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Abstract 

Objectives: Radiotherapy plan quality may vary considerably depending on planner’s 

experience and time constraints. The variability in treatment plans can be assessed by 

calculating the difference between achieved and the optimal dose distribution. The achieved 

treatment plans may still be suboptimal if there is further scope to reduce organs-at-risk doses 

without compromising target coverage and deliverability. This study aims to develop a 

knowledge-based planning (KBP) model to reduce variability of volumetric modulated arc 

therapy (VMAT) lung plans by predicting minimum achievable lung volume-dose metrics. 

Methods: Dosimetric and geometric data collected from forty retrospective plans were used 

to develop KBP models aiming to predict the minimum achievable lung dose metrics via 

calculating the ratio of the residual lung volume to the total lung volume. Model accuracy 

was verified by re-planning forty plans. Plan complexity metrics were calculated using 

locally developed script and their effect on treatment delivery was assessed via measurement. 

Results: The use of KBP resulted in significant reduction in plan variability in all three 

studied dosimetric parameters V5, V20 and MLD by 4.9% (p=0.007, 10.8% to 5.9%), 1.3% 

(p=0.038, 4.0% to 2.7%) and 0.9Gy (p=0.012, 2.5Gy to 1.6Gy) respectively. It also increased 

lung sparing without compromising the overall plan quality. The accuracy of the model was 

proven as clinically acceptable. Plan complexity increased compared to original plans 

however the implication on delivery errors was clinically insignificant as demonstrated by 

plan verification measurements. 

Conclusion: Our in-house model for VMAT lung plans led to a significant reduction in plan 

variability with concurrent decrease in lung dose. Our study also demonstrated that treatment 

delivery verifications are important prior to clinical implementation of KBP models. 

Advances in knowledge: in-house KBP models can predict minimum achievable lung dose-

volume constraints for advance-stage lung cancer patients treated with VMAT. The study 

demonstrates that plan complexity could increase and should be assessed prior to clinical 

implementation.    
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Introduction 

Technological advancements in radiotherapy planning and delivery techniques, such as 

volumetric modulated arc therapy (VMAT) have allowed reduction of dose to critical 

structures whilst maintaining target coverage 
1-3

. Nevertheless, achieving the lowest possible 

organ-at-risk (OAR) doses for a given patient geometry remains challenging as there are 

large population variations in OAR and target structure geometries 
4,5

. Several studies 

reported large heterogeneity in treatment plans produced by planners with different 

experience levels 
4-7

. A treatment plan meeting OAR constraints and with adequate target 

coverage may still be considered suboptimal if OAR doses are possible to be further reduced 

without compromising target coverage. 

To reduce variability between planners, different knowledge-based planning (KBP) methods 

have been implemented. KBP utilises prior patients’ geometries, plans and resultant 

dosimetric coverage to estimate lowest achievable OAR doses for prospective patients prior 

to treatment plan optimisation 
8
. KBP offers several benefits including improvements in 

treatment plan quality, reduction of inter-observer variability and improvement of treatment 

planning efficiency 
9-11

. In addition to OAR dose prediction, KBP methods have also been 

used successfully to determine optimal gantry angle for IMRT patients 
12,13

. 

A number of different metrics have been explored for predicting OAR doses prior to 

treatment plan optimisation. The most commonly used metric is an overlap volume histogram 

(OVH) this is used to characterise the 3D spatial relationship between an OAR and a target 
14-

16
. Other metrics can include overlap of OAR volume with target structure(s) 

17
, OAR volume 

within and outside a target structure 
18

 and similarity coefficient between retrospective and 

prospective patents’ geometry 
19

. 

KBP methods have been largely used for prostate and head and neck planning 
8,20-22

,  

however, only a limited number of studies have reported on its benefit for lung cancer 

patients 
8,23

. A study performed by Fogliata et al utilised commercial software (Varian’s 

RapidPlan
TM

) for VMAT lung planning and reported that the RapidPlan
TM

 KBP model 

facilitated achieving the desired clinical constraints in 4% more patients 
8
. Cui et al produced 

an in-house model for predicting lung doses using a line of best fit to the data for patients 

treated with IMRT fields 
23

. In this study, fifteen ring structures from the planning target 

volume (PTV) were produced and the overlap of lungs with each of the rings was used to 

determine V10 (i.e. volume receiving 10Gy), V20 and V30. Furthermore, Zawadzka et al 

developed an in-house model to predict minimum achievable mean lung dose (MLD) for a 
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given geometry 
24

. They predicted MLD using the dose calculated from 36 equidistance 

fields.  

