morphological 278 

features including bars, berms, terraces and banks, to further visualize the 279 

spatial differences in 2D. 280 

 281 

The error inherent in DEMs for river survey datasets is known to be spatially 282 

variable, and linked to local topographic variation; with greater errors found at 283 

breaks of slope such as bank edges, as opposed to flatter bar surfaces 284 

(Heritage and Milan, 2009; Milan et al., 2011). We adopted the Milan et al. 285 

(2011) approach to characterize this effect through interrogating the 286 

relationship between local surface topographic variation and the local 287 

elevation difference between the two DEM surfaces. Local surface 288 

topographic (morphological) variability is defined by taking the local elevation 289 

standard deviation in a 0.8-m radius moving window over the point cloud, to 290 

produce a standard deviation of elevations grid (Fig. 4a). Elevation errors for 291 

each coordinate are established from the difference between TLS and TSFM 292 

elevations (Fig. 3a) and are used to create a spatially variable Level of 293 

Detection (LoD).  294 

 295 



Greater topographic roughness values are generally found at breaks of slope 296 

in both clouds, however roughness is generally below 0.6 m with the TLS 297 

product having lower values (Fig. 4). Within the channel TLS derived 298 

roughness is generally less than 0.2 m, and elevated values are restricted to 299 

mid-channel bars throughout the reach and coarse flood-berms, particularly in 300 

the lower part of the reach. The TSfM product shows roughness of up to 0.5 301 

m with high values in the central part and at a riffle in the lower part of the 302 

reach. Otherwise roughness of up to 0.2 m is found in similar locations than in 303 

the TLS cloud but spatially more extensive. 304 

 305 

The plot of elevation error against local surface variation (Fig. 5a), established 306 

from digitising 2000 randomly distributed points from the TSfM-TLS difference 307 

grid, shows that on flatter surfaces (e.g. bar and terrace surfaces) with a local 308 

surface elevation variation of <±0.05 m, the difference between the TSfM and 309 

TLS DEMs is generally less than ±0.3 m. The variability around the mean 310 

error clearly increases within increasing topographic variability. In areas of 311 

high topographic variability (>0.4 m) such as berm or terrace edges, 312 

differences between the TSfM and TLS DEMs (error) can be up to ±3 m. 313 

Using the data in Fig. 5a, the standard deviation of elevation error was 314 

established for different classes of local surface variation. The relationship 315 

between standard deviation of elevation error and local surface variation 316 

classes is shown in Fig. 5b. The standard deviation of elevation error shows a 317 

strong power law relationship with local surface elevation variability (Fig. 5b). 318 

This relationship may be used to filter spatial error after two further steps 319 

(sensu Milan et al., 2011) are taken: 1) the regression equation (Fig. 5b) is 320 



applied to the grid of local topographic variability, produced here through 321 

taking the standard deviation of elevations in a 0.8-m moving window over the 322 

point cloud, to generate a spatial error grid, and 2) a spatially distributed root 323 

mean square error grid is produce through the application of  324 

𝑈𝑐𝑟𝑖𝑡 = 𝑡√(𝜎𝑒)2 325 

to the spatial error grid, where Ucrit is the LoD; and Ve is the standard deviation 326 

of elevation error, and t is the critical t-value at the chosen confidence level 327 

here set at a value of 1.96 (2V), in which case the confidence limit is equal to 328 

95%. 329 

 330 

4. Results 331 

 332 

4.1. Digital Elevation Models 333 

The surface of difference between the DEMs based on TSfM data and TLS 334 

data (Fig. 3) shows the highest deviation near the lateral edges of the valley 335 

floor and the channel as well as on the inside of some bends. Field 336 

observations and photographs identify these areas as locations where the 337 

channel actively erodes valley slopes and terraces, and sudden breaks in 338 

slope such as channel banks and terraces edges. Actively eroding slopes and 339 

terraces (marked A in Fig. 3a) are underestimated in the TSfM DEM, in 340 

particular the grassy surface of slumped blocks. Similarly, actively eroding 341 

banks (marked B in Fig. 3a) tend to be lower and therefore appear more 342 

retreated in the TSfM dataset. Some former cut-banks, now protected by bars 343 

or berm deposits (marked C in Fig. 3a), also show this pattern. In contrast, 344 

banks dominated by coarse, bulldozed cobbles and boulders (marked D in 345 



Fig. 3a) appear to be overestimated in elevation and less retreated in the 346 

TSfM DEM. This also applies to currently inactive coarse bar deposits such as 347 

