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The Impact of Spatial–Temporal Averaging on the
Dynamic–Statistical Properties of Rain Fields

Guangguang Yang , David L. Ndzi, Boris Christian Gremont, Kevin Paulson ,
Misha Filip, and Abdul-Hadi Al-Hassani

Abstract— Knowledge of the spatial–temporal variation of rain
fields is required for the planning and optimization of wide-area
high-frequency terrestrial and satellite communication networks.
This article presents data and a method for characterizing
multi-resolution statistical/dynamic parameters describing the
spatial–temporal variation of rain fields across ocean climate in
North-Western Europe. The data are derived from the NIMROD
network of rain radars. The characterizing parameters include
1) statistical distribution of point 1 min rainfall rates, 2) spatial
and temporal correlation functions of rainfall rate, and 3) the
probability of rain/no rain. The main contributions of this
article are the assessment of the impact of varying spatial
and temporal integration lengths on these parameters, their
dependencies on the integration volumes and area sizes, and the
model for both temporal and spatial correlation parameters.

Index Terms— Fitting, modeling, radio-wave propagation, rain
characteristics, rainfall rate, statistical model.

I. INTRODUCTION

RAIN-INDUCED attenuation of microwave signals at fre-
quencies above 10 GHz is the dominant dynamic impair-

ment on high-capacity satellite and terrestrial links [1], [2].
The parameters that are used to characterize rain at different
spatial (L) and temporal (T ) integration lengths is important
as all the rain in the first Fresnel zone of a radio link leads to
attenuation [3]–[6]. Network planners and designers of physi-
cal layer fade mitigation techniques [7], [8] require knowledge
of rain characteristics at smaller space (L �) and time (T �)
scales than are typically available from radar or rain gauge
measurements. This provides impetus for the development of
rain models which can be used to predict rain rates at fine
scales.

Rain measurements produced by rain gauge, rain radar, and
satellite, each have strengths and drawbacks [9], [10], [12].
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Numerical models can be used to address their limitations and
integrate their strengths appropriately [13], [14]. For example,
Maseng and Bakken [15] proposed a stochastic-dynamic time-
series model for rain attenuation field simulation, which was
later extended to two locations in [16]. A study in [17]
shows that Maseng’s model also applies to rainfall rates
with the same dynamic parameters. A space–time rainfall
process model that describes the behavior of the stochastic
structure of rain fields was proposed by Cam [18]. Many
models have subsequently been proposed, i.e., [19]–[23],
and many assume that rainfall intensity exhibits a lognormal
distribution [24].

An understanding of rainfall behavior in both space and
time at multi-resolutions is important for the development of
rain attenuation models [4]. The study in [25] investigated
the rainfall variability in Italy at different time scales from
30 to 720 min using both rain gauge and weather radar data.
However, this study was limited to the spatial and temporal
correlation functions of rain rate at different temporal scales.
Luini and Capsoni [6] investigated the effect of space or
time integration on the spatial correlation functions of rain
separately but not combined. Understanding the effect of com-
bined space–time integration on spatial correlation is important
for the development of effective fade mitigation techniques
and the space–time rain field simulators. Yang et al. [3]
highlighted the importance of space–time averaging on rain
properties.

