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Abstract

Craniofacial sutures are a ubiquitous feature of the vertebrate skull. Previous experimental work has shown that bone strain
magnitudes and orientations often vary when moving from one bone to another, across a craniofacial suture. This has led to
the hypothesis that craniofacial sutures act to modify the strain environment of the skull, possibly as a mode of dissipating
high stresses generated during feeding or impact. This study tests the hypothesis that the introduction of craniofacial
sutures into finite element (FE) models of a modern domestic pig skull would improve model accuracy compared to a
model without sutures. This allowed the mechanical effects of sutures to be assessed in isolation from other confounding
variables. These models were also validated against strain gauge data collected from the same specimen ex vivo. The
experimental strain data showed notable strain differences between adjacent bones, but this effect was generally not
observed in either model. It was found that the inclusion of sutures in finite element models affected strain magnitudes,
ratios, orientations and contour patterns, yet contrary to expectations, this did not improve the fit of the model to the
experimental data, but resulted in a model that was less accurate. It is demonstrated that the presence or absence of
sutures alone is not responsible for the inaccuracies in model strain, and is suggested that variations in local bone material
properties, which were not accounted for by the FE models, could instead be responsible for the pattern of results.

Citation: Bright JA (2012) The Importance of Craniofacial Sutures in Biomechanical Finite Element Models of the Domestic Pig. PLoS ONE 7(2): e31769.
doi:10.1371/journal.pone.0031769

Editor: Andrew A. Farke, Raymond M. Alf Museum of Paleontology, United States of America

Received July 15, 2011; Accepted January 18, 2012; Published February 21, 2012

Copyright: � 2012 Jen A. Bright. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by Natural Environmental Research Council Studentship, NE/F007310/1 (http://www.nerc.ac.uk/). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: j.bright@bristol.ac.uk

Introduction

The skulls of vertebrates are composed of many individual

bones joined together at craniofacial sutures, synarthrotic

intersections between the bones that are bridged by collagen

fibres. These sutures are of particular importance during

ontogeny, because bone is deposited at the sutural junctions,

permitting growth. During growth, sutures tend to become more

ossified, or ‘‘fused’’, with premature fusion associated with growth

disruption and craniofacial malformation [1]. In many reptiles and

birds, sutures are also an important mechanical feature of the skull,

acting as kinetic joints that experience significant movement

during feeding and other behaviours [2]. Thus, in these animals, it

is common for some sutures to remain unfused at maturity. In

mammals such kinesis at the sutures is not observed, and sutures

often fuse once the bones have reached their adult size. However,

some mammalian sutures remain patent well into adulthood [3].

The fact that some mammalian sutures remain patent,

apparently introducing a zone of weakness into the skull, has led

to the hypothesis that sutures may have a functional role [4–6]. In

support of this, sutural morphology can often be used to predict

the dominant type of strain (compressive or tensile) that a suture

experiences, with interdigitated sutures being indicative of a

compressive strain regime, and simple, butt-ended or bevelled

sutures indicating tension [3,4,7,8]. The arrangement of collagen

fibres in these two morphotypes is consistent with this hypothesis,

because the fibres are well orientated to bear such strains [7,9].

More complex suture interdigitation has also been associated with

increased loading in the skull, either from the masticatory muscles

[10], a diet comprising resistant foods [11], or possibly from a

strong genetic signal [12].

Extensive experimental work using strain gauges has measured

deformation in the skulls of several mammalian taxa both in vivo

and ex vivo. In multiple in vivo experiments on miniature pigs,

Herring and colleagues have found that strain magnitudes and

orientations on adjacent bones in the skull are often different, and

that strain in sutures is higher than that in bones [4,7,13–16].

These authors suggest that patent sutures may therefore act as

strain modifiers, possibly protecting the more delicate bones in the

face from high stresses developed during feeding. Similar results,

showing that adjacent bones can have notably different strain

magnitudes and orientations, have been obtained in sheep [17]

and macaques [18]. Impact loading and bending tests performed

ex vivo on the bones and sutures of goats [5,6] show that sutures

absorb more energy than bones upon impact, and the ability of

sutures to do so is positively correlated with the degree of

interdigitation. It has therefore been suggested that sutures may

play a dynamic role, acting as shock absorbers during forceful

movements such as head-butting [5,6,19].

If craniofacial sutures are performing a functional role, then

their inclusion in biomechanical models of the skull may be

crucial. Finite Element Analysis (FEA) is an engineering technique

that allows the quantification of various performance metrics in

complex shapes, by discretising their geometry into an intercon-

nected mesh of small, geometrically simple bricks (elements). By

treating each element as a term in a simultaneous equation, and
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solving for stress and strain, an approximation of the stresses and

strains in the continuum structure can be reached [20,21]. Because

material properties, loading regimes and geometries are easily

manipulated within the modelling environment, FEA is a widely

used technique to investigate the associations between skeletal

function and form in both living and extinct taxa [21,22].

Therefore, FE models potentially offer a powerful method for

testing the biomechanical significance of a number of skeletal

features, including craniofacial sutures. If sutures are demonstrated

to play a significant role in skull function, yet are not appropriately

considered in FE models, then there is the potential for such

models to give results that may be inaccurate or misleading

[18,21,23,24].

So far, FEA investigating the role of craniofacial sutures has

been ambiguous. Kupczik et al. [25] validated a FE-model of a

macaque skull including the zygomatic suture by comparing their

FE model with ex vivo strain gauge data. Sutures were modelled as

fused, open (as a break in the mesh), or regions of flexible 3D

elements with varied material properties. Finite element strain

results in the zygomatic arch gave a better approximation of ex vivo

strains when flexible 3D elements were modelled with sutural

properties measured from their specimen by nanoindentation. But,

this came at the expense of higher strain elsewhere in the face.