the berms marked E in Fig. 3a. The maximum vertical deviation between the 348 

DEMs is up to 4 m. Fig. 3b demonstrates how the majority of error has been 349 

removed following the filtering procedure; based upon the relationship 350 

between elevation error (difference between TSfM and TLS DEMs) and 351 

topographic variability (local morphological roughness). Most of the 352 

differences evaluated here are within the topography-dependant LoD and that 353 

genuine differences between the two DEMs are within ±1 m. Within the 354 

channel the deviations are variable, usually within a range of 0.1 m around 0, 355 

except for a coarse substrate area showing substantial underestimation of the 356 

TSfM DEM in the centre of the reach (marked F in Fig. 3a). Open water 357 

surfaces are represented generally lower in the TSfM DEM. Homogeneous 358 

gravel bars (marked G in Fig. 3a) appear to show the least deviation between 359 

the two DEMs.  360 

 361 

The long-profile for the lower part of the study reach (Fig. 6) shows a more 362 

‘noisy’ profile for the TSfM data compared with the TLS DEM, particularly at 363 

riffles. Cross-section A–A’ traverses a series of flood berms and a point bar 364 

and ends at a slumping hillslope. The strongest deviations between the two 365 

DEMs occur in the North on vegetated berms but there appears to also be a 366 

systematic shift to the South West of the TSfM DEM which is also apparent in 367 

Section C–C’ (Fig. 6). Section B–B’ is located between two terraces and 368 

shows the highest deviation at the terrace edges and in an area with coarse 369 

flood deposits to the East of the current channel. Section C–C’ shows 370 



considerable underestimation of the surface elevation by the TSfM DEM in an 371 

area dominated by a riffle. In addition, the partially vegetated surface of a 372 

terrace in the SW and a boulder berm show much higher variability for this 373 

DEM. Section D–D’ traverses the channel from the slumping valley side, over 374 

a relatively smooth point-bar onto a terrace. Despite the vegetation on the 375 

latter, here both DEMs are largely in good agreement. However, in this 376 

section and others, the angle of nearly vertical slopes subject to erosion 377 

appears to be greater in the TLS DEM compared to the TSfM product. Slopes 378 

extracted from the TSfM product appear to be more retreated and have less 379 

steep slopes at A’, B’ and D while the opposite, more stable, side may show a 380 

steeper slope (e.g. at B).  381 

 382 

4.2. Roughness comparison 383 

Accurate measurement of boundary roughness is needed as input to 384 

hydrodynamic modelling, and techniques such as TLS and TSfM now allow 385 

fully spatially distributed roughness information to be included in flow 386 

simulations. Here we explore the difference in roughness characterisation 387 

using the two techniques. Grain roughness populations were investigated at 388 

four patches representative of different morphological units. Patch S5 (Fig. 7), 389 

a boulder berm, shows similar spatial distribution of roughness in the southern 390 

half between both DEMs, while in the northern part there are three distinct 391 

zones with elevated roughness in the TSfM DEM. Patch S6 covers a boulder 392 

berm deposited in 2007 (Fig. 8). The measured roughness is of similar 393 

magnitude in both DEMs (Table 1) with two zones of elevated roughness 394 

present in the TSfM DEM (a North-East edge and a North–South aligned 395 



ridge) that are not shown in the TLS product. The differences between the two 396 

DEMs are shown as a shift of the maximum frequency to higher roughness 397 

and a bimodal distribution for the SFM product which account for these zones 398 

(Fig. 9, Table 1). 399 

 400 

The two fine-grained patches S7 and S8 differ in their roughness 401 

measurement between the two approaches (Figs. 10 and 11). The TLS DEM 402 

is much smoother than the TSfM DEM and the spatial distribution of 403 

roughness does not match. The TSfM DEMs show more variability in 404 

roughness which is reflected in their relatively wide frequency distribution (Fig. 405 

