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Abstract 

       Near-field and far-field optical microscopy are used to study the optical 

properties of nanowires based on a blend of 95% poly (9,9-dioctylfluorene) [PFO] 

doped with 5% poly (9,9-dioctylfluorene-alt-benzothiadiazole) [F8BT]. Single 

nanowires were imaged and optical investigations revealed that they act as nanoscale 

optical waveguides. Investigation using polarization-resolved far-field PL 

spectroscopy revealed emission from the nanowires was strongly anisotropic having 

preferred axial polarization. This suggests that a significant number of the polymer 

chains are oriented along the nanowire axis.  
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I Introduction 

Semiconductor nanowires are promising candidates in future nano-photonic 

and nano-electronic technologies such as photodetectors, lasers and 

electroluminescent diodes [1, 3-8]. It is anticipated that one-dimensional structures 

can have electronic properties that are different from those in the bulk materials. This 

is due to their geometry-reduced size. For example, nanowires exhibit significant 

anisotropic properties such as fluorescence polarization and directional charge 

transport along the nanowire axis [3, 4, 9-11]. Semiconductor nanowires based on 

conjugated polymers form an important class of semiconductor nanowire and can 

potentially be used as building blocks for nanodevices such as light emitters and 

waveguides [3-5, 7, 11-13].  In such structures, molecular orientation plays a crucial 

role since the electrical dipole on a conjugated polymer is aligned along the  

molecular backbone. Alignment of the polymer backbone along the nanowire axis can 

be achieved by selection of the appropriate processing parameters such as annealing 

temperature, the type of solvent used, and molecular weight [14]. Several techniques 

have been used to fabricate organic nanowires, including self-assembly [15], 

electrospinning [16], and polymerization in nanoporous templates [17].  Recently, a 

simple new technique based on wetting of a nano-porous template has been developed 

for the fabrication of organic nanowires having uniform size [18]. Here, a polymer 

melt is placed on a porous template. The porous template is then heated to a 

temperature above polymer glass transition temperature or melting point to facilitate 

the motion of polymer melt into the template pores. Subsequent controlled cooling 

results in solidification of the polymer within the template pore walls to form 

nanowires having a well-defined wall thickness [4, 18]. Alternatively, a drop of a 

polymer solution is deposited onto the top of porous template. After solvent 

evaporation, a thin wetting film covers the pore walls forming the polymer nanowires. 
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The resulting nanowires formed by either method can be released by soaking the 

polymer-filled template in aqueous NaOH solution for a few hours. Finally, the free 

nanowires are purified by washing with deionized water and then suspended in a 

liquid in which the polymer is insoluble [10, 13].  

     Redmond and co-workers have used this technique to fabricate conjugated 

polymer semiconductor nanowires [3, 4, 6, 9-11, 13, 19, 20]. Optical spectroscopic 

studies of polymer nanowires revealed that the photoluminescence from individual 

nanowire was anisotropic with nanowire emission having a preferred axial 

polarization.  

In this paper, we explore the optical properties of nanowires composed of 

PFO doped with 5% of F8BT using far field optical microscopy. These nanowires 

were synthesised by the Nanotechnology Group at Tyndall National Institute (Ireland) 

using the wetting of nano-porous alumina membrane templates. The use of a blend of 

polymers allows an exploration of the relative efficiency of energy transfer (via 

Förster transfer) from PFO to F8BT. Such blends have been used in efficient organic 

light emitting diodes (LEDs). Here, the combination of phase-separated materials can 

be used to both increase the PL quantum efficiency and balance electron and hole 

mobilities [21, 22]. For this reason PFO:F8BT nanowires are of potential interest as 

building blocks for new organic optoelectronic technologies, such as nanoscale 

organic light emitting diodes. Here, we show that the nanowires act as active optical 

waveguides whereby the waveguided PL emission propagates along the nanowire and 

out-couples at the wire ends, with efficient optical outcoupling being an important 

property of any system used in a light emitting optoelectronic device. Our 

measurements using far-field polarization-resolved PL spectroscopy revealed a strong 

axial polarization anisotropy from the nanowires, which we attribute to the molecular 
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alignment of PFO and F8BT within the nanowire. Our results suggest therefore that 

PFO:F8BT nanowires could be used as building blocks in organic nanodevices, by – 

for example – acting as optical waveguides or sources of polarised light.  