This article focuses on the comprehensive study and model-
ing of the key rain properties over different spatial and tempo-
ral integration lengths (ranging from 5 to 75 km in space and
from 15 to 1440 min in time) to investigate how scaling affects
the dynamic–statistical properties of rain fields over different
oceanic regions in North-Western Europe. The main aim is to
ameliorate the challenges and cost of obtaining high-resolution
rainfall rate characteristics over wide areas. It proposes models
that can be used to obtain rain characteristics at multiple
space (λL) and time (ϕT ) scales. This article 1) characterizes
rainfall fields over different climatic zones in North-Western
Europe based on radar measurements. As rain is irregular
in both space and time domains, its key characteristics with
varying space–time scales at different locations are studied
and presented and 2) proposes a new space–time statistical
rain model for spatial correlation and temporal variation of
rain over the whole of North-Western Europe. The results
of higher-order moments of rain fields and empirical models
of rain/no rain statistics are presented.
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The rest of this article is organized as follows. Section II
reviews space–time rain model implemented in this study.
Details of the experimental data used are also provided.
The methodology used to vary the integration length of radar
data in both the space and time domains is presented in
Section III. Section IV describes how to characterize the rain
properties and the technique used to integrate the data from
short to long integration lengths. Section V presents the results
of rain rate statistics, spatial and temporal correlations of rain,
the probability of rain/no rain, and the proposed empirical
models. Conclusion is drawn in Section VI.

II. SPACE–TIME MODELING OF RAINFALL RATE

Rainfall rate, R, in mm/h, at a particular location and for
a particular combination of spatial and temporal integration
is modeled as a lognormal process with mixed probability
density function (pdf) [1]

�R(μ, σ, P0) =

⎧⎨⎨
⎨⎩

1 − P0, no rain

P0√
2π Rσ

ex p

�
−

�
ln R − μ

σ

�2
	

, for rain

(1)

where P0 denotes the probability of rain occurrence (R > 0)
and {μ, σ } are the lognormal parameters describing the aver-
age annual distribution of rainfall rate. The statistical parame-
ters {P0, μ, σ } depend on the location x = (x1, x2) and the
spatial and temporal integration lengths. Crane [1] has shown
that the spatial correlation function of rain rate depends only
on the separation distance between two locations and the 2-D
spatial correlation function can be assumed to be isotropic,
i.e., it takes the form cS(x, y) ≡ E[R(x, t1)R(y, t1)] ≡
cS(d), where d = |x − y|. The temporal correlation function
between rainfall rate at the same location but separated by a
duration of τ = |t2 − t1| can be represented by cT (t1, t2) ≡
E[R(x, t1)R(y, t2)] ≡ cT (τ ).

The assumptions of stationarity and homogeneity greatly
reduce the complexity of rain field characterization. The point
statistics (including rain/no rain) and the spatial and temporal
correlation functions form a basic set of “key characteristics”
from which rain fields can be numerically synthesized. Bell
[24] showed how rain fields can be numerically synthesized.
However, he assumed that all locations within a wide area
share the same statistics. This is unrealistic for large area
communication networks as rainfall rate varies from location
to location, influenced by factors such as climate, topography,
and wind. Although this problem has been solved by an
approach proposed by Jeannin et al. [26], a detailed study on
the rain characteristics is needed to understand the variability
of rain, especially those at multiple space and time resolutions.

III. DATA DESCRIPTION

The rainfall rate data used in this study has been obtained
from the U.K. Metrological Office NIMROD radar system
in the form of composite spatial maps spanning oceanic
climates in North-Western Europe produced at a temporal
interval of 15 min and integrated over square regions of

Fig. 1. NIMROD composite images of precipitation rates for (a) Central
North-Western Europe with a dimension of 2000 km × 2000 km and 5 km
resolution and (b) British Isles with 1 km sampling.

dimension 5 km × 5 km. The NIMROD data are available
from the British Atmospheric Data Centre (BADC), one of
the Natural Environment Research Council (NERC) centers
for atmospheric sciences. The NIMROD data are continuously
updated and the BADC ensures the long-term integrity of the
data. Over the U.K., NIMROD also provides data on a 1 km
grid acquired with a sample time resolution of 5 min but with
variable spatial resolution depending on the distance to the
nearest radar. The NIMROD data have been validated using
rain gauge data by some researchers, i.e., [27], and a range of
data is used to calibrate the radars. Some differences between
the NIMROD and rain gauge data are expected due to spatial
averaging. The NIMROD 1 km data have been shown to yield
unbiased estimates of annual 0.01% exceeded rain rates [28].