Conversely, in a model incorporating four facial sutures bilaterally,

Wang et al. [26] found that sutures made virtually no difference to

the patterns of strain in a macaque skull when compared with a

solid model (although the suture models were more flexible and

experienced higher deformations). This study therefore suggested

that whether macaque sutures are modelled as open or fused

probably has little effect on the reporting of stress or strain results

of a finite element analysis. Indeed, other FE models of macaques

have demonstrated reasonable correlation with in vivo experimen-

tal strain data [27–29], reporting strain ratios and orientations

within the experimentally measured range, despite the fact that

sutures were omitted from these models. Moazen et al. [23]

modelled a reptilian (Uromastyx) skull with multiple sutures, again

with the sutures modelled as flexible regions of 3D elements. Local

perturbations in strain were observed when compared with a solid

FE-model, but overall strain was not substantially reduced. They

suggested that sutures may act to relieve local strains in a number

of ways depending on the type of loading encountered, by

redistributing strains so that they are equalised throughout the

whole skull. Again, this study seems to indicate that sutures act to

reroute stresses, causing nearby bones to experience either a

decrease or increase in strain. Reed et al. [24] also found that

changing the stiffness of 3D elements representing sutures in

models of the alligator mandible significantly affected the strain

regime both in individual bones, and in the whole model. As

reptiles and birds have more bones in their crania compared to

mammals, and have a greater proportion of unfused sutures

connecting these bones, it is possible that these differences in

results are a function of the taxa that have been studied.

Bright and Gröning [30] validated a method for FE-modelling

of sutures by studying the zygomatic arch of a domestic pig using

digital speckle pattern interferometry (DSPI), and found that the

most accurate means of capturing sutural mechanical behaviour

was to model sutures as regions of flexible, 3D elements. Their

experiment also indicated that high strain gradients are observed

across the suture, but these are localised and do not affect bone

beyond a few mm from the suture. The suture did however allow

the two bones in the zygomatic arch to move independently of one

another. It is therefore possible that the cumulative effect of

multiple small displacements at the sutures may be sufficient to

change the structural behaviour of the whole skull when compared

to a model with no sutures. In an additional study [31], it was

found that a solid FE-model of the pig skull did not always

correctly report the magnitudes of strain, although it could be

shown that the model was experiencing a similar loading condition

to the ex vivo experiment. However, a general fit of experimental

strain ratio and orientation to FE-results was achieved. It was

noticed that areas that failed to accurately report strain were often

located near sutures. Other finite element workers have also

suggested that neglecting to model craniofacial or mandibular

sutures may have been responsible for local lack of fit between

their experimental and modelled data [27,32].

The aim of this study was to compare finite element models of a

modern domestic pig skull that either did or did not incorporate

craniofacial sutures. This data was also compared to experimental

strain data gathered ex vivo to assess how sutures influence model

validity. Here, the hypothesis that introducing craniofacial sutures

into the model will improve the fit of experimental to model data is

tested by incorporating six prominent sutures into a model

validated with ex vivo strain gauge data.

Materials and Methods

Experimental strain data for comparison with the models was

collected from a pig specimen ex vivo. The experimental set-up has

been described previously in Bright and Rayfield [31], and a

summary is given below. Although a considerable body of research

on bone and suture strain in the pig skull has been collected in vivo

by Herring and colleagues [4,7,8,13–16], there are several reasons

why it was not appropriate to validate the models against Herring

et al.’s data. Briefly, the objective of this study was to perform a

specimen-specific validation, so that the effects of intraspecific

differences in morphology and bite kinematics did not confound

the results arising from inaccuracies in model input parameters.

This raises several problems with using in vivo data: Firstly, it was

desired that the experimental loading was precisely known, and

that this load was repeatable in the FE-model. As such, a

comparison with strain data collected in vivo from a number of

individuals with unknown muscle force inputs and bite points was

unsuitable for this purpose, and a simplified ex vivo loading

condition was preferred. For these same reasons, the range of

strain values that are generated for any given gauge site in vivo tend

to show huge variability in their results, sometimes having a

standard deviation greater than 50% of the mean value [14].

Conversely, the standard error of the ex vivo strain data utilised in

this study was in the range of 5–10% of the mean value [31]. The

greater precision of ex vivo experimental data, and the fact that the

FE-model should be able to precisely replicate the boundary

conditions of the experiment, makes an ex vivo dataset much more

suitable for validation in this instance. Furthermore, the lack of

precision in being able to place gauges in homologous locations to

those of Herring et al. would have exaggerated these effects.

Finally, Herring et al. have worked exclusively with Hanford strain

laboratory-reared miniature pigs. The breed of pig in this

investigation was a farm-reared Large White Breed, which is of

a vastly different size, and different morphology, which again will

exaggerate all of the issues raised above.

A load of 755 N was applied to the fresh pig skull specimen

(Large White Breed, age approx. six months, defleshed skull

dimensions 24761416133 mm) at the masseter and temporalis

attachment sites using a custom-built testing rig. The load was

approximately equal on the left and right side of the face, but was

asymmetrically divided between the masseter and temporalis

muscles, because pigs recruit the ipsilateral masseter and

contralateral temporalis together to close the jaw [33], even when

Finite Element Analysis of Cranial Sutures in Pigs
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biting bilaterally. This arrangement pulled the specimen down

onto bilateral supports at the teeth and temporomandibular joints

(TMJ). Strain was recorded on 16 planar rosette strain gauges (G1-

16) glued to the skull (C2A-06-062LR-350, Vishay Micro-

Measurements, Basingstoke UK). These are electronic compo-

nents that experience changes in the length of wire as a change in

resistivity, and can therefore be used to measure strain. The rosette

configuration of the gauges allows the direction of maximum

principal strain to be determined. During the experiment, it was

noticed that G1 was drifting, and thus gave unstable results.

Similarly, G6 gave unstable results, flipping between compressive

and tensile strains [31]. These gauges are therefore excluded from

further discussion.