 

II Experimental methods 

Absorption spectra were recorded with Horiba Jobin Yvon Fluoromax-4 

spectrofluorometer, which covered a spectral range of 200 to 1000 nm. To investigate 

optical properties of PFO:F8BT nanowires, nanowires mats were deposited onto 0.2 

mm glass coverslip from a dilute aqueous suspension. Here, isolated single nanowires 

were well separated from each other by a few microns. For spectroscopic 

measurements, each film was mounted into a continuous flow, cold finger helium 

cryostat held at 4K under a vacuum better than 10
-5

 mbar. In all cases, spectra were 

acquired under horizontally polarized excitation at 442 nm at both room temperature 

and 4 K using far-field spectroscopy as described previously [23, 24]. The emission 

from nanowires were collected at wavelengths above 450 nm. A home built 

microscope was used to image the fluorescence from the isolated single nanowires, 

with a series of isolated emitting ‘spots’ having a typical surface density 0.01 μm
-2

 

observed [23]. 

To acquire polarization dependent PL spectra, a half-wave plate and polarizer 

were used to control the polarization of the excitation laser and select the polarization 

of the detected PL. The polarization of the excitation laser was varied and the PL 

emission from the nanowire was recorded parallel and perpendicular to its long-axis, 

as described previously [23, 24].  

Individual nanowires were imaged using a commercial SNOM (Aurora III 

from Veeco Instruments, USA) [25, 26], using near-field delivery and far-field 
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collection.  A diode laser was used to excite the sample at 405 nm via the SNOM 

probe with PL emission being collected in transmission using a microscope objective 

lens. The PL emission intensity of the individual nanowires at different wavelengths 

can be measured over a length scale of ~ 100 nm [25, 26].  

 

III Results  

Figure 1 shows a tapping mode AFM image of a series of isolated single 

nanowires. It can be seen that the nanowires are symmetric about their long axis. The 

individual nanowires were found to have diameters between 200 to 300 nm, reflecting 

the inhomogeneity of internal diameter of the template pores. The length of the 

nanowires (L) ranged between 1.4 m to 20m, but for majority of nanowires          

L2m.  

 

 

 

 

 

 

 

 

 

Figure 1.  A 20 x 20 μm tapping mode AFM image of PFO:F8BT 95:05 nanowires. 

 

Figure 2(a) shows the normalized absorption and fluorescence emission 

spectra acquired for a 95:05 PFO:F8BT blend thin film at room temperature. For 
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comparison, Figure 2 (b) plots the absorption and PL emission from pristine PFO and 

F8BT films at room temperature.  
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Figure 2.  Normalized absorption and fluorescence spectra of (a) a thin film of PFO doped 

with 5% F8BT by mass (b) a pristine PFO thin film (blue dashed and solid line, respectively) 

and a pristine F8BT thin film (red dashed and solid line, respectively). (c) Normalized PL 

spectra of nanowires based on a 95:05 blend of PFO:F8BT deposited onto 0.2 mm glass 

coverslip from a dilute suspension. 

 

As can be seen, the pristine PFO absorption is characterized by a broad peak at 

384 nm. This peak corresponds to the inhomogeneously broadened 10 SS   

transition. Since the blend film contains 95 % PFO polymer, its absorption is similar 

to that of pristine PFO and peaks at 393 nm, with an additional weaker, long 

wavelength absorption tail that extends to 525 nm. Due to the large overlap of the PL 

emission of PFO with F8BT absorption, efficient Förster energy transfer occurs from 