9). In contrast, the roughness range of the TLS DEMs is rather narrow and 406 

centred at considerably lower roughness compared to the TSfM DEM (Table 407 

1).  408 

 409 

5. Discussion 410 

 411 

The differences between DEMs generated from TSfM photogrammetry and 412 

TLS are spatially variable and showed an association with local topographic 413 

variability. Substantial DEM differences were restricted to small areas 414 

following error filtering. While the degree of vegetation appears to be 415 

important, a clear attribution of these differences to specific morphological 416 

units was not evident. The channel and most bars show little detectable 417 

difference which reflects the quality of the DEMs in areas of little topographic 418 

variability. Even in the wet channel, differences of more than a few 419 

centimetres were only detected in areas where their magnitude and their 420 



incongruence with geomorphological units (riffle) suggest outlying points that 421 

escaped the filtering process of the TSfM point cloud (F in Fig. 3a). The level 422 

of detection in the channel was rather low due to it being derived from a 423 

comparison with the TLS dataset which shows very little topographic variation 424 

within the channel (Fig. 4) and contains patches of water, detected as very 425 

smooth surfaces (Fig. 6). Therefore, the general minor differences between 426 

the two DEMs are remarkable given the difficulties introduced by the 427 

differential penetration of water surfaces, reflection and refraction (Woodget et 428 

al., 2015). The different representation of water surfaces, also evident in some 429 

parts of the long-profile (Fig. 6), can be attributed to the reconstruction of 430 

some sub-aqueous surfaces with the TSfM approach while red laser 431 

wavelengths are absorbed in water (Cook, 2017). A detailed assessment of 432 

the suitability of the two techniques for measurement of topography and 433 

roughness in sub-merged areas is beyond the scope of this paper, and ideally 434 

these would have been excluded from the analysis. While manually blanking 435 

patches of water surface in the DEMs could address this issue, in shallow 436 

gravel-bed reaches of this size this is very time consuming and can be 437 

impractical. Because the true-colour TSfM pixel might not allow distinction 438 

between shallow submerged channel and dry channel, the use of the intensity 439 

of laser signal returns to detect the water edge might be preferable (Flener et 440 

al., 2013). However, in this instance differences between the DEMs at 441 

patches of water were of small magnitude not exceeding the level of 442 

detection, hence light penetration issues in the submerged areas appear to 443 

have not significantly reduced DEM accuracy.  444 

 445 



In contrast to the channel, more elevated bars and berms, terraces and 446 

actively eroding slopes coupled to the channel showed in places substantial 447 

differences of up to 1 m between the two DEMs (Fig. 3). Locations affected 448 

can be separated in two categories: areas affected by vegetation and breaks 449 

in slopes. Foliage of vegetation can lead to differential penetration of light and 450 

therefore will affect surveys utilising light waves (Heritage and Hetherington, 451 

2007; Cook, 2017). This study suggests that vegetation was a cause of 452 

difference between the datasets as well as topographic variability, however 453 

we are unable to quantify this in the present investigation. Although the area 454 

of interest of this study largely consists of unvegetated river channel, bars and 455 

banks, some of the stable floodplain and terraces were covered in short 456 

herbaceous vegetation. The filters applied to the point clouds eliminated high 457 

points but were unable to exclude gradual transition from a bare surface to 458 

low vegetation (Cook, 2017; James et al., 2017a). Although vegetated 459 

surfaces will always be problematic for TSfM and TLS surveys (Lane, 2000; 460 

Castillo et al., 2012; Tonkin et al., 2014; Cook, 2017), fresh deposition of 461 

sediment between vegetation or the gradual encroachment of plants on bars 462 

mean that the presence of vegetation in peripheral areas cannot always be 463 

excluded in geomorphological studies. 464 

 465 

The greatest elevation differences between the two DEMs are located at 466 

breaks in slope such as eroding terrace edges, valley slopes and banks but 467 

they exceed the spatially variable level of genuine detection based on the 468 

local topographic variation only in a small number of places (Fig 3). The 469 

reason for significant elevation differences can be found in different 470 



representation of slope angles: actively eroding slopes appear steeper in the 471 