The same specimen was CT-scanned at the Royal Veterinary

College on a Picker PQ5000 medical scanner (0.55 mm pixel size,

2 mm slice thickness, 120 kV, 200 mA), after which the slices were

imported into Amira 4.1 (Mercury Computer Systems Inc., USA),

and a 3D surface of the bones was constructed and exported as a

stereolithography (.stl) file. The .stl surface was imported into

HyperMesh 10.0 (Altair Engineering Inc., USA) for conversion into

a finite element model. Loads were applied to the model via rigid

body elements (RBE3 in Abaqus), and translational constraints

applied to the teeth dorso-ventrally (Y) and in all directions at the

TMJ (XYZ) to mimic the experimental set-up (Fig. 1). In the

absence of material properties data for pig bone, the model was

assigned the properties of human cranial cortical bone

(E = 12.5 GPa, n= 0.35 [34]), and was assumed to be isotropic

and homogeneous (HOM model). It has already been shown that

these assumptions result in a model that is too stiff (probably

because it neglects to account for more flexible cancellous bone)

but approximates the loading condition of the experiment well

[31]. Because CT resolution was insufficient to accurately resolve

the periodontal ligament (PDL), the teeth were modelled as being

continuous with the bone, and assigned the same material

properties. There is currently debate over whether or not the

exclusion of the PDL results in models that are too stiff, and that

deform differently [35–38], but neither issue should affect

differences caused by the presence or absence of craniofacial

sutures. Keeping these assumptions constant not only allows direct

comparison with the results of the earlier study, but removes the

potentially confounding effects of other variables in the model,

allowing the effect of introducing sutures into FE models to be

observed in isolation.

Convergence tests were performed on the solid model [39], and

a mesh comprising 1,749,149 quadratic tetrahedral elements

(TET10) was utilised. Six major sutures were inserted into the

Figure 1. CT reconstruction of the pig skull for FE modelling. CT reconstruction of the pig skull, showing the locations and magnitudes of
loading and constraints used in the FE model, as well as the positions of the strain gauges and sutures. TMJ = temporomandibular joint, M1 = 1st molar
tooth, G = gauge.
doi:10.1371/journal.pone.0031769.g001
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mesh: the right zygomatic-squamosal; midline; naso-frontal,

frontal-parietal; and bilateral maxillary-premaxillary/maxillary-

nasal sutures (Fig. 1). As these were poorly resolved by the CT scan

(voxel sizes were 0.5560.5562 mm), sutures were introduced

manually, using measurements from the specimen to place them,

and detailed CT reconstructions from a different specimen [40] to

appropriately replicate the internal geometry (such as overlap

between bones). On the scale of this model, the degree of

interdigitation of the sutures was not considered. Although it has

been shown that interdigitation at sutures is related to the way in

which they distribute strains [9], this has been shown to be of

negligible concern at the scale of the whole skull [30].

Sutures were created (SUT model) by defining bands of 3D

elements throughout the bone thickness that were at least three

elements wide (1.5 mm). This has been demonstrated to be an

accurate means of simulating strain and displacement patterns at

sutural junctions [30], both for interdigitated and smooth sutures,

and in compression and tension. Although this band is wider than

sutures in reality, it is a necessary abstraction (which has been

shown not to invalidate the model [30]), as otherwise strain

gradients developed in the model at the suture-bone interface

become artificially steepened. Sutures were assigned the properties

of pig nasofrontal suture (E = 46 MPa, n= 0.35; [16]). It has

already been demonstrated that this value of sutural stiffness

(46 MPa) is too flexible when compared with ex vivo experimental

data from the zygomatic arch of this specimen [30]. This could be

due to a number of factors, including differences in the species and

age of pigs in the two studies, differing degrees of internal fusion in

the sutures, and the fact that values from the nasofrontal suture

may not be comparable with those from the zygomatic arch. An

averaged set of material properties representing a ‘‘zone’’ of suture

and bone material, such as was used by Farke [19], will result in a

value that is intermediate between bone and suture, and may be a

better representation of the actual material properties of this band.

However, using this flexible value of suture allows the model to

provide an indication of performance assuming that all the sutures

are essentially patent, which again removes the confounding effects

of partial fusion.

Because strain gauges are 2D components, they are only able to

report strains in the plane of the gauge, which is a projection of the

true, three-dimensional strain. To account for this, membrane

elements were defined in the locations of the strain gauges (Fig. 1).

These are two-dimensional elements defined with negligible

thickness (0.01 mm) and material properties (E = 0.001 GPa,

n= 0.35), which move with the bone surface, thus projecting the

3D strains of the models into the 2D plane of the gauge. In

previous isotropic models, results from 2D membranes and the

underlying 3D elements have been comparable [31].

Once constructed, models were exported to Abaqus 6.8.2

(Dassault Systèmes Simulia Corp., Providence RI, USA) for

solving on a desktop PC (Windows 64-bit Vista Business, Intel

Xeon 65450 3.00 GHz CPU, 64 GB RAM). At each gauge

location, values of principal strain magnitudes (emax; emin), ratios

(emax/|emin|), orientations and maximum shear strain (cmax =

emax2emin) were taken from all elements that formed the 2D

‘‘gauge’’ membrane, and results from each gauge were averaged.

These values were then compared with the experimental data set.

Results

The strains obtained by the ex vivo experiment are reported in

detail elsewhere [31], but are summarised here and in Table 1.

Principal strain magnitudes range between +485 me and 2606 me.
Strains are highest in the zygomatic arch (G5, G8), the frontals
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(G7) and in the maxilla, dorsal to the toothrow (G3). Strains are

lowest in the rostrum (G2) and the cranial vault (G9-16), although

the two gauges on the right parietal (G12, G16) show elevated

strains compared with other nearby gauges. Particularly striking is

the result that, when moving from one bone to another (i.e.

crossing a suture), large differences in principal and shear strain

magnitude, strain ratio, and principal strain orientation are

apparent over very small distances (compare in particular G5/

G8 on the zygomatic arch; G11/G12 and G13-G16 on the frontal

and parietal bones). Results extracted from the HOM and SUT

models are presented in Table 2, and are discussed below.