PFO to F8BT. This can be seen in the PL spectra of the blend film and the nanowire 

mat.  
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It can be seen that the PL spectrum of the blend film is dominated by the 

emission from F8BT at 537 nm, but contains a significant fraction of the PFO 

emission with peaks located at 440 and 466 nm (corresponding to different vibrational 

transitions). In comparison with the blend film emission, the PL spectrum acquired 

from the nanowire mat is red-shifted by 7 nm and exhibits slightly narrower emission 

peaks as shown in Figure 2(c). It is possibly that this red-shift and spectrum 

narrowing may result from a narrowed and extended distribution of conjugation 

lengths. As can be seen, the PL spectrum of the nanowire mat is dominated by PFO 

emission with relatively weaker emission observed from F8BT, suggesting that 

energy transfer from PFO to F8BT is relatively suppressed.  
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Figure 3. A fluorescence image of individual PFO:F8BT nanowires following excitation  at 

405 nm. Part (a):  A bandpass optical filter (± 20 nm) centred at 550 nm was used to 

selectively detect the F8BT PL emission from the nanowire.  Part (b) A bandpass optical filter 

(± 20 nm) centred at 450 nm was used to selectively detect the PFO PL emission from the 

nanowire.   

 

Near-field excitation at 405 nm was used to excite the 95:05 PFO:F8BT 

nanowires at room temperature. The PL emission from the individual nanowire was 
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split into two equal parts. A bandpass optical filter (± 20 nm) centred at 450 nm was 

inserted into one optical path to selectively detect the PFO PL emission from the 

nanowire (Figure 3 (b)), while a ± 20 nm bandpass filter centred at 550 nm inserted in 

the other path to detect the F8BT PL emission part from the nanowire (Figure 3 (a)). 

As can be seen in figure 3, green is emission (characteristic of F8BT) is observed 

from the interior of two nanowires (labelled as 1 and 2) along with brighter green 

emission from the tip of nanowire 1. In contrast, blue emission (characteristic of PFO) 

is only observed from the edges of the nanowires. This suggests that waveguiding of 

longer wavelength F8BT emission is efficient in such structures with such light being 

able to escape from the ends of the nanowire, whilst the shorter wavelength emission 

from PFO is rapidly re-absorbed, with waveguiding being relatively suppressed. 

The fluorescence images and spectra for isolated single 95:05 PFO:F8BT 

nanowires were measured at both room temperature and 4 K using far-field 

spectroscopy [23, 24]. The nanowires were excited using horizontally polarized 

excitation at 442 nm with emission collected at wavelengths above 450 nm. In this 

study, the emission spectra of more than 100 individual, isolated nanowires were 

acquired. 

A typical 28 x 28m fluorescence image of individual nanowires with 

different orientations is shown in Figure 4(a). In Figure 4(b) and (c), we plot a series 

of typical fluorescence spectra recorded from individual nanowires at room 

temperature and 4K respectively. Fluorescence spectrum for each nanowire is 

represented by a line of different colour. Here, all PL spectra are normalized to F8BT 

PL peak at 540 nm. In these measurements, the PL emission was collected from a 

region at the centre of each nanowire whose area was approximately 0.4m
2
. We find 

that most (~ 85%) of these nanowires have an emission spectrum dominated by F8BT 
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emission around 540 nm. However, weaker emission is also present around 473 nm 

(characteristic of PFO). A small subset (~ 15%) of nanowires however have an 

emission spectrum completely dominated by blue PFO emission.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. (a) A real-space 28 x 28 μm fluorescence image of a series of individual PFO:F8BT 

nanowires. (b) and (c) a series of typical fluorescence spectra recorded from individual 

nanowires at room temperature and at 4K respectively. Fluorescence spectrum for each 

nanowire is represented by a line of different colour. 

 

As can be seen, the vibronic peaks of individual PFO:F8BT nanowires are 

better resolved at 4 K compared to room temperature. Specifically, emission around 

473 nm (characteristic of PFO) has a linewidth (full width half maximum) of around 
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16 nm (90 meV) at 4 K and 19 nm (106 meV) at 300 K. This observed spectral 

narrowing and red shift compared with room temperature emission can be explained 

by a reduction in thermally-induced disorder which increases molecular conjugation 

length and decreases the energy-gap [27, 28].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. (a) 28 x 28 μm fluorescence image of a single nanowire. (b) PL spectra acquired at 

various points along the nanowire. (c) PL spectra normalized to F8BT emission. 