The NIMROD network consists of 15 C-band weather
radars that cover the whole British Isles. They scan at high
space and time resolutions over long distances. Four to five
radars repeat the scan at different elevations to build 3-D scans
of the area from which the best estimates of rain rates on
the ground are established (details about the NIMROD radar
system are given in [27]). A series of composite rain field
maps are then produced of rainfall rate samples on a 5 km
squared Cartesian grid covering North-Western Europe. Each
map contains 700 × 620 data cells. However, in this study,
a 400 × 400 grid, i.e., a 2000 km square region, in each
radar image has been analyzed. This spans the irregular shape
covered by the radars. The study area ranges from 43.1938◦ to
59.4306◦ in latitude and −9.7370◦ to 19.8364◦ in longitude.
Five years of composite rain radar maps (2005–2009) have
been analyzed in this study. The full data set consists of more
than 166 000 radar maps with data availability of over 90%
for each year. Fig. 1(a) shows a typical NIMROD radar scan
image. The gray color is the area outside the range of the radar
network where no rain data are available, and the black color
represents the scanned area where data are available. A typical
composite rain rate image of the U.K. is shown in Fig. 1(b).
The validation of a model’s performance requires comparisons
of estimates to be made with measured data (e.g., from rain
gauge or rain radar) [10]. Therefore, the 1 km grid U.K. data
can be used to validate the results of an interpolation approach
that is applied to the 5 km grid radar data for the U.K.

The NIMROD system uses data collected from range
height indicator scans at several elevations to estimate the
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TABLE I

LATITUDE AND LONGITUDE VALUES FOR FIVE LOCATIONS
DISCUSSED IN THIS ARTICLE

rain rates at different altitudes and combines these data sets
to predict the rain rate at ground level. Due to the complex
spatial–temporal processing involved, the ground rain rates
are not quantized. The processing is described in [29]. The
NIMROD radar provides rain-rate estimates over a large
area but the resolution is not high enough for applications in
radio propagation. In particular, the design and planning of
the next-generation satellite networks requires knowledge of
rain variation over much shorter scales, i.e., a typical Fresnel
zone of a few tens of meters. The NIMROD data, which are
generated every 15 min on 5 km Cartesian grid, do not meet
this requirement, and, hence, the work reported in this article.

Rain characteristics at many locations within Western
Europe have been studied to reveal the impact of scaling
and space–time averaging on the dynamic–statistical properties
of rain fields. The latitudes and longitudes of five studied
locations are listed in Table I.

IV. CHARACTERIZATION OF RAINFALL FIELDS

A. Rainfall Rate

The composite map is represented on a Cartesian grid
and each point contains space–time-averaged rain intensity
information. The average rainfall rate centered on the origin
over time T and spatial area A = L2 can be expressed as in [4]

R(L, T ) = 1

T


 T/2

−T/2
dt

1

L2


 L/2

−L/2


 L/2

−L/2
r(x, t)da (2)

where r(x, t) denotes the point rainfall rate in mm/h at
location x and time t on a 2-D Cartesian grid. The interval
T is the temporal integration length, while L is the spatial
integration length. Each NIMROD radar map consists of
a Cartesian grid of such space–time-averaged values. Each
value is an estimate of rainfall rate at a particular instant
but the algorithm for deriving the rain rate yields a value
consistent with a particular integration period.

B. Key Characteristics of Rain

Four key rain parameters are needed to develop a space–
time rain attenuation field model [3]. The principal parameter
is the annual probability distribution of rain. Many studies have
shown that point rainfall rate is well modeled as a log-normal
random variable with a pdf given by

f (R) = 1√
2π Rσ

ex p

�
−1

2

�
ln R − μ

σ

�2
�

(3)

where μ and σ are the mean and standard deviation of
log rainfall rate, respectively. It is possible to transform the
complementary cumulative distribution function (CCDF) to
a linear relationship as described in [30]. The application

of this statistical technique to different spatial and temporal
integration lengths is discussed in Section V. Estimating μ
and σ requires a tradeoff between acquiring a large enough
sample to yield significant estimates and remaining within a
homogenous climate region of rain regime.