At the time of writing, none of the studies in the literature include predictions of minimum 

achievable V5 (percentage of lungs receiving a dose of 5Gy) and minimum achievable V20 for 

lung cancer patients treated with VMAT. V5 is a valuable metric as it has been widely 

reported as a predictor of radiation pneumonitis for advanced-stage lung cancer patients (not 

limited to only mesothelioma patients) 
25-28

. V5 constraints are routinely used at our 

institution for all advanced-stage lung cancer patients therefore a KBP modelling study 

involving this metric has been of particular interest to our department and is expected add a 

missing piece to the literature. 

The aim of this study was to develop in-house KBP models to predict minimum lung dose 

constraints for V5, V20, and MLD for a given patient geometry. Combinations of volumes and 

dose volume histogram (DVH) were used to build the models. Of note is the fact that 

treatment plans optimised using the lower bound model to achieve lowest OAR doses could 

produce highly modulated plans, thereby increasing uncertainties in treatment delivery as 

compared to the plan optimised without the model. Furthermore, any error in treatment plan 

delivery could significantly alter delivered dose distributions especially within high dose 

gradient regions. Therefore, an important objective of our study is to verify the treatment 

delivery accuracy of plans produced using KBP models and compare it with the respective 

delivery accuracy of plans optimised without the model so that an optimal trade-off between 

lower OAR dose and plan delivery can be established. In the present study, the produced 

treatment plans were verified using treatment planning and measurements on the 

TrueBeam
TM

 (V2.5 Varian Medical Systems, Palo Alto, CA) linear accelerator which is a 

novel approach not yet reported in the KBP field. 

Methods 

Data Collection 

The clinical patients were planned with RapidArc
®
/VMAT within the Eclipse

TM
 treatment 

planning system (Version 13.7, Varian Medical Systems, Palo Alto, CA) with 6MV beams. 

Two partial arcs (0
o
 to 181

o
 for right sided tumours and 0

o
 to 179

o
 for left sided tumours) 

were used avoiding direct entry through the contralateral lung to minimise the dose received 

by it. Plan dose was calculated using the Acuros
®
 algorithm (dose to water) with a uniform 

dose grid of 0.25 cm. The prescribed dose for patients included in the study was 55Gy in 20 
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fractions. Treatment plans were optimised to meet the planning goals as described in Table 1. 

The normal tissue objective (NTO) function was used to limit dose to healthy structures with 

the same priority as the PTV. The NTO is a function in the Eclipse planning system which 

reduces dose to healthy tissue as a function of distance from the PTV’s outer boarder 
29

. 

Automatic NTO settings were used (i.e. distance from target boarder 1.0cm, start dose 105%, 

end dose 60%, and fall-off 0.05) with priority set to 300 manually. 

A total of forty pre-existing treatment plan datasets from our database were used to build the 

models in this study; all were calculated with Acuros algorithm within the same version of 

Eclipse planning system. Volumes (in cubic centimetre (cc)) for numerous of structures 

including gross tumour volume (GTV), PTV, lungs (lungs minus GTV), PTV outside lungs, 

overlap of lungs with PTV, lungs volume cropped back from the PTV by 1 to 5cm (with 1cm 

increment) and field size were collected. Then, dosimetric parameters such as percentage of 

lungs volume receiving 5Gy (V5), V20, and MLD were collected from the Eclipse treatment 

planning system for the above. 

Development of KBP Model 

To determine suitable volumes (including ratio of different volumes (e.g. Lungs/PTV)) for 

our KBP model, correlation coefficients (R
2
) of all collected volumes with the dosimetric 

data (i.e. V5, V20, and MLD) were determined. The commonly used parameters (e.g. overlap 

volume histogram) and number of volumes (e.g. lungs, PTV, lungs within PTV etc) showed 

very poor positive correlation. Finally, the residual lung volume (LungResidual) was calculated. 