Figure 2 compares the magnitudes of strains from the HOM

and SUT models with the ex vivo experimental data. Firstly, the FE

models are too stiff by approximately an order of magnitude. This

was recognised by Bright and Rayfield [31], and shown to be

largely the result of the omission of cancellous bone from the

models, which lowers the overall stiffness (thus increasing strains)

without affecting strain patterns.

Notably, it can be seen in Fig. 2 that there seems to be little

difference between the HOM and SUT models in most locations,

and that adding sutures does not induce strains that are more

similar to the experimental results. Differences between the models

can be seen at G4 (dorsal maxilla), G5 (temporal bone, zygomatic

arch) and G7 (right anterior frontal), where emax is higher in the

SUT model. Lower emin is seen in the SUT model at G4 (dorsal

maxilla), G8 (zygomatic bone, zygomatic arch), and G10 (left

midline, frontal).

Because of the stiffness differences between the models and the

experimental specimen, it is useful to observe strain ratio, as this

removes the effect of strain magnitude (Fig. 3). Values .1 indicate

tension is greater than compression and values ,1 indicate that

compression is greater than tension. Here, more differences between

the models begin to show. Gauge 2 (anterior nasal) and G4-8 show

increases in strain ratio in the SUT model, which, in the case of G4

(dorsal maxilla) changes the strain regime to one of overall tension.

Gauge 11 has a lower value of strain ratio in the SUT model than the

HOM model. In some cases (G4, G7), adding sutures brings the

model closer to the experimental results, but in others (G2, G5, G8,

G11) the model moves further from the experiment.

Strain orientations between the experimental data set and the

HOM model are remarkably consistent (Fig. 4, and see also [31]),

indicating that this model represented the loading regime of the

experiment well. The introduction of sutures has only a negligible

effect (#5u difference) in half of the gauge locations, but affects

strain orientations by .5u in the other half (Table 2). For G6

(posterior nasal), G9 (right midline, frontal) and G16 (right

anterior parietal), this represents an improvement, bringing the

model closer to the experimental results, but in the other locations

results are further from the experiment.

As with the principal strains, the magnitudes of shear strain

(cmax) are too low in comparison with the ex vivo results, but the

models replicate two peaks of the experiment in the zygomatic

arch, at G5 and G8, although not elsewhere at G7, G12 and G16;

Fig. 5). Shear strain magnitudes between HOM and SUT models

are very similar, with notable differences only apparent at G5 and

G7 (higher in the SUT model, and closer to the experimental

results), and G8 and G10 (lower in the SUT model, and further

from the experimental results). Although G10 from the SUT

model gives a result that is further from the experimental result

absolutely, it has relatively lower values of cmax than G9 and G11,

thus giving a pattern of strain in this location that is more

consistent with the experiment.

Euclidean Distances
Euclidean Distance (ED) is a metric that allows comparisons to

be made between datasets by showing how similar they are to one

another (with shorter distances indicating higher similarity), and

has been used effectively in studies of FE sensitivity [25,41,42].

Euclidean Distances between each model and the experiment, and

between the two FE-models, are given in Table 3. For all

considered metrics, the FE-models are more similar to each other

than they are to the experimental data. In the case of principal and

shear strains, this effect is considerable (an order of magnitude),

though this is because the models are too stiff compared to the real

bone. This effect is also observable in the strain orientations,

although it is smaller. Interestingly, when considering emax

magnitudes alone, the SUT model is closer to the experimental

data, yet when considering emin, the HOM model is closer.

Table 2. Finite element analysis results compared between the models with and without sutures.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16

Maximum Principal Strain (emax)

HOM 9.40 1.70 32.49 23.91 110.01 1.79 45.50 158.23 12.96 13.11 9.79 6.78 11.03 7.73 12.14 8.17

SUT 16.50 7.47 24.77 46.21 197.39 4.48 77.35 154.20 10.44 2.88 1.86 11.03 9.07 5.79 7.18 6.88

Minimum Principal Strain (emin)

HOM 24.98 21.01 236.51 225.24 236.32 215.06 244.73 2188.37 225.64 228.44 218.71 210.89 225.11 216.41 220.91 215.13

SUT 28.67 22.44 233.55 212.43 243.69 28.61 248.61 2118.89 217.70 27.51 223.88 214.54 233.08 210.36 227.59 29.48

Strain Ratio

HOM 1.89 1.68 0.89 0.95 3.03 0.12 1.02 0.84 0.51 0.46 0.52 0.62 0.44 0.47 0.58 0.54

SUT 1.90 3.06 0.74 3.72 4.52 0.52 1.59 1.30 0.59 0.38 0.08 0.76 0.27 0.56 0.26 0.73

Shear Strain (c)

HOM 14.38 2.72 68.99 49.15 146.33 16.85 90.24 346.60 38.61 41.56 28.50 17.66 36.14 24.14 33.05 23.30

SUT 25.17 9.90 58.32 58.65 241.08 13.09 125.96 273.10 28.14 10.39 25.66 25.56 42.15 16.15 34.77 16.35

Maximum Principal Strain Orientation (u)

HOM 281.5 247 45 45.5 287.5 10.5 20 267.5 234 237 278.5 284 47 45.5 47 46.5

SUT 278 257.5 50 75 272 29 22 272 217 233.5 276 272 44 36 51 67

doi:10.1371/journal.pone.0031769.t002

Finite Element Analysis of Cranial Sutures in Pigs

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e31769



Strain ratio again is preferred as the metric for comparison, as

the effects of strain magnitude are removed. Although the models

are more similar to each other than to the experiment, the ED

values suggest that the HOM model is almost as similar to the

experiment (ED = 3.78) as it is to the other model (ED = 3.57).