The spatial correlation function is the second important
characteristic and is expressed as follows:

ρ = cov(R1, R2)√
σ1σ2

(4)

where R1 and R2 are the rainfall rates (mm/hr) at two
locations 1 and 2, respectively, ρ is the cross-correlation factor
between R1 and R2, and cov(∗) and σ are the covariance
and standard deviation, respectively. In [3] and [22], it is
assumed that the spatial correlation function of rainfall rate
only depends on the separation distance, i.e., the rain rate fields
are spatially homogeneous, isotropic, and stationary in time.
These assumptions are mainly valid over small distances and
times such that the shape of rain field and intermittence of rain
events have no effect. Rain fronts and squalls have large linear
features which are not homogeneous or isotropic over event
scales. Theoretically, the correlation in space will be the same
in any horizontal direction and, therefore, can be computed
using pairs of rain rates in any orientation.

Typically, intense rain showers, which cause extreme atten-
uation, are of short durations. Temporal correlation quantifies
how rain intensity at one particular location is correlated over
different times. Temporal correlation is important as it is linked
to temporal variation of fade, especially for high elevation
links, which is a major input in the design of fade mitigation
schemes. The development of effective route diversity or site
diversity networks requires detailed knowledge of both the
temporal and spatial correlation functions of rainfall rate. The
temporal correlation function is defined by

ρ = cov(Rt1, Rt2)√
σ1σ2

(5)

where Rt1 and Rt2 are the point rainfall rates (mm/h) at two
different times t1 and t2 but at the same location.

The last important parameter considered in this study is
the probability of rain occurrence (P0) in a geographical area,
which is chosen to be of a similar size as the spot beam of
a satellite network [22]. Theoretically, P0 (for which R > 0)
represents equally well the expected fraction of the rainy
area that one can expect for a satellite or the probability of
rain occurrence at one point over a period of time [3]. If an
unbiased sample of rain maps is available for a homogeneous
climate area, then the parameter P0 may be estimated using

P0∼= 1

M

M
1

Arainy

AT

∼= 1

NT

NT
1

Nrainy

N
(6)

where Arainy is the area experiencing rain within a map, AT

is the total area of the rain map of interest, M is the number
of maps, Nrainy is the rainy sample amount at one grid point,
NT represents the total samples (including rain and no rain)
at that point over a long period, and N is the total number of
grid points in the area AT .
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C. Integrated Rainfall Data

Radar-derived space–time rainfall data typically span a
larger area than rain gauge networks [10] and provides con-
siderably denser spatial sampling. A rainfall rate map may
be used to simulate the instantaneous joint fade experienced
by all the links in an arbitrary microwave network [31], [32].
However, the problem lies in the reduced quality originating
from the coarse sampling of measured maps as this is linked
to the scan rate of the radar.

One of the key objectives of this article is the assessment
of the impact of varying spatial integration lengths and tem-
poral integration lengths on the studied quantities. This will
be useful to enhance the ability to predict the rain-induced
attenuation at a range of spatial–temporal resolutions.

Let R(x, y, t) be the measured rainfall rate with space
resolution L and time resolution T .R(x, y, t) = Rijk if i L ≤
x ≤ (i + 1)L, j L ≤ y ≤ ( j + 1)L, and i T ≤ t ≤ (k + 1)T ,
otherwise R(x, y, t) = 0. This definition yields a 3-D array
of measured rain rate values with spatial averaging regions of
size L × L and a sampling interval of T . Consider the 3-D
indicator function

I (x, y, t) ≡
�

1 |(x, y, t)|∞ < 1
2

0 otherwi se
(7)

can be used to define how the rainfall rate changes with
integration volume, where |(x, y, t)|∞ is the infinite norm.
The multi-scale rainfall rate fields are defined as