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 
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V2 is total lung volume excluding GTV and V1 is the total lung cropped back from PTV by 

5cm (V1: Lungs5cmCrop – volume was produced by cropping total lung (total lung = lungs-

GTV) volume extending inside PTV with an additional margin of 5.0cm using the crop 

function within the planning system) demonstrated in Figure 1. Furthermore, in this study, a 

lower bound model was developed to predict lowest achievable volume-dose (Predictvolume-

dose) for a given geometry (i.e. LungResidual). 

cLungmedict sidualDoseVolume  RePr     2 



Predicting minimum achievable dose constraints using in-house KBP models 

Page 6 of 23 

 

The prediction model was developed based on prescription of for 55Gy in 20 fractions 

(typically used in our clinic). However, to use the model for different prescriptions (i.e. 66Gy 

in 33 fractions and 60Gy in 30 fractions), it was normalised using factor ∆ (see equation 3 

and 4) to predict minimum achievable doses. Note: the 55Gy model data was used in the 

normalised model. 


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Gy
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   cLungmedict sidualDoseVolume RePr     4 

Verification of Model Using Treatment Planning 

A total of forty previously treated patients (not included in the training data) were re-planned 

using the values predicted by the models. For re-planning, optimisation objectives for V5, V20 

and MLD were set to achieve the model predicted values, whereas all other objectives were 

kept the same as the original plans. Difference in dosimetric parameters between predicted 

and replanned, predicted and original, replanned and original plan were compared. 

In addition, the prediction accuracy of the normalised model (see equation 4) was assessed by 

reoptimising ten plans from the test dataset (originally prescribed 55Gy in 20 fractions but for 

the validation of model prescription doses were changed within the planning system). The 

difference between predicted and achieved doses were calculated for both 60Gy and 66Gy 

prescriptions. 

Verification of Model Using Treatment Delivery 

All VMAT plans are routinely verified with portal dosimetry measurements on a linear 

accelerator prior to delivering it to patients. All the plans optimised using the KBP model 

were verified by measuring the fluence on the electronic portal imaging device (EPID) panel, 

without  the presence of a patient, and comparing it with the planned fluence in the portal 

dosimetry image prediction software (PDIP) within the Eclipse planning system. Gamma 

analysis (criteria 3%/2mm ≥ 98% (optimal tolerances set locally) or ≥ 95% (mandatory 

tolerance) results were collected and compared with the original plan results to assess the 

effect of KBP on plan delivery. For analysis, lower dose cut-off threshold was set to 20 %, 

the measured and predicted images were auto-aligned and improved gamma evaluation was 

used. 
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Plan Complexity Measurements 

Treatment plan complexity is dependent on the total number of MU and level of modulation 

within a plan. Simpler treatment plans (i.e. lower MU, less modulated with larger leaf pair 

opening) are preferable as these are relatively less dependent on MLC motion/position 

accuracy during delivery 
29

. Highly complex plans generally have higher number of MU, 

which increase treatment delivery time, increase dose to the patient - due to MLC 

transmission - and are more susceptible to interplay effects. A number of treatment plan 

complexity metrics were calculated both for the original plans as well as the plans produced 

using the KBP model. The treatment plan complexity parameters, including MU/Gy, 

MU/Degree, islands below 1cc (i.e. small islands), small aperture score (SAS: calculated as 

the ratio of open leaf pairs where the aperture was less than a defined criterion (2 mm, 5 mm, 

10 mm and 20 mm in our study) to all open leaf pairs (see equation 5) 
30

) were calculated 

using a locally developed script. The effect of KBP on plan complexity was assessed. 

MUbeam

MUi

iaN

iaxN
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i
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where x is the aperture criteria, i is the number of segments in the beam, N is the number of 

leaf pairs not positioned under the jaw, and a is the aperture distance between opposing 

leaves 
30

.  

Statistical Analysis 

To determine the optimal volumes for predicting dose metrics, Pearson correlation coefficient 

values were calculated. All other comparisons were tested for significance using the 

Student’s paired t-test. P-values <0.05 were considered as suggesting statistically significant 

differences. Normality of data was tested with Kurtosis analysis 
31

. 

Results 

The clinical KBP models were developed to determine the minimum achievable dose metrics 

using the LungResidual volume (Figure 1). A significant reduction in variability in treatment 

plans amongst different planners was observed following the implementation of the model 

(see Table 2 and Figure 3).  

Furthermore, the plans optimised using the model showed significant reduction in dose-

volume in all three, V5, V20 and MLD, dosimetric parameters. The mean difference between 
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predicted and achieved values was reduced from 10.8% to 5.9%, 4.0% to 2.7% and 2.5Gy to 

1.6Gy for V5, V20 and MLD respectively with the model (Figure 3). In Figure 3, it can be 

observed that negative differences indicate that the model predicted values were higher than 

the achieved values and positive differences indicate model predicted values were lower.  

