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Abstract
We extend the uniform mixture model of Gao et al. (Ann Oper Res, 2019. https://doi.org/10.
1007/s10479-019-03236-9) to the case of linear regression. Gao et al. (Ann Oper Res, 2019.
https://doi.org/10.1007/s10479-019-03236-9) proposed that to characterize the probability
distributions of multimodal and irregular data observed in engineering, a uniform mixture
model can be used. This model is a weighted combination of multiple uniform distribution
components. This case is of empirical interest since, in many instances, the distribution of
the error term in a linear regression model cannot be assumed unimodal. Bayesian methods
of inference organized around Markov chain Monte Carlo are proposed. In a Monte Carlo
experiment, significant efficiency gains are found in comparison to least squares justifying
the use of the uniform mixture model.

Keywords Multimodal data · Uniform mixture model · Regression models · Statistical
inference · Bayesian analysis

1 Introduction

Gao et al. (2019) proposed that to characterize the probability distributions of multimodal
and irregular data observed from practical engineering, a uniformmixture model (UMM) can
be used, which is a weighted combination of multiple uniform distribution components. As
these authors notice, because of noise inmany data sets, “probability distributions of observed
data can not be accurately characterized by typical unimodal distributions (such as normal,
lognormal, and Weibull distributions), and the adequacy of typical unimodal distributions
may be questioned”.
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The uniform distribution in the interval (a, b) has probability density:

f (u) =
{

1
b−a , if a < x < b,

0, otherwise.
(1)

The UMM is defined by discretizing the support to points {a1, a2, . . . , aN+1}, where N
is given, and using the following mixture density:

fUMM (u) =
N∑
j=1

w j
1

a j+1 − a j
I(a j < u < a j+1), (2)

where I(·) is the indicator function and the weights w j satisfy

w j ≥ 0, j = 1, . . . , N ,

N∑
j=1

w j = 1. (3)

2 The case of linear regression

Consider now a regression model of the form

yi = x ′
iβ + ui , i = 1, . . . , n, (4)

where yi is the dependent variable, xi ∈ �k is a vector of explanatory variables, β ∈ �k is a
vector of coefficients to be estimated, and n > k is the number of observations. Suppose the
first element of xi is unity so that an intercept is always present in the model. Assuming the
distribution of the error term, ui , is unknown but can be approximated by a UMM, we must
have E(ui |{xt }nt=1) = 0, i = 1, . . . , n, which implies the following constraint:

E(ui |xi ) =
N∑
j=1

w j
a j + a j+1

2
= �

N∑
j=1

jw j + a1 − �
2 = 0, (5)

assuming a j+1 − a j = �∀ j . From (2) we have that:

fUMM (ui ) =
N∑
j=1

w j
1

�
I(a j < yi − x ′

iβ < a j+1), i = 1, . . . , n. (6)

Since a j = a1 + ( j − 1)�, we can write this equation as:

fUMM (ui ) =
N∑
j=1

w j
1

�
I(a1 + ( j − 1)� < yi − x ′

iβ < a1 + j�), i = 1, . . . , n, (7)

which implies that

fUMM (ui ) =
N∑
j=1

w j
1

�
I(−� < yi − x ′

iβ − a1 − j� < 0), i = 1, . . . , n. (8)
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3 Statistical inference

3.1 Markov chain Monte Carlo (MCMC) in general

Very often, complicated posterior distributions arise in statistics, operations research, and
related field. Given a parameter α ∈ A ⊆ Rd , and data D, suppose that the likelihood
function is L (α; D). Suppose also we have a prior on the parameters, say p(α). By Bayes
theorem we know that the posterior is:

p(α|D) ∝ L (α;D)p(α). (9)

In general, we are interested in the posterior means of certain functions of interest, say
f (α). The posterior mean of this function of interest is:

Eα|D [ f (α)] =
∫
A f (α)p(α|D) dα∫

A p(α|D) dα
, (10)

where Eα|D [ f (α)] denotes posterior expectation, and the denominator is the normalizing
constant of the posterior. Part of the problem could be to find marginal posterior densities. If
we partition α = [

α′
1, α

′
2

]
then the marginal posterior density of α1 would be

p(α1|D) =
∫
A p(α1, α2|D) dα2∫

A p(α|D) dα
. (11)

These integrals are typically, not available in closed formunless the problem is very simple.
The Gibbs sampler, a particular MCMC technique relies on the idea that we may be able
to produce a sequence of parameter draws

{
α(s), s = 1, . . . , S

}
, not necessarily iid, which

converges (as S → ∞) to the posterior whose unormalized density is given by (9). If such
a sample were available, the posterior expectation in (10) could be accurately approximated
as follows:

Eα|D [ f (α)] � S−1
S∑

s=1

f (α(s)). (12)

Therefore, a sampling approach would facilitate the tasks of Bayesian inference to a great
degree. The Gibbs sampler relies on the idea that the sequence

{
α(s), s = 1, . . . , S

}
can be

produced recursively by using the conditional posterior distribution of each element of α.
Suppose for example α = [α1, α2]′ where α1, α2 are two scalar parameters for simplicity
(although clearly they can be vectors). The Gibbs sampler is as follows:

• Draw α
(s)
1 from its conditional distribution α1|α(s−1)

2 ,D,

• Draw α
(s)
2 from its conditional distribution α2|α(s)

1 ,D,

and so on, if there are additional parameters. We repeat for s = 1, . . . , S and we assume α
(0)
2

is available. Quite often, the conditional posterior distributions are univariate and amenable
to random number generation by commonly available means.

3.2 MCMC in the UMM linear regressionmodel

Suppose now there is an index Ji ∈ {1, . . . , N } so that

− � < yi − x ′
iβ − a1 − Ji� < 0, i = 1, . . . , n, (13)
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whose interpretation is that ui is drawn from a uniform distribution in
(
aJi , aJi+1

)
with

probability w j .
In turn, the posterior (augmented) distribution of the model is:

p(θ, {Ji }ni=1|D) ∝
n∏

i=1

wJi I
(−� < yi − x ′

iβ − a1 − Ji� < 0
)
p(θ). (14)

Here, θ is the parameter vector which includes β and some other elements as we explain
below, and D denotes the entire data set {yi , xi }ni=1. Therefore, we have:

p(θ, {Ji }ni=1|D) ∝ w
n1
1 . . . w

nN
N

n∏
i=1

I
(−� < yi − x ′

iβ − a1 − Ji� < 0
)
p(θ), (15)

where I(·) is the indicator function, n j = ∑n
i=1 I

(−� < yi − x ′
iβ − a1 − j� < 0

)
, and∑N

j=1 n j = n. So, n j represents the number of observations in the j th sub-interval.
It turns out that given � and N the endpoint a1 can be estimated from the data. Define

the parameter vector as θ = [β ′, a1, {Ji }ni=1, w
′]′. Given the Ji s we must have:

a1 + (Ji − 1)� < yi − x ′
iβ < a1 + Ji�, i = 1, . . . , n. (16)

Therefore, the conditional posterior of regression parameters, β, is:

p(β|{Ji }, w, a1) ∝ const.,
s.t � ≡ (

mint=1,...,n yt − aJt
)

> x ′
iβ >

(
maxt=1,...,n yt − aJt

) ≡ ψ, i = 1, . . . , n.
(17)

From (5) along with the posterior in (15) we have

max
t=1,...,n

(yt − x ′
tβ) − N� < a1 < min

t=1,...,n
(yt − x ′

tβ), (18)

where the first inequality comes from the restriction: aN+1 = a1 + N� > maxt=1,...,n(yt −
x ′
tβ). Moreover, we have:

aN+1 = a1 + N�. (19)

Therefore, the right endpoint can be expressed in terms of N , a1 and aN+1. If we wish
to impose the constraint a1 = −aN+1 then we have aN+1 = N�

2 . In this case, a1 = − N�
2 ,

and a1 has to be treated as given. We follow this practice, throughout to simplify the analysis
as treating a1 adds a layer of technicalities, although it is straightforward to treat it as an
unknown parameter. In practice, the support of the error can be accurately estimated using
the standard error of LS residuals.