Rλ(x, y, t) = 1

λ3 L2T


 
 

R(x �, y �, t �)I

×
�

x − x �

λL
,

y − y �

λL
,

t − t �

λT

�
dx �dy �dt � (8)

where Rλ(x, y, t) is the rainfall rate at position (x, y) derived
from a spatial integration region of linear size λL and temporal
integration time λT , where λ > 1 is known as the scale
parameter. More generally, the spatial and temporal regions
could have different scale parameters, e.g.,

Rλ(x, y, t) = 1

λ2ϕL2T


 
 

R(x �, y �, t �)I

×
�

x − x �

λL
,

y − y �

λL
,

t − t �

ϕT

�
dx �dy �dt �. (9)

In particular, the integration can be divided into three cate-
gories: 2-D spatial integration, 1-D temporal integration, and
3-D spatial–temporal integration. The 2-D spatial integration
only changes the integration length in the space domain at
a fixed time and the 1-D temporal integration is at a fixed
location. The 3-D integration is particularly interesting as the
rain event evolves in both space and time simultaneously.
It is, therefore, a combination of both spatial and temporal
integration.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Statistics of Rain

1) Experimental Results: Generally, rain measurements are
carried out at uniform time intervals. For a particular loca-
tion, the annual CCDF of point, 1 min rain intensities can

Fig. 2. Averaged CCDF of 5 year NIMROD rainfall rate data for a range
of integration lengths. (a) Space domain with a time interval of 15 min.
(b) Time domain with a space resolution of 5 km.

be generated. In this article, Portsmouth (U.K.) is taken as an
example to discuss the results in detail. Fig. 2 shows the CCDF
of rainfall rate conditioned on the occurrence of rain for the
rainfall rate above 1 mm/h. It shows that the probability of
a spatial–temporal volume containing rain gradually increases
with the increasing integration length in both the space and
time domains, respectively, up to around 60 mm/h in space
and 65 mm/h in time.

Using the technique described in [30], the CCDF can be
transformed to test its log-normality. A normal distribution
leads to a straight line given by

Qinv = ln(R)

σ
− μ

σ
(10)

where μ and σ are the log-normal mean and standard devia-
tion, respectively, and Qinv is the inverse function of CCDF.

Fig. 3 shows the data and least squares (LSQ) linear
regression fit to the log-normally transformed data for spatial
integration lengths from L = 5 km to L = 75 km (T =
15 min) and temporal integration lengths from T = 15 min to
T = 120 min (L = 5 km). These results support the hypothesis
that rainfall rate distributions can be well approximated by log-
normal distributions. However, note the systematic deviation
for rain rates with In(R) > 3 for all spatial integration
lengths. This is consistent with the findings in [33].

Tables II and III list all the estimated parameter values
(μ and σ) for Portsmouth for different spatial and temporal
integration lengths. The value of μ gradually increases with
increasing integration length, meanwhile for the value of σ , the
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Fig. 3. Test for log-normality of rainfall rate distribution for different
integration lengths. (a) Space domain with a time interval of 15 min.
(b) Time domain with a space resolution of 5 km.

TABLE II

EXPERIMENTAL COEFFICIENTS VALUE OF LOG-NORMAL DISTRIBUTION
PARAMETERS FOR DIFFERENT SPATIAL INTEGRATION LENGTHS AT

PORTSMOUTH (T = 15 min)

TABLE III

EXPERIMENTAL COEFFICIENTS VALUE OF LOG-NORMAL DISTRIBUTION
PARAMETERS FOR DIFFERENT TEMPORAL INTEGRATION LENGTHS AT

PORTSMOUTH (L = 5 km)

coarser the resolution, the smaller it becomes. The consistency
of these changes has been tested using 1 km spatial grid U.K.
NIMROD data.

Fig. 4 gives values of μ and σ for different map sizes, S,
from 5 km × 5 km to 530 km × 530 km, with L = 5 km and
T = 15 min. It shows that both μ and σ values significantly
change for small areas S < 200 km × 200 km. These values
gradually become stable and converge to constant values when
the size of the map is greater than 400 km × 400 km.

Fig. 4. Experimental values of parameters of fitted lines for different map
sizes S centered at Portsmouth with L = 5 km and T = 15 min.

This happens for all spatial and temporal integration lengths
(all figures are not presented in this article). Apparently, this
indicates that when studying the rain field structure over a
large area where there is no strong orographic effect and for
which the climate is relatively homogeneous, the statistics of
rain is independent of the map size and the integration volume
is the factor that needs to be considered.

2) Validation: The Chi-squared test was applied to evaluate
how well the observed trend can be used to predict rainfall
at different space and time resolutions. Fig. 5(a) shows the
comparison between equal-probability bin histograms of rain-
fall rates observed and fitted (L = 5 km and T = 15 min).
Fig. 5(b) shows the predicted results in comparison with the
measured data based on the proposed technique. Given that
rainfall rates above 30 mm/h is important for satellite com-
munications, the results in Fig. 5(b) show that the probability
of rain is between 0.01% and 0.001%. The dotted line is the
5 year average from the measured data, while the solid line is
the best fit of the model. The fitted curve appears plausible up
to 35 mm/h, after which divergence occurs. However, it should
be noted that the probability of exceedance at these higher
rainfall rates are based on a small number of samples.

Fig. 6 shows the rainfall rate exceeded for 0.01% in an
average year given by Rec. ITU-R P. 837-7 [34] using 1 min
temporal integration length of rainfall rate. This is useful for
the prediction of rain attenuation in radio communications. The
rainfall rate is in the range 30–60 mm/h in Western Europe.
In the Portsmouth area, the rainfall rate exceeded for 0.01%
of time is approximately 30 mm/h, which is larger than the
5 km instantaneous 0.01% rainfall rate exceeded as shown
in Fig. 5(b).

Comparing rain model predictions with measured data is
commonly performed to validate the model’s performance.
However, the model proposed in this article does not predict
the rainfall rate directly but the derived key characteristics
of rain. Because of this, it is necessary to compute the
parameters from measured data and compare them with the
proposed model predicted rain characteristic parameters to
validate the model’s performance. The NIMROD database
holds two data sets provided by different agencies: one
data set is for North-Western Europe and the radar stations
are located in North Europe and are operated by European
agencies and the other is for the British Isle and the data set
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Fig. 5. Comparison between the observed and fitted results. (a) Near-equal
probability histograms of rainfall rate. (b) Rainfall rates exceedance distribu-
tion, here L = 5 km and T = 15 min.

is provided by the U.K. Met Office for radar stations located
in the U.K. The advantage of the North-Western Europe data
set is its large coverage, but the resolution is 5 km in space
and 15 min in time. This data set has been extensively used in
this article to develop the model. The data set for the British
Isle provided by the U.K. Met Office only covers the British
territory but offers better resolutions (1 km in space and
5 min in time). Because the radar stations that generate these
two data sets estimate the rain rate at different azimuth scans,
times, and elevations, the upscaling of 1 km U.K. NIMROD
data to 5 km will be different from the North-Western Europe
data for the British Isle. However, the key characteristics of
rain parameters would be expected to be similar. This has
enabled the proposed model to be developed using on set and
the other data set to be used for validation.

The U.K. NIMROD data (1 km sampling in space and 5 min
in time) have been integrated to form 5 km × 5 km grids to
approximate the EU NIMROD data. Fig. 7 compares the rain-
fall rate exceedance distributions at Portsmouth (U.K.) from
radar-derived EU NIMROD data and the U.K. data (the aver-
age over 5 years). It shows that after the integration, the rainfall
rate exceedance distribution generated from the different data-
bases are in strong agreement. The fitted curve to the U.K.
NIMROD data is slightly lower than the fitted curve to the
EU NIMROD data. The observed rainfall rates exceeded for
0.1%, 0.01%, and 0.001% of the time from both EU and U.K.
data at Portsmouth are {7.85 mm/h, 23.9 mm/h, 67.9 mm/h}
and {7.6 mm/h, 21.7 mm/h, 66.3 mm/h}, respectively.

Fig. 6. Rainfall rate (mm/h) exceeded for 0.01% of the average year given
by Rec. ITU-R P. 837-7.

Fig. 7. Comparison of rainfall rate exceedance distribution at Portsmouth
using the EU and U.K. data averaged over 5 years.

B. Correlation Function of Rain

Spatial and temporal correlation functions of rainfall rate are
important for rainfall field modeling and simulation [35], [36].
They vary depending on location, climate, topography, rainfall
type, etc. [37]–[39]. The impact of space and time averaging
on the autocorrelation function is of particular interest [3]. All
these factors should be taken into account in the prediction of
rain-induced attenuation.

1) Spatial Correlation Function of Rainfall Rate: The
horizontal structure of rainfall fields, hence spatial correlation
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Fig. 8. Spatial correlation function of rainfall rate for different spatial
integration diameters at Portsmouth (here T = 15 min).

between two points, is important for high-frequency wireless
network planning [40]. Many empirical models have been
proposed and each model is derived from a study of different
regions covering different continents and for rainfall rate
measurements with a range of integration volumes. The
differences among these models indicate that the spatial
structure of rainfall fields strongly depends on climate,
topography, etc. Manabe et al. [41] argued that an exponential
distribution is more suitable for European regions and can be
adapted to other areas. Other exponential models have been
proposed in [35], [42]–[44].

This study has produced a general empirical equation that
fits both the spatial and temporal correlation functions of rain
rate. The generalized model is given by

ρ = a

a + xq
(11)

where a > 0 and q > 0 are parameters to be determined, and x
can either be d (where d represents the distance in kilometers)
or t (where t is the time lag in minutes).

In this study, 5 years of rainfall rate data have been analyzed
to estimate the spatial and temporal correlation functions of
rainfall rate. Fig. 8 shows the spatial correlation function of
rainfall rate at Portsmouth for different spatial integration
lengths ranging from L = 5 km to L = 20 km. It shows that
spatial correlation increases with increasing integration length
due to the mixing of point covariance, with the larger covari-
ance dominating. For example, let C(z) = E[R(x)R(x + z)]
be the second moment of the point rainfall rate process. For
rain integrated over a line RD(x) = (1/2d) × � x+d

x−d R(z)dz,
where d is distance, the second moment is

RD(x) = E[RD(x)RD(x + z)]
= 1

(2d)2 ×

 x+d

x−d


 x+z+d

x+z−d
E[R(z1) ∗ R(z2)]dz1dz2.

As long as C(z) is decreasing and convex then
CD(z) > C(z). The nearlinear sections of the curves (see
Fig. 8) suggest exponential correlations. In particular, the
5 km data suggest that there are two exponential regions:
from 0 to 50 km and 50 to 200 km. This is less obvious
for larger integration length due to the effect of averaging.
Fig. 9 illustrates the performance of the proposed correlation

Fig. 9. Example of fitted spatial correlation function of rainfall rate with
L = 5 km and T = 15 min.

TABLE IV

EXPERIMENTAL PARAMETER VALUES OF SPATIAL CORRELATION

FUNCTIONS OF RAINFALL RATE FOR EACH SPATIAL
INTEGRATION LENGTH AT PORTSMOUTH (T = 15 min)

Fig. 10. Spatial correlation function of rainfall rate for different temporal
integration lengths at Portsmouth (here L = 5 km).

function model [see (11)] against values from measured data
at 5 km in space and 15 min in time resolutions. This shows
that the correlation values can accurately be predicted using
the proposed model