Furthermore, treatment plans produced using the model-predicted values resulted in 

concurrent reduction in all three dosimetric parameters compared to the original plans 

(Figures 4). The average reduction observed in V5, V20 and MLD was 6.6% (range: 0.4% – 

19.78%), 1.1% (range: -0.93% – 7.77%) and 0.7Gy (range: 0.03Gy – 2.38Gy) respectively. 

The reduction in lung doses was achieved without compromising the overall plan quality. All 

test plans were evaluated by a clinician and were deemed acceptable for clinical delivery.  

In addition, the model developed for the prescription used in our clinic (55Gy in 20 fractions) 

was normalised for use with different prescriptions. The normalised model (equation 3) was 

validated for two additional prescriptions (66Gy in 33 fractions and 60Gy in 30 fractions) by 

replanning ten patients. The indicated accuracy of the models were clinically acceptable; 

mean difference between predicted and achieved doses at V5 was 0.5% and 2.3% for 66Gy 

and 60Gy prescriptions respectively and for V20 and MLD it was 2.1% and 1.2Gy for both 

prescriptions respectively (see Figure 5). 

It was noted in the KBP model-based plans that the total number of MU increased 

significantly in majority of plans compared to the original clinical plans (mean increase = 

46.21MU (range: -48MU – 186MU), p= 0.011). Therefore, a number of treatment plan 

complexity metrics were calculated using a locally developed script for both the original and 

re-optimised plans. The results are shown in Table 3. 

The results show that all studied complexity metrics increased significantly in the re-plans 

optimised using KBP models, when compared to the original plan (see Table 3). This 

indicates that KBP plans were relatively highly modulated compared to the original plans. 

Treatment verification measurements performed on linear-accelerators showed that both 

original and KBP plans delivered as planned. Differences in treatment verification 

measurements for all parameters were within the optimal tolerance limits set locally (≥ 98% 

pixels passing with gamma criteria of 3%/2mm) except two arcs from the KBP plans showed 

slightly higher differences with gamma pass rates at 96.9% and 97.2%. However, these were 
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within the mandatory tolerance limit of ≥ 95%; therefore, these plans were deemed as 

clinically acceptable for treatment delivery. 

Discussion 

The aim of treatment planning is to achieve optimal target coverage whist reducing OAR 

doses as low as reasonably achievable without compromising target coverage 
32

. However, in 

routine clinical practice, due to treatment planners’ experience and clinical workload, this is 

not always achieved for all patients 
4-7

. Furthermore, not all plans meeting target coverage 

and OAR constraints are optimal if there are opportunities to minimise OAR doses further 

without compromising target coverage. This balance may be difficult to be achieved 

efficiently in the absence of KBP methods, especially for relatively inexperienced treatment 

planners.  

Building KBP models for lung cancer patients could be more complex compared with some 

other sites (e.g. prostate) as there are large variations in the location, shape, size and 

orientation of lung tumour with respect to OAR volumes. Several combinations of volumetric 

parameters (e.g. PTV and OAR volumes, overlap volumes, field size) and their correlation 

with studied lung dose-volume parameters were evaluated. However, the LungResidual volume 

calculated using total lung volume and the lungs crop back from PTV by 5.0cm (equation 1) 

showed highest correlation with all the studied lung dose-volume parameters. 

Only two studies have reported on the use of in-house KBP modelling for optimising lung 

plans 
23,24

. However, as none of these models predicts minimum dose to V5 and V20 of lungs, 

we felt it was important to develop local models that predict the minimum achievable dose to 

these percentages of lung volumes for a given patients’ geometry. Furthermore, none of the 

studies in the literature has investigated the effect of KBP models on the complexity of plans 

and hence on the delivery of these plans. In this study, accuracy of the models was verified 

using a planning study while the effect of KBP models on plan complexity and delivery was 

assessed by calculating complexity metrics and performing measurements on a linear 

accelerator. 

Our models were built to predict minimum doses to three lung dose parameters for lung 

patients treated with VMAT. This study demonstrated that minimum lung dose-volume 

prediction models can be developed and used in the routine clinical setting. Relatively simple 

and cost effective models reduced variability/heterogeneity in treatment plans significantly 
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compared to the original clinical plans, which was the primary aim of this study. Predicting 

dose-volume parameters prior to optimising a plan could reduce number of 

optimisations/iterations required to achieve the optimal plan and reduce the overall planning 

time. 