Additionally, the ED values show that the SUT model is less

similar to the experimental results than the HOM model

(ED = 4.86).

Further analysis of this phenomenon was conducted when it was

noticed from the graph of strain ratio (Fig. 3) that most of the

differences between models were observed in the zygomatic/facial

region (G1–8, and particularly G4), whereas very few differences

could be seen around the braincase (G9–16). Accordingly, the

dataset was divided into ‘‘facial’’ and ‘‘cranial vault’’ subsets, and

ED recalculated for each. The results presented in Tables 4 and 5

show that, in the cranial vault, the FE-models are indeed very

similar to each other, and much more so than to the experimental

results. The results for the facial region are broadly reflective of

those for the whole model, although interestingly, and contra to

the results of the whole dataset or cranial vault subset, show that

strain ratio in the HOM model is more similar to the experiment

than it is to the other model.

Contour plots
Such quantitative analysis is restricted to the locations of the

strain gauges. To see how sutures affect the whole model, principal

strain contour plots were produced and compared qualitatively

(Fig. 6). The sutures show up as regions of greatly increased local

strain. There are some notable differences between the models in

the facial region, particularly in the maxilla, where strains are

higher in the SUT model, and in the zygomatic arch, where strains

are increased anteriorly (and extending to the lacrimal bones) and

decreased posteriorly in the SUT model. Slight increases in strain

are also seen in the anterior frontal bone in the SUT model. Small

differences in the cranial vault between the SUT and HOM

models become apparent when the contours displaying maximum

and minimum principal strain are re-scaled between 0 me and +50

or 250 me respectively (Fig. 7). The SUT model shows a band of

decreased strain bilaterally across the frontals, but increased strain

at the anterior and posterior frontal margins.

To summarise, G5 and G8 (zygomatic arch) and G7 (anterior

frontal) give notably different results in the SUT and HOM

models for emax, emin, and cmax magnitudes, and strain ratio.

Gauge 4 (dorsal maxilla) shows differences in principal strain

magnitude and orientation, and strain ratio. Also affected are G10

[left frontal (cmax)], and G2/G11 [anterior nasal/cranial vault

respectively (strain ratio)]. Gauges 3 (maxilla, dorsal to the loaded

tooth), G4 (dorsal maxilla), G6 (posterior nasal), G9 (right frontal),

and G12, G14, and G16 (cranial vault) show differences in strain

orientation between the two models. The models are more similar

to each other than they are to the experimental dataset, except in

the case of strain ratio in the facial subset of gauges, where the

HOM model is closer to the experiment than it is to the other

model. Whether the HOM or SUT model is closer to the

Figure 2. Comparisons of principal strains. Comparisons of principal strains in models without (black squares) and with (white squares) sutures,
with experimental data (black circles). Dashed lines show 2 standard errors of the experimental mean. Gauges 1 and 6 gave unstable experimental
results and should be disregarded.
doi:10.1371/journal.pone.0031769.g002
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experimental data set depends both on which metric is being

considered, and where the gauge is located.

Discussion

Ex vivo experimental results
The ex vivo experimental results are in keeping with other

published works, showing that the strain environment can change

substantially when moving from one bone to another across a

suture [4–7,13–17]. This is particularly true between the two

bones of the zygomatic arch (G5, G8) and between the four frontal

and parietal bones (G11–16). The right parietal (G12, G16; which

experienced higher loading from the ‘‘working-side’’ temporalis)

shows higher strain magnitudes, and bilaterally the parietals show

a different strain orientation to the frontals (Figs. 2, 5). From this

dataset then, one could reasonably conclude that the presence of

sutures may be influencing ex vivo strains in the pig cranium by

altering strain magnitudes and orientations.

Sensitivity: comparisons between FE models with and
without sutures

The graphs of principal and shear strain, and strain orientation,

suggest that when sutures are included in the FE models few

differences are observed in most locations when compared against

the model without sutures. This seems to lead to the opposite

conclusion of that stated in the previous paragraph: sutures exert

little influence on the strain environment of the pig cranium.

However, observation of the graph of strain ratio suggests that the

situation is more complex than this, as some gauge locations,

particularly G4, show distinct separation of the HOM and SUT

models.

Analysis of the Euclidean Distances between the FE-models and

the experiment for the metrics measured demonstrates that the

two models are more similar to each other than either is to the

experimental dataset. However, when strain magnitudes are

removed by considering strain ratio, the HOM model is nearly

as similar to the experiment as it is to the SUT model. This implies

that the models are sensitive to the presence or absence of sutures;

however this sensitivity is not consistent across the entire skull.

Subdividing the results based on location shows that sutures exert

a much greater influence in the ‘‘facial’’ region of the model,

whereas differences in the cranial vault are limited. Different

metrics also respond differently to the presence or absence of

sutures. Some differences in the contour plots were apparent

between the pig models, and these were similar to the results of

Kupczik et al. [25] who also observed increased strain in the

anterior zygomatic arch and lacrimals.

Figure 3. Comparisons of strain ratio. Comparisons of strain ratio (emax/|emin|) in models without (black squares) and with (white squares)
sutures, with experimental data (black circles). Dashed lines show 2 standard errors of the experimental mean. Gauges 1 and 6 gave unstable
experimental results and should be disregarded.
doi:10.1371/journal.pone.0031769.g003

Finite Element Analysis of Cranial Sutures in Pigs

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e31769



That the FE-model is sensitive to the presence of open cranial

sutures agrees with other FE studies on lizards and alligators,

which have indicated that sutures play an important role in FE

analyses by changing the strain regimes between different bones

[24], or by redistributing strains so that overall, the skull

experiences a more even strain environment (which may not be

apparent under ex vivo or static loading conditions [23]).