TLS DEM, while stable breaks in slope are often shown as steeper in the 472 

TSfM DEM (Fig. 3). Deviations at steep slopes and near vertical surfaces are 473 

a common problem, particularly in aerial photogrammetry (Lague et al., 2013; 474 

Carbonneau and Dietrich, 2017; Cook, 2017; Huang et al., 2017). Since the 475 

slopes in the two DEMs have common toe points, these deviations are not 476 

likely due to a uni-directional relative shift in DEM position, for example due to 477 

GCP precision, or tilt but rather a result of distortion during the SFM-multi-478 

view stereo process (Fonstad et al., 2013; James et al., 2017a). Smoothing of 479 

breaks in slopes and misrepresentation of slope angles in SfM DEMs, e.g. as 480 

reported by Kolzenburg et al. (2016), can be attributed to filtering processes 481 

during image matching (James and Robson, 2017b). This study used a 482 

variety of camera positions and camera angles from the terrestrial vantage 483 

points to minimise this problem. The slopes with considerable differences are 484 

distributed throughout the DEM thus localised distortion or issues with 485 

individual images or GCPs can be excluded. Conversely, steep slopes facing 486 

up-valley or down-valley and thus captured from both valley sides are equally 487 

affected as slopes mostly captured only from one valley side. James et al. 488 

(2017b) found systematic differences between SfM and TLS DEMs along 489 

steep slopes which indicate horizontal error in the relative georeferencing of 490 

the DEMs, and indicate that cloud-to-cloud comparison in combination with 491 

photogrammetric precision estimates can to some extent account for this 492 

error. If image capture or processing issues can be ruled out, the different 493 

representation of slope shape could potentially also be related to 494 



characteristics of actively eroding slopes such as roughness and colour which 495 

may be relevant during the SFM image matching process.  496 

 497 

As for the entire DEM, within the channel, the variation between the two 498 

DEMs appears to increase with topographic variation. Although DEM 499 

accuracy generally tends to show this tendency (e.g. Milan et al., 2011, Cook, 500 

2017 but not Kolzenburg et al., 2016), the steepness of the regression line 501 

(Fig. 5b) suggests that the TSfM DEM differs not only at the discussed, 502 

significant breaks in slopes, but generally in areas with high topographic 503 

roughness.  504 

 505 

By using twice the standard deviation of elevation values within a moving 506 

window equivalent to the largest clast, Heritage and Milan (2009) were able to 507 

show how dense point clouds may be used to provide bar-scale grain 508 

roughness information, and showed relationships between the roughness and 509 

grain size. Due to the purely comparative nature of this study, only one 510 

standard deviation is reported here. The measured roughness over the entire 511 

reach compounds types of roughness at a range of scales from skin (surface) 512 

roughness of large boulders, over grain roughness, to vegetation and bedform 513 

roughness. Gravel-cobble bar surfaces such as patches 7 and 8 (Figs. 10 and 514 

11) provide the opportunity to compare the assessment of grain roughness 515 

based on the two datasets. The ratio of respective percentiles of roughness 516 

height is up to four with barely any similarity between the spatial distribution of 517 

roughness. Although both sets of frequency distributions (Fig. 9) retain their 518 

single-modal shape, there is a distinct shift in modal values and spread. 519 



James and Robson (2017b) suggest that the representation of small 520 

roughness elements can be affected by filtering and smoothing processes 521 

during the image matching process (Hirschmuller, 2008). At the coarser 522 

patches S5 and S6 (Figs. 7 and 8), the difference between the roughness 523 

representation between the two DEMs is smaller, i.e., there is some 524 

agreement in spatial distribution of roughness elements. Both patches 525 

encompass boulder berms deposited in the 2007 flood (Milan, 2012). Patch 526 

S5 was deposited on the inside of a bend, and its roughness has been 527 

affected since then by gradual covering in finer sediment and partially 528 

stripping of the latter by smaller floods. Its mean roughness height derived 529 

from the TLS and TSfM datasets of respectively 228 mm and 452 mm 530 

substantially exceed the mean b-axis length of a visually very similar berm 531 

situated nearby that has been reworked in 2007 (130 mm, berm 2 in Milan, 532 

2012). Given that roughness height is better correlated with the smaller c-axis 533 