Given {w j }, N and�, these equations determine the values of the endpoints. Suppose our
prior is

p(β,w) ∝ w−1
1 . . . w−1

N p(β), (20)

In turn, the conditional posterior of weights is:

p(w|β, {Ji }ni=1, D) ∝ w
n1−1
1 . . . w

nN−1
N , (21)

subject to (3), which is a Dirichlet distribution.
From (17) we have that β has to be drawn from the prior p(β) subject to the restrictions

that� > x ′
iβ > ψ, i = 1, . . . , n, as in (17). A particular convenient prior is the flat prior, viz.

p(β) ∝ const. All the above techniques can be implemented using straightforward Markov
Chain Monte Carlo (MCMC) techniques organized around the Gibbs sampler (Gelfand and
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Smith 1990) by drawing successively random numbers from the conditional posterior dis-
tributions in (17) and (21). In particular, for β we proceed as follows. The restrictions that
� > x ′

iβ > ψ, i = 1, . . . , n, as in (17), can be written, in matrix notation as:

�1n > Xβ > ψ1n, (22)

where 1n is an n × 1 vector of ones, and X is the n × k matrix of regressors. In turn, the
posterior conditional distribution of β is p(β) ∝ const. subject to these restrictions. Suppose
X = [x1, . . . , xk] where x j is the j the column of X , an n × 1 vector. We can write (22) as
follows:

�1n > β1x1 + · · · + βkxk > ψ1n . (23)

Suppose we want to draw β1|β2, . . . , βk, D. Then the conditional posterior distribution
of β1 is uniform in � subject to the restrictions:

�∗
1 ≡ �1n −

∑
j �=1

β jx j > β1x1 > ψ1n −
∑
j �=1

β jx j ≡ ψ∗
1. (24)

We can draw β1 (conditional on all other βs) from a uniform distribution subject to
the restrictions in (24) which are enforced via rejection sampling. Repeating for each j =
1, . . . , k we obtain draws from the posterior conditional distribution of β j |β(− j), D, j =
1, . . . , k. Finally, to obtain draws from the conditional distribution of {Ji }ni=1 we have:

p(Ji = j |β,w, D) ∝
n∑

t=1

I
(
a1 + ( j − 1)� < yt − x ′

tβ < a1 + j�
)
, j = 1, . . . , N .

(25)
In turn, we normalize π j = p(Ji= j |β,w,D)∑N

j ′=1 p(Ji= j ′|β,w,D)
, and we set Ji = j with probability

π j , j = 1, . . . , N . TheGibbs sampler yields a sample
{
β(s), w(s), J (s)

}S
s=1 which converges

to the posterior distribution whose non-normalized density is given in (15), as S increases.

4 Monte Carlo evidence

We consider four cases for the distribution of the error term as in Fig. 1.
For each casewe assume that the sample size is n = 25, 50, 100, 500, 1000 and 10,000.We

have two correlated regressors: the first one, xi1 ∼ N (0, 1) and the second is xi2 = xi1+0.1εi ,
where εi ∼ N (0, 1), i = 1, . . . , n. The regression model is: yi = β0 + β1xi1 + β2xi2 + ui ,
where ui is generated according to cases (a) through (d). The true parameter values are:
β0 = 10, β1 = 1, β2 = −1.