Surprisingly, the findings of this study are contra to those of

Wang et al. [26], who found only minor differences in strain

pattern between their macaque models with and without sutures.

Wang et al. [26] suggested that their result may be due to the fact

that primates have relatively few craniofacial sutures, making up

only a small percentage of the total skull volume, especially when

compared to reptilian skulls. They stated that, due to the extensive

in vivo research indicating that sutures play an important role in

pigs ‘‘a comparison between primates and pigs…seems warrant-

ed’’ ([26]:1486). It is interesting to speculate on the reasons that

the pig and macaque studies give opposite results. The fact that all

of the differences between the HOM and SUT models are

confined to the zygomatic and facial regions may provide a clue;

the long snout of the pig is clearly a very different structure to the

relatively flat face of primates, and the robust zygomatic arches of

the pig experience incredibly high loads during feeding [4]. It may

be that the large, prominent sutures of the pig snout are of

different functional importance than those in the faces of primates,

as pigs use their snouts in a range of foraging behaviours unrelated

to mastication.

Validation: comparisons between FE models and ex vivo
experimental strains

The experimental results shown here, and those of previous

works mentioned above, seem to indicate strongly that strains on

adjacent bones can be very different, and by inference suggest that

the relationship between sutures and strains is important.

Furthermore, it has also been demonstrated that FE models can

be sensitive to the presence of craniofacial sutures. However, the

hypothesis that the inclusion of sutures in the model would

improve the fit of the model to the experimental data was not

borne out.

Models are, by definition, simplified approximations of reality.

Finite Element Analysis is a mathematically robust technique with

a long history of industrial engineering use [43]. Therefore, if FE

models do not match with experimental data, then certain

assumptions about model construction must be incorrect. The

effect of sutures here was tested in isolation, and the inclusion of

sutures in the model was often found to result in higher Euclidean

Distances to the experiment than were seen with the HOM model.

This means that including sutures did little to improve the fit of the

models to the experimental data, and in many cases made the

datasets more disparate. The lack of fit between the models and

the experiment therefore cannot be attributed to the presence or

absence of patent sutures alone. It is possible that the modelling

technique used to incorporate the sutures was not realistic. Sutures

were included as strips of more compliant 3D elements; an

approach commonly used in other studies [19,23–26,41].

Figure 4. Comparisons of strain orientation. Comparisons of strain orientation in models without (black squares) and with (white squares)
sutures, with experimental data (black circles). Dashed lines show 2 standard errors of the experimental mean. Gauges 1 and 6 gave unstable
experimental results and should be disregarded.
doi:10.1371/journal.pone.0031769.g004

Finite Element Analysis of Cranial Sutures in Pigs

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e31769



Importantly, this approach was recently demonstrated to be an

effective method of modelling strains and displacements in the pig

zygomatic arch [30], which contains both interdigitated and butt-

ended suture morphologies that are loaded in both tension and

compression. The transition between material properties from

bone to suture when using this modelling technique is likely to be

much more abrupt than the actual transition between bone and

suture in the specimen, and the actual suture is much thinner than

the band of elements. However, this technique has been shown to

provide an accurate profile of the strain gradient between the two

materials [30]. An overly thick band of sutural material could

absorb a relatively high proportion of the model strain, and this

could account for some of the discrepancy between the two

datasets. However, the fact that the HOM model also fails to

match the experiment suggests that it is unlikely that the suture

modelling method is responsible for the strain magnitude

inaccuracies of the FE-models.

An alternative explanation for the lack of fit between strain

magnitudes in the FE-models and the experiment could be found

Figure 5. Comparisons of shear strain. Comparisons of shear strain (cmax = emax2emin) in models without (black squares) and with (white
squares) sutures, with experimental data (black circles). Dashed lines show 2 standard errors of the experimental mean. Gauges 1 and 6 gave unstable
experimental results and should be disregarded.
doi:10.1371/journal.pone.0031769.g005

Table 3. Euclidean distances between the two models, and
between each model and the experimental data.

Euclidean Distance

HOM - Exp. SUT - Exp. HOM - SUT

emax 740.53 681.07 97.38

emin 690.26 734.00 76.09

Total strain* 1012.35 1001.31 123.58

Strain Ratio 3.78 4.86 3.57

Orientation 69.96 74.03 47.51

Shear Strain 1278.62 1247.79 131.21

*Total strain = ED calculated from combined emax and emin values. Calculations
exclude G1 & G6.

doi:10.1371/journal.pone.0031769.t003

Table 4. Euclidean distances between the two models, and
between each model and the experimental data in the facial/
zygomatic region (G1–8).

Facial/Zygomatic (G1–8)

Euclidean Distance

HOM - Exp. SUT - Exp. HOM - SUT

emax 711.95 648.99 96.21

emin 623.84 671.80 71.21

Total strain* 946.60 934.08 119.70

Strain Ratio 2.88 4.29 3.52

Orientation 40.50 55.50 35.64

Shear Strain 1189.79 1153.73 126.15

*Total strain = ED calculated from combined emax and emin values. Calculations
exclude G1 & G6.

doi:10.1371/journal.pone.0031769.t004
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in a consideration of the material properties applied to the model.

A large part of this discrepancy has already been attributed to the

incorrect practice of simplifying bone to a material with isotropic,

homogeneous properties, although bone is in actuality a far more

complicated structure than this [31]. Cranial bone in particular is

known to vary in stiffness among and within bones, and depending

on the axis in which the loading is applied [34,44,45]. A number of

studies have indicated that biological FE models are highly

sensitive to choices of bone material properties, often more so than

any other input parameter [24,27,31,46]. Additionally, failure to

consider variation in the material properties of the sutures

themselves may account for some of the discrepancy, as the levels

of fusion and anisotropy encountered in each individual suture was

not known. Even though most gauge locations replicate strain ratio

and orientation reasonably well, in some locations (such as G4),

both FE-models can be far from the experimental results. It is

therefore possible that the true effects of sutures on model validity

in these locations are being masked by incorrect assumptions in

other modelling parameters.

Without detailed material properties data from pig skulls, it is

impossible to say at this stage whether the experimental pattern of

strain changes across sutures is due to the sutures themselves, or

different material properties being present in the two bones on

either side of the suture. Because the pig specimen used was sub-

adult and had not yet reached skeletal maturity, growth was

therefore still occurring at the sites of the craniofacial sutures.

Regions of less ossified bone were therefore probably present in

the cranium [47], and as the centres of growth, it is likely that

these would occur near the sutures. If the observed effect of

changing strains in adjacent bones is actually caused by local

differences in material properties within and among bones, rather

than being an effect of the suture itself, this might explain the

Table 5. Euclidean distances between the two models, and
between each model and the experimental data in the cranial
vault region (G9–16).

Cranial Vault (G9–16)

Euclidean Distance

HOM - Exp. SUT - Exp. HOM - SUT

emax 203.76 206.58 15.03

emin 295.44 295.70 26.80

Total strain* 358.89 360.71 30.73

Strain Ratio 2.45 2.28 0.63

Orientation 57.05 48.99 31.42

Shear Strain 468.27 475.28 36.09

*Total strain = ED calculated from combined emax and emin values.
doi:10.1371/journal.pone.0031769.t005

Figure 6. Principal strain contour plots capped at 0–300 me. Contour plots showing maximum (a, c) and minimum (b, d) principal strains, in
models without (a, b) and with (c, d) sutures. Note that the maximum and minimum principal strains are capped between 0 me and +300 me or 2300
me respectively.
doi:10.1371/journal.pone.0031769.g006
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difference between the experimental and modelling results,

although this has not been tested here. Finite Element Analysis

alone cannot answer this question, and more experimental data on

strain and material properties throughout ontogeny would be most

useful.

In conclusion, it can be demonstrated that the models presented

were sensitive to the presence of cranial sutures, and that different

regions of the skull display differences in sensitivity to the presence

of sutures, with the zygomatic and facial regions more sensitive

than the cranial vault. However, introducing sutures to the model

often resulted in a model that was less accurate than one which

excluded them. Even after extensive validation work, neither the

HOM nor SUT model can be considered valid in terms of strain

magnitude, although experimental strain ratios and orientations,

and therefore overall strain regime, can be replicated by the FEA

in most locations. Neither FE-model could therefore be used to

draw conclusions on pig skull function. This should serve to

caution workers who are unable to validate their models,

particularly palaeontologists, for whom vast amounts of input

information are missing.

Acknowledgments

Thanks go to Dr. Emily Rayfield (University of Bristol), who guided the

progress of this work and read early drafts of the manuscript. Colin Palmer,

Mike Dury, and Remmert Schouten (University of Bristol) are thanked for

help designing, building and using the Pig Rig; Roger Derry (Vishay MG)

provided help with strain gauging, Daniel Nieto (Altair UK) provided help

with meshing, and Chris Lamb (Royal Veterinary Collage) scanned the

specimen. The editor and two anonymous reviewers are also thanked for

their helpful comments.

Author Contributions

Conceived and designed the experiments: JB. Performed the experiments:

JB. Analyzed the data: JB. Contributed reagents/materials/analysis tools:

JB. Wrote the paper: JB.

References

1. Hall B (2005) Bones and cartilage: development and skeletal biology. San Diego
CA: Elsevier Academic Press. pp 1–760.

2. Herrel A, Aerts P, De Vree F (2000) Cranial kinesis in geckoes: functional

implications. J Exp Biol 203: 1415–1423.

3. Herring SW (1972) Sutures – a tool in functional cranial analysis. Acta Anat 83:

222–247.

4. Herring SW, Mucci RJ (1991) In vivo strain in cranial sutures: the zygomatic
arch. J Morphol 207: 225–239.

5. Jaslow CR (1990) Mechanical properties of cranial sutures. J Biomech 23:

313–321.

6. Jaslow CR, Biewener AA (1995) Strain patterns in the horncores, cranial bones

and sutures of goats (Capra hircus) during impact loading. J Zool 235: 193–210.

Figure 7. Principal strain contour plots capped at 0–50 me. Contour plots showing maximum (a, c) and minimum (b, d) principal strains, in
models without (a, b) and with (c, d) sutures. Note that the maximum and minimum principal strains are capped between 0 me and +50 me or 250 me
respectively.
doi:10.1371/journal.pone.0031769.g007

Finite Element Analysis of Cranial Sutures in Pigs

PLoS ONE | www.plosone.org 11 February 2012 | Volume 7 | Issue 2 | e31769



7. Rafferty KL, Herring SW (1999) Craniofacial sutures: growth and in vivo

masticatory strains. J Morphol 242: 167–179.
8. Sun Z, Lee E, Herring SW (2004) Cranial sutures and bones: growth and fusion

in relation to masticatory strain. Anat Rec Part A 276A: 150–161.

9. Jasinoski SC, Reddy BD, Louw KK, Chinsamy A (2010) Mechanics of cranial
sutures using the finite element method. J Biomech 43: 3104–3111.

10. Byron CD, Borke J, Yu J, Pashley D, Wingard CJ, et al. (2004) Effects of
increased muscle mass on mouse sagittal suture morphology and mechanics.

Anat Rec Part A 279A: 676–684.

11. Byron CD (2009) Cranial suture morphology and its relationship to diet in Cebus.
J Hum Evol 57: 649–684.

12. Nicolay CW, Vaders MJ (2006) Cranial suture complexity in white-tailed deer
(Odocoileus virginianus). J Morphol 267: 841–849.

13. Herring SW, Teng S (2000) Strain in the braincase and its sutures during
function. Am J Phys Anthropol 112: 575–593.

14. Herring SW, Rafferty KL, Liu ZJ, Marshall CD (2001) Jaw muscles and the skull

in mammals: the biomechanics of mastication. Comp Biochem Phys A 131:
207–219.

15. Rafferty KL, Herring SW, Marshall CD (2003) Biomechanics of the rostrum
and the role of facial sutures. J Morphol 242: 33–44.

16. Popowics TE, Herring SW (2007) Load transmission in the nasofrontal suture of

the pig, Sus scrofa. J Biomech 40: 837–844.
17. Thomason JJ, Grovum LE, Deswysen AG, Bignell WW (2001) In vivo surface

strain and stereology of the frontal and maxillary bones of sheep: implications for
the structural design of the mammalian skull. Anat Rec 264: 325–338.

18. Wang Q, Dechow PC, Wright BW, Ross CF, Strait DS, et al. (2008) Surface
strain on bone and sutures in a monkey facial skeleton: an in vitro approach and

its relevance to Finite Element Analysis. In: Vinyard CJ, Ravosa MJ, Wall CE,

eds. Primate craniofacial function and biology. New York, NY: Springer US. pp
149–172.

19. Farke AA (2008) Frontal sinuses and head-butting in goats: a finite element
analysis. J Exp Biol 211: 3085–3094.

20. Richmond BG, Wright BW, Grosse IR, Dechow PC, Ross CF, et al. (2005)

Finite Element Analysis in functional morphology. Anat Rec 283A: 259–274.
21. Rayfield EJ (2007) Finite Element Analysis and understanding the biomechanics

and evolution of living and fossil organisms. Annu Rev Earth Pl Sc 35: 541–576.
22. Anderson PSL, Bright JA, Gill PG, Palmer C, Rayfield EJ (2011) Models in

palaeontological functional analysis. Biol Lett. doi: 10.1098/rsbl.2011.0674. In
Press.

23. Moazen M, Curtis N, O’Higgins P, Jones MEH, Evans SE, et al. (2009)

Assessment of the roles of sutures in a lizard skull: a computer modelling study.
P R Soc B 276: 39–46.

24. Reed DA, Porro LB, Iriarte-Diaz J, Lemberg JB, Holliday CM, et al. (2011) The
impact of bone and suture material properties on mandibular function in Alligator

mississippiensis: testing theoretical phenotypes with finite element analysis. J Anat

218: 59–74.
25. Kupczik C, Dobson CA, Fagan MJ, Crompton RH, Oxnard CE, et al. (2007)

Assessing mechanical function of the zygomatic region in macaques: validation
and sensitivity testing of finite element models. J Anat 210: 41–53.

26. Wang Q, Smith AL, Strait DS, Wright BW, Richmond BG, et al. (2010a) The
global impact of sutures assessed in a finite element model of a macaque

cranium. Anat Rec 293: 1477–1491.

27. Strait DS, Wang Q, Dechow PC, Ross CF, Richmond BG, et al. (2005)
Modeling elastic properties in Finite-Element Analysis: how much precision is

needed to produce an accurate model? Anat Rec Part A 283A: 275–287.

28. Ross CF, Patel BA, Slice DE, Strait DS, Dechow PC, et al. (2005) Modeling

masticatory muscle force in Finite Element Analysis: sensitivity analysis using

principle coordinates analysis. Anat Rec Part A 283A: 288–299.

29. Ross CF, Berthaume MA, Dechow PC, Iriarte-Diaz J, Porro LB, et al. (2011) In

vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine

primates. J Anat 218: 112–141.
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37. Gröning F, Fagan MJ, O’Higgins P (2011) The effects of the periodontal

ligament on mandibular stiffness: a study combining finite element analysis and

geometric morphometrics. J Biomech 44: 1304–1312.

38. Wood SA, Strait DS, Dumont ER, Ross CF, Grosse IR (2011) The effects of

modeling simplifications on craniofacial finite element models: The alveoli (tooth

sockets) and periodontal ligaments. J Biomech 44: 1831–1838.

39. Bright JA, Rayfield EJ (2011) The response of cranial biomechanical finite

element models to variations in mesh density. Anat Rec 294: 610–620.

40. Tickhill J (2007) The virtual pig head: digital imaging of cephalic anatomy.

Masters Thesis: Ohio University, Athens. www.oucom.ohiou.edu/virtualpig/.

41. Kupczik K, Dobson KA, Crompton RH, Phillips R, Oxnard CE, et al. (2009)

Masticatory loading and bone adaptation in the supraorbital torus of developing

macaques. Am J Phys Anthropol 139: 193–203.

42. Panagiotopoulou O, Curtis N, O’Higgins P, Cobb SN (2010) Modelling

subcortical bone in finite element analyses: A validation and sensitivity study in

the macaque mandible. J Biomech 43: 1603–1611.

43. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The Finite Element Method: its

basis and fundamentals, sixth edition. Oxford: Elsevier Butterworth-Heinemann.

pp 1–733.

44. Wang Q, Dechow PC (2006) Elastic properties of external cortical bone in the

craniofacial skeleton of the rhesus monkey. Am J Phys Anthropol 131: 402–415.

45. Dechow PC, Wang Q, Peterson J (2010) Edentulation alters material properties

of cortical bone in the human skeleton: functional implications for craniofacial

structure in primate evolution. Anat Rec 293: 618–629.

46. Cox PG, Fagan MJ, Rayfield EJ, Jeffery N (2011) Finite element modelling of

squirrel, guinea pig and rat skulls: using geometric morphometrics to assess

sensitivity. J Anat 219: 696–709.

47. Wang Q, Wright BW, Smith A, Chalk J, Byron CD (2010b) Mechanical impact

of incisor loading on the primate midfacial skeleton and its relevance to human

evolution. Anat Rec 293: 607–617.

Finite Element Analysis of Cranial Sutures in Pigs

PLoS ONE | www.plosone.org 12 February 2012 | Volume 7 | Issue 2 | e31769