length (Heritage and Milan, 2009) and standard deviation of elevation may be 534 

much lower than measured particle size (Brasington et al., 2012), this shows 535 

a considerable potential overestimation of measured roughness despite the 536 

fine sediment cover. Since 2007 patch S6 has been subject to in-channel 537 

reworking (Milan and Schwendel, 2019) of fines and thus has developed a 538 

bimodal grain size distribution which is shown by both survey methods (Fig. 539 

9). For both coarse patches, the mean roughness height of the SFM dataset 540 

is approximately twice that of the TLS DEM with a remarkable consistency 541 

between percentiles (Table 1) and their frequency distributions are of similar 542 

character, e.g., are comparable after a simple exponential transformation. 543 

This shows that the representation of grain roughness scales with grain size, 544 



although it remains unclear to which extent the differences are due to 545 

systematic smoothing within the TSfM process or may be attributed to higher 546 

random noise in the TSfM point cloud (Cook, 2017) as evident in the 547 

roughness frequency distributions (Fig. 9). 548 

 549 

Over the entire valley floor, both surveys agreed in identifying highest 550 

roughness at areas of vegetation, at breaks in slope and coarse boulder 551 

berms (Fig. 5). While in the first two locations, the values are an artefact of the 552 

interrogation method or due to differential penetration of the vegetation cover 553 

(Lane, 2000; Castillo et al., 2012; Tonkin et al., 2014), in the latter location 554 

they may represent actual grain roughness. The gradual nature of 555 

encroachment of vegetation onto bare surfaces as well as sediment deposited 556 

on top of vegetation provides difficulties for the exclusion of vegetation from 557 

the analysis. Investigation focussing on morphometric changes also cannot 558 

neglect these marginal sites. 559 

 560 

6. Conclusions 561 

 562 

The comparison channel DEMs derived from interpolated point clouds based 563 

on TSfM and TLS surveys showed that on smooth gravel bars and terrace 564 

surfaces, the vertical difference does not exceed 0.3 m which reduces to 0.1 565 

m after a threshold of genuine change detection is applied. Here the surface 566 

roughness, assessed as the standard deviation of local elevation, is 567 

considerably higher in the TSfM DEM compared with the TLS DEM 568 

suggesting that removal of random noise by filtering remains a key issue in 569 



order to make full use of the survey efficiency of the technique. Caution 570 

should be exercised when using TSfM point clouds to provide roughness data 571 

for hydrodynamic modelling; perhaps through field calibration. In areas of 572 

higher relief such as breaks in slopes, roughness estimates vary most 573 

between the two approaches and differences between the DEMs can 574 

approach 1 m on terrace edges or slips on the valley sides. In these areas 575 

inaccuracies introduced by differential penetration of vegetation play a role as 576 

well, and might be of higher relative magnitude than noise. This is supported 577 

by the similarities in the roughness frequency distributions in coarse grained 578 

patches. The representation of near vertical surfaces varies between the two 579 

DEMs, in particular at the upper edge which could be improved by the use of 580 

direct comparison of point clouds. This research highlights that in fluvial 581 

landscapes, where spatial heterogeneity of relief, surface material and 582 

roughness is high, finding suitable filtering processes for point clouds is 583 

challenging. Despite using a range of point cloud filtering processes and high-584 

quality settings in the analysis software, the TSfM dataset does not achieve 585 

comparable results to the TLS DEM in key areas of the reach. Thus, for the 586 

accurate assessment of surface roughness on a reach-scale the higher 587 

surveying time using the TLS technique might be in part offset by shorter data 588 

processing time. 589 

 590 
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Figure captions 825 
 826 