 

Our measurements indicate that the PL intensity varies significantly along 

each nanowire. Furthermore, we find that there is a significant variation in the relative 

intensity between the blue PFO emission (peaks observed at 473 and 508 nm) and the 
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green F8BT emission peaking at 541 nm. Data taken from one such nanowire, (about 

6m in length), is illustrated in Figure 5. A notable bright spot (region 1) is observed 

at the leftmost tip of the nanowire (part (a)). However, the emission from the 

rightmost tip (region 5) of the nanowire was less intense. PL spectra were acquired at 

several positions along nanowire long-axis as shown in Figure 5(b). These spectra are 

plotted again in part (c), but are normalized to the emission peak at 541 nm, which is 

characteristic F8BT. Here, the emission was collected in a direction perpendicular to 

nanowire long axis using an objective lens whose collection cone angle is ~ 50°.  

Previous studies on organic and inorganic nanowires have highlighted the 

importance of the transition dipole moment orientation in determining emission 

properties [20, 29]. As the molecules most strongly absorb and emit photons whose 

polarization is oriented parallel to the orientation of their transition dipole, 

polarization can be used as a probe of molecular alignment, as in most cases the 

transition dipole moment in a polymer is aligned parallel to the molecular chain axis 

[30]. We have therefore used far-field polarization resolved PL spectroscopy to 

investigate the emission polarization from 95:05 PFO:F8BT nanowires.  

The polarization resolved PL spectra of a typical nanowire is shown in Figure 6. 

Here, the PL spectra were collected from four different regions along the nanowire. 

Parts (b) to (e) show the PL emission acquired for vertically-polarized excitation 

(parallel to nanowire long-axis) and collected using either vertical (VV) or horizontal 

(VH) polarizations. Parts (f) to (i) show the PL emission spectra for the same 

nanowire acquired following horizontally polarized excitation and collected at both 

horizontal (HH) and vertical (HV) polarizations. Regardless of the polarization 

excitation, our measurements indicate that each nanowire emits most emission 

polarized parallel to its long-axis.  
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Figure 6. (a) Fluorescence image of a 5 μm long nanowire. Parts (b) to (e) show polarization 

resolved PL spectra acquired at various positions along the nanowire long axis following 

vertically polarized excitation. Parts (f) to (i) show polarization resolved PL spectra acquired 

at various positions along the nanowire long axis following horizontally polarized excitation. 
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IV Discussion  

 

In general, there are several possible causes for spatial variations in PL 

intensity along a nanowire. One possibility is that there is a variation in the nanowire 

diameter. This could be result from variations in the internal diameter of the template 

pores and to defects within each pore [19]. Other possible reasons are the presence of 

impurities, or insoluble clumps of polymer molecules protruding from the nanowire 

surface [31].  

SNOM fluorescence images for isolated single 95:05 PFO:F8BT nanowires in 

Figure 3 reveal blue PFO emission from nanowire edges along with green F8BT 

emission from the interior of the nanowire and strong bright green F8BT emission 

from nanowire tips. This suggests that the nanowires function as nanoscale optical 

waveguides whereby the green F8BT emission propagates towards and then out-

couples at the wire ends. Figure 3 does not provide information about the orientation 

of polymer chains within the nanowire. Therefore, we have used polarization-resolved 

far-field PL spectroscopy to measure the alignment and orientation of PFO and F8BT 

polymer chains within the nanowire.  

A large number of nanowires studied seem to have stronger emission from 

their tip compared to nanowire body under all polarization conditions, as shown in 

Figures 5 and 6. Furthermore, we find that the residual blue PFO emission (at 473 and 

508 nm) is weaker when detected at the nanowire tips.  