Additionally, the treatment planning study performed showed that the use of a KBP model 

led to a larger reduction in V5 as compared to V20 and MLD (Figure 4). The moderate 

reduction observed for the V20 (1.4%) and MLD (0.7Gy) may be attributed to the use of the 

NTO function in the original and re-optimised plans with same priority as PTV. Results from 

number of commercial auto-planning software showed similar results as our in-house 

developed model 
33,34,35

. One of the auto-planning studies reported statistically insignificant 

increased V5 whereas our study showed consistent and significant reduction in this dosimetric 

parameter 
34

. The normalised model (see Equation 4) shows that the model could be used for 

different prescription. 

In addition, we also assessed the accuracy of the model for oesophagus cancers (commonly 

treated with 45Gy and 50Gy in 25 fractions), treated with full-arc geometry but the prediction 

accuracy of V5 was not clinically acceptable. However, prediction accuracy of V20 and MLD 

was clinically acceptable but the difference seen between predicted and achieved dose were 

higher compared to the lung plan. Mean difference between predicted and achieved values for 

50Gy and 45Gy prescriptions were V5 = 29.7% and 30.8%, V20 = 1.8% and 3.4% and MLD = 

2.3Gy and 2.1Gy respectively. This could be due to the difference in the beam geometry. 

Furthermore, it was noted that the largest reduction in all three dosimetric parameters 

investigated was achieved with the use of KBP models in the subset of plans produced by 

relatively less experienced planners, compared to experienced planners (see patient numbers 

2, 4, 17, 19, 30 and 39 in Figure 4), due to not driving optimiser harder. However, almost all 

the original clinical plans considered met planning goals given in Table 1 and therefore 

acceptable, some were not classed as ‘optimal’ as lung dosimetric parameters could be 

reduced further to some extent without compromising target coverage. Some of these plans 

were produced by experienced staff indicates the potential benefits of KBP for all planners. 

In addition, a relatively smaller reduction in the studied parameters was noted in plans where 

lung constraints were either exceeding or were very close to the tolerance levels in the 

original plans as compared with the plans where lung constraints were well within tolerance – 

potentially due to the fact that the original plans were increasingly optimised to bring doses 



Predicting minimum achievable dose constraints using in-house KBP models 

Page 11 of 23 

 

within tolerance. These results indicate the importance and efficiency of KBP modelling for 

this type of patients in reducing OAR dose variability in treatment plans produced by 

planners of variable experience. 

Webb et al and Abdellatif et al reported that plan complexity increases with increasing 

number of small segments, MU/cGy and number of MUs per control point 
36,37

. An increase 

in the total number of MUs seen in the KBP optimised plans warranted further investigation: 

Treatment plan complexity metrics were calculated and delivery verification measurements 

were performed on a linear accelerator. Plan complexity metrics indicated a significant 

increase in smaller islands (i.e. smaller than 1cc), number of MUs per control point and small 

aperture segments in the KBP plans. These plans were optimised to achieve minimum 

achievable doses, rather than generic OAR tolerances; therefore an increase in plan 

complexity was expected. A study by Crowe et al reported that SAS could be used as an 

indicator of level of plan modulation; they showed positive correlation between quality 

assurance (QA) results and SAS was set at 0.5cm 
30

. In this study, SAS at 0.2cm, 0.5cm, 

1.0cm and 2.0cm increased for all studied plans indicating increase in modulation in these 

plans. 

Although the plan complexity parameters for KBP model-based plans were relatively higher 

than the ones of clinical plans, their impact on the measured fluence was relatively minimal 

for the majority of the test plans. Similar results are reported in the literature 
38,39

. The 

measurements showed overall good agreement with the planned fluence except for two arcs 

where differences exceeded the locally determined optimal gamma tolerance limits. These 

measurements showed that KBP may increase modulation and hence affect delivery therefore 

the model must be verified using treatment delivery measurements prior to implementing it 

clinically. Furthermore, in this study, delivery measurements were performed using EPID 

panel (without patient or moving phantom) that do not fully verify the impact of an increase 

in modulation on the robustness of plan. Further investigation, using a moving phantom, is 

needed to quantify the effect of high modulation of the delivery especially for treatment of 

thoracic tumours.   