Fig. 1. The South Tyne catchment (dashed line shows its devide) in the North 827 

Pennines with the River South Tyne and its major tributaries (thick line) and 828 

smaller tributaries (thin lines). The location of the study reach is shown by a 829 

point within the Thinhope Burn sub-catchment (shaded rectangle). The inset 830 

on the right indicates the location of the catchment within the boundaries of 831 

the UK. 832 

 833 

Fig. 2. DEM of the studied reach with position of TLS stations (open circles), 834 

camera positions (filled circles), ground control points for TSfM (open 835 

squares) and the location of the patches P5 to P8. The full 500 m long study 836 

reach is highlighted by the boundary line. 837 

 838 

Fig. 3. DEM of difference (SFM – TLS) of the study reach at Thinhope Burn. 839 

(a) For highlighting the raw differences without a Level of Detection (LoD) and 840 

(b) with a spatially variable LoD applied. Grey areas indicate no difference. 841 

The annotated letters are referred to in the text. Coordinates are given in 842 

British National Grid (units are metres). 843 

 844 

Fig. 4. Surface topographic roughness height (in metres) derived from the a) 845 

TLS and b) SFM dense point clouds by assessing the standard deviation of 846 

local topographic elevation within a 0.8 m search radius. Coordinates are 847 

given in British National Grid (units are metres). 848 

 849 



Fig. 5. Error assessment between the TLS and TSfM DEMs based on 2000 850 

randomly selected points, (a) differences between the two DEMs versus local 851 

surface elevation within a 0.8 m radius, and (b) standard deviation of the 852 

difference between the DEMs plotted against local topographic variability. 853 

 854 

Fig. 6. Transverse and longitudinal channel cross-sections of the TLS and 855 

TSfM DEMs. 856 

 857 

Fig. 7. Surface roughness (in metres) of the TLS and TSfM DEMs as one 858 

standard deviation of local topographic variability using a search radius of 0.6 859 

m at patch S5 (location within the study reach given in Fig. 2), a boulder berm 860 

deposited in 2007 as illustrated in the inset photograph. Coordinates are given 861 

in British National Grid (units are metres). 862 

 863 

Fig. 8. Surface roughness (in metres) of the TLS and TSfM DEMs as one 864 

standard deviation of local topographic variability using a search radius of 0.6 865 

m at patch S6 (location within the study reach given in Fig. 2), a boulder berm 866 

deposited in 2007 as illustrated in the inset photograph. Coordinates are given 867 

in British National Grid (units are metres). 868 

 869 

Fig. 9. Frequency distributions of roughness height derived from the TLS and 870 

TSfM DEMs at the patches S5 to S8. 871 

 872 

Fig. 10. Surface roughness (in metres) of the TLS and TSfM DEMs as one 873 

standard deviation of local topographic variability using a search radius of 874 



0.15 m at patch S7 (location within the study reach given in Fig. 2), a lateral 875 

gravel bar as illustrated in the inset photograph. Coordinates are given in 876 

British National Grid (units are metres). 877 

 878 

Fig. 11. Surface roughness (in metres) of the TLS and TSfM DEMs as one 879 

standard deviation of local topographic variability using a search radius of 880 

0.15 m at patch S8 (location within the study reach given in Fig. 2), a gravel 881 

bar as illustrated in the inset photograph. Coordinates are given in British 882 

National Grid (units are metres). 883 

 884 
 885 
  886 



 887 

Table 1. Percentiles of a grain roughness measure (in cm) derived from the 888 

standard deviation of elevation within two coarse-grained patches (S5 and S6) 889 

and two fine-grained patches (S7 and S8) at Thinhope Burn. 890 

 Patch S5 Patch S6 Patch S7 Patch S8 

 TSfM TLS TSfM TLS TSfM TLS TSfM TLS 

25th percentile 16.0 8.3 14.5 9.4 5.8 1.1 5.2 1.7 

50th percentile 22.6 11.4 22.7 11.7 7.4 1.6 6.5 2.0 

75th percentile 30.3 16.1 30.2 16.2 10.8 2.0 7.5 2.3 

99th percentile 57.4 29.8 52.5 34.0 22.8 4.2 10.7 3.8 

 891 
 892 
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Figure 4
Click here to download high resolution image



Figure 5
Click here to download high resolution image