As the blue PFO emission is expected to be strongly absorbed in the nanowire, 

it suggests that the enhanced green emission from the nanowire tips actually results 

from waveguided green emission (which is weakly absorbed) and therefore scattered 

out of the nanowire ends. Such optical waveguide behaviour most probably results 

from the significant difference in refractive index between the nanowire ( nwn 1.8) 
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[32] and its surroundings ( Sn 1.5 for substrate, and 0n =1.0 for air). Such behaviour 

is similar to that previously observed in fluorene-based organic nanowires [4, 9, 13, 

33] and inorganic nanowires [34-36], whereby the resulting PL emission propagates 

along nanowire long-axis and out-couples at the tip.  

     The PL out-coupled at a nanowire tip has a divergence angle ( ) given by 

                                                           









d

2
arctan




                                                1 

 

where  is the emission wavelength and d is the diameter of the nanowire. For a 300 

nm diameter nanowire, the expected divergence angle of the emission at 473 and 540 

nm is 44° and 49° respectively. As the PL spectra were collected at angle of 90° with 

respect to nanowire long axis, the portion of outcoupled emission directed towards 

the collection objective lens will depend strongly on the tip morphology [9]. As can 

be seen in Figure 5, there is a slight bend near the rightmost tip of the nanowire. As a 

result, part of emission may be lost at such bend leading to less intense outcoupled 

emission at the rightmost tip of the nanowire. The difference in the morphology of 

two end facets of the nanowire may be also a reason for their relative difference in PL 

intensity.  

The waveguide behaviour of a nanowire depends on the emission wavelength 

and the orientation of the emission dipole within the nanowire [29]. For cylindrical 

waveguide, the fractional guided mode power is given by 

                                               3

2

V
V

1
exp4.21 

















                                           2 

where    212

0

2

nw nndV   and nnw and n0 are the refractive index of the nanowire 

and air respectively. For a 300 nm diameter 95:05 PFO:F8BT nanowire, we calculate 
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that   89% of optical power will be confined within the core for light at 473 nm, which 

drops to ~ 85%  at 540 nm. This suggests higher propagation losses for the green part 

of the emission, possibly due to weaker coupling to waveguide modes [9, 13, 29].  

Waveguide behaviour has not been observed in all nanowires. For some 

nanowires, this could be attributed to the variation in their diameter, the presence of 

structural defects, or the degree of substrate coupling, which increases the scattering 

propagation loss [4, 9, 29]. In addition, it is also likely that in some nanowires, 

outcoupled emission is diffracted from the tip in a direction away from the collection 

objective.  

 It can be seen that the nanowire emission is strongly anisotropic with a 

maximum emission intensity observed when the excitation and resulting PL emission 

are both polarized parallel to nanowire long-axis (VV). A distinct minimum intensity 

is similarly detected for both polarizations perpendicular to the nanowire long-axis 

(HH). This axial emission polarization suggests that a significant number of the 

emissive polymer molecules and hence their emission transition dipoles are aligned 

parallel to the nanowire long-axis. However, it is clear that there is nonzero emission 

intensity observed at both horizontally polarized excitation and collection. This 

suggests that the alignment of the polymer chains along the nanowire long-axis is not 

complete. This non-negligible horizontally polarized emission may result from several 

factors: 

(i) The emission transition dipoles make angles ~ 26.5° and ~ 22° relative to 

the chain axis for PFO and F8BT, respectively [37, 38]. These slightly off-

axis angles limit the PL emission anisotropy.  

(ii) There may be a distribution of polymer chain orientations with respect to the 

nanowire long-axis.  
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(iii) Excitons are able to migrate between molecular chains having different 

orientations within the nanowire.  

(iv) Light scattered from the substrate and impurities may also reduce the PL 

emission anisotropy.    