Finally, the model was implemented clinically in our clinic using the Eclipse scripting tool 

(ESAPI: Eclipse Scripting Application Plugg-In). Planners produce the structure 

(Lungs5cmCrop = crop total lung volume extending inside PTV with an additional margin of 

5.0cm) using the crop function and then run the script within the Eclipse planning system 
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prior to proceeding with plan optimisation. The script displays the minimum achievable 

dosimetric metrics based on the residual lung volume for the selected patient. The predicted 

values are then manually entered in the optimiser (priorities are set within the clinical 

protocol template) during the optimisation of the plan.  

 

Conclusion 

This study showed that a relatively simple knowledge-based planning model can significantly 

reduce variability in lung planning between planners. The clinical implementation of these 

models demonstrated increase in lung sparing. It is however, important to assess plan 

deliverability prior to clinical implementation of such models to ensure that the potential 

increase in plan complexity will not affect the dosimetrical accuracy required. 
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Table 1. Treatment planning objective used for planning NSCLC patients at our clinic. 

Volume Parameters Clinical constraints 

Spinal Cord PRV D0.01cc < 45 Gy 

PTV V95 ≥ 99 % 

V107 < 1.8 cc 

Lungs-GTV 

 

V5Gy < 60 % 

V20Gy < 35 % 

Heart V30Gy < 45 % 

Mean Dose < 26 Gy 
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Table 2. Mean and standard deviation of the differences between achieved and predicted 

dose-volume parameters for lung before and after implementation of model. The minimum 

achievable values for each dose-volume parameter were predicted prior to plan optimisation 

using Eclipse Scripting Application Plugg-In (ESAPI). 

Dose-volume 

parameter 

Before model After model p value 

Mean SD Mean SD 

V5 10.8 % 7.1 % 5.9 % 4.6 % 0.007 

V20 4.0 % 3.1 % 2.7 % 2.1 % 0.038 

MLD 2.5 Gy 1.6 Gy 1.6 Gy 1.0 Gy 0.012 
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Table 3. Comparison of treatment plan complexity measurements for the original and re-

planned plans. Mean, standard deviation, and p values for different parameters. 

Parameters Original Plan SD Re-planned Plan SD p value 

MU/Gy 236.6 29.0 253.4 29.4 0.0002 

MU/Degree 1.8 0.2 2.0 0.2 0.0001 

Fraction of islands < 1cc 0.5 0.2 0.6 0.1 0.0002 

Islands/control point 

SAS2 

SAS5 

SAS10 

SAS20 

3.9 

0.2 

0.2 

0.3 

0.4 

2.1 

0.1 

0.1 

0.1 

0.1 

4.9 

0.2 

0.3 

0.3 

0.5 

2.3 

0.1 

0.1 

0.1 

0.1 

0.0001 

0.0003 

0.0002 

0.0002 

0.0002 
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Figure 1: Displaying the total lung volume excluding GTV (volume V2) in magenta 
and the volume V1 (i.e. the lung volume crop back from PTV (pink) by 5cm (blue). 
 

PT

V V2 

V

1 



Predicting minimum achievable dose constraints using in-house KBP models 

Page 19 of 23 

 

 
Figure 2: The plots showing training and verification data and the linear line showing 
the lower bound model for V5 (A), V20 (B), and MLD (C). 
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Figure 3: Plots A, B and C showing reduction plan variability in plans produced after 
the models compared for V5, V20 and MLD respectively. The original plans were 
planned without model predicted values whereas, achieved values were obtained by 
re-optimizing plans with the model predicted values. Three separate models were 
produced for each dose-volume parameter shown in figure 2, using residual lung 
volume. The minimum achievable dose-volume parameters were predicted prior to 
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the plan optimisation and the predicted values for each parameter were entered in 
optimiser. 
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Figure 4: Showing difference in dose-volume parameters before and after the 
model. Concurrent reduction was seen in all the dosimetric parameters studied V5 
(A), V20 (B) and MLD (C) after the model. The achievable dosimetric parameters 
were determined using the models prior to optimisation and the predicted values 
were entered in the optimiser.  
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Figure 5: Showing difference in dose-volume parameters before and after the model 
for 66Gy in 33 fractions (A) and 60Gy in 30 fractions (B) prescriptions. The 
normalised model was verified using ten plans, minimum achievable doses were 
predicted using the normalised model and these valued were used during plan 
optimisation. 
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