Our interest focuses on comparing with least squares (LS) regression and the potential
improvement in efficiency, which is defined as Eff = √

var(b j,LS)/var(b j ), where j = 1, 2,
b j,LS is the Bayes posterior mean estimate of β j from the UMM model, b j,LS is the LS
estimator of β j , and “var” denotes sampling variance. We use 10,000 Monte Carlo simula-
tions to examine the efficiency of LS versus UMM-regression-based techniques. MCMC is
implemented using 15,000 passes the first 5000 of which are discarded during the “burn-in”
phase. Initial conditions were obtained from LS and, in all cases, we have N = 100 points
in the support of the error term.

From the results in Table 1, regression-UMM-based techniques are considerable more
efficient compared to LS particularly for “small” samples (i.e. n ≤ 1000) although even at
n =10,000 the improvement in efficiency is quite evident. With n =10,000 the efficiency is
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Fig. 1 a A mixture of five normals, with means −10, −5, 0, 5, 10, standard deviations 0.25, 1, 0.5, 1,
0.25, and probabilities 0.2. b A mixture of five Student-t densities with one degree of freedom and the same
configurations as in a. c A mixture of five lognormal densities with one degree of freedom and the same
configurations as in a. d A mixture of ten Student-t densities with randomly selected means using N (0, 102),
randomly selected standard deviations using |N (0, 1)| and ten randomly selected probabilities in the interval
(0, 1) normalized so that they sum up to unity

Table 1 Efficiency of
regression-UMM versus LS

Case (a) Case (b) Case (c) Case (d)

n = 25 1.712 1.912 1.981 2.231

n = 50 1.515 1.832 1.872 1.945

n = 500 1.350 1.644 1.750 1.717

n = 1,000 1.210 1.355 1.515 1.422

n = 10,000 1.07 1.101 1.113 1.130

The results are based on 10,000 of Monte Carlo replications. The results
refer to b1,LS and b1. The efficiency of b1,LS and b1 was quite similar
to the results reported above. We use 10,000 Monte Carlo simulations to
examine the efficiency of LS versus UMM-regression-based techniques.
MCMC is implemented using 15,000 passes the first 5000 of which are
discarded during the “burn-in” phase. Initial conditions were obtained
from LS and, in all cases, we have N = 100 points in the support of the
error term
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Table 2 Bias and efficiency of
LS estimator of β1 and
UMM-regression

N = 10 N = 50 N = 100

Bias LS 0.014

Bias UMM 0.012 0.011 0.011

s.e. LS 0.011

s.e. UMM 0.009 0.007 0.007

s.e. standard error

close to unity but still the efficiency of UMM is larger (notice that LS is best linear unbiased,
but the UMM-regression estimator is not linear so efficiency gains are possible even in quite
large samples). Moreover, the regression-UMM-based estimator is, practically, unbiased as
it mean squared error and variance are very similar (results available on request). Finally,
efficiency gains are largest in cases (b) and (c) where the mixing components are far from
normality (viz. Student-t with one degree of freedom and lognormal components).

Another interesting case is to consider ui ∼ N (0, σ 2), i = 1, . . . , n, where σ 2 is esti-

mated using the LS estimator s2 =
∑n

i=1(yi−x ′
i bLS)

2

n−k , and bLS = (X ′X)−1X ′y. In turn, we
know that the support of the error terms is, approximately, (−3s, 3s) (perhaps too “gener-
ously”). Even a plot of LS residuals can inform us, at least in large samples, about the support
as well as the form of the distribution of errors.

Using the same data generating process as in cases (a), (b), and (c), we examine the bias
and efficiency of LS estimator of β1 and UMM-regression with n = 100 but different number
of points (N ) in the support of UMM-regression. in Table 2.

For example the mean square error (MSE) of LS is 0.0112 + 0.0142 = 0.000317 while
the MSE of UMM-regression estimator with N = 50 is 0.0072 + 0.0112 = 0.00017 so the
ratio of MSEs is almost 1.86. The MSE is lower compared to LS even if we use only N = 10
points in the support of the error.
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