To quantify the polarization anisotropy and explore these possibilities we have 

estimated the relative emission anisotropy at different peaks that appear in nanowire 

emission spectra using 

 

                                                     iHiVi IIDR  .                                                      .3  

               

Here I is the intensity of emission, with subscripts Vi  or H signifying vertically 

(parallel to nanowire long-axis) or horizontally (perpendicular to nanowire long-axis) 

polarized excitation. For each polarization condition, the emission polarization ratio 

(  ) is given by [14, 39]  
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The emission dichroic ratio (DRi) and emission polarization ratio (  ) were 

determined at a wavelength corresponding to the different peaks that appear in 

nanowire emission spectra. Regardless of excitation polarization, DR  (and therefore  

 ) were found to vary along the nanowire as shown in Figure 6. For vertically 

polarized excitation, the calculated emission polarization ratios at 473 and 540 nm 

varied from  = 0.67 to 0.79, and 0.46 to 0.56, respectively. However, for 

horizontally polarized excitation,   varied from 0.26 to 0.46, and 0.17 to 0.31 
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respectively. The values of   determined at 473 nm are very close to previously 

reported values (from 0.64 to 0.83) for PFO nanowires. These large values for  have 

been attributed to the preferential axial alignment of PFO polymer chains [14].   

     Since the off-axis transition dipole moment on F8BT is smaller than that of PFO 

[37, 38],  -values are expected to be larger at 541 nm, characteristic for F8BT, than 

at 473 nm, characteristic for PFO, emission peaks. However, the data in Figures 6 

suggest smaller  -values at 541 nm emission peak. This can be also clearly seen in 

Figure 7, where we plot the average emission polarization ratio for 16 nanowires as a 

function of PL emission wavelength for both horizontally and vertically polarized 

excitation. This decrease in emission anisotropy at longer wavelength suggests that 

there is a greater degree of chain alignment of PFO than F8BT along the nanowire 

long-axis.   

 

 

 

 

 

 

 

 

 

 

Figure 7. Average polarization ratio as a function of emission wavelength. 
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Emission polarization anisotropy values up to 0.96 have been reported for 

inorganic nanowire waveguides [40]. Such high values have been attributed to the 

large dielectric contrast between the nanowire and its surroundings. Dielectric 

confinement effects only occur in homogenous nanowires having a dielectric constant 

that is larger than the surrounding medium (i.e. nw  0 ) and a diameter that is much 

less, and a length that is much greater than the excitation wavelength (d  exc ). Under 

such conditions, when the excitation is polarized parallel to nanowire long-axis, the 

power confined within the nanowire is not reduced. However, for excitation polarized 

perpendicular to nanowire long-axis, the confined intensity is attenuated according to 

[40] 
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where cI is the confined intensity and 0I  is the excitation intensity. If the anisotropic 

optical properties of 95:05 PFO:F8BT nanowires originate from dielectric 

confinement effects, an emission polarization ratio of 0.64 would be expected. 

However, since the nanowires studied have a diameter slightly smaller than the 

excitation wavelength ( d 0.6), dielectric confinement effects are unlikely to be 

the dominant mechanism for the observed polarization emission anisotropy. This 

suggests that it is the emission transition dipole moments of PFO and F8BT within the 

nanowire backbone that accounts for the observed polarization emission anisotropy.   
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V Conclusions 

Optical spectroscopy of nanowires composed of a 95:05 blend of PFO:F8BT 

revealed that they act as nanoscale optical waveguides whereby the waveguided PL 

emission propagates along the nanowires and out-couples at the wire ends. This is 

evidenced by the attenuation of the short-wavelength PL emitted from the tip 

compared with that from the body; an effect that points towards the reabsorption of 

waveguided PL during propagation along the nanowire. 

Single nanowire far-field polarization-resolved emission revealed a strong 

axial polarization, suggesting that most PFO and F8BT molecules are aligned parallel 

to the nanowire axis. Although the off-axis transition dipole moment of F8BT is 

smaller than that of PFO, the measured anisotropy values were smaller at 541 nm 

(characteristic of F8BT) than at 473 nm (characteristic of PFO). This effect most 

likely results from F8BT molecules having a reduced degree of alignment with 

respect to nanowire long-axis compared with PFO.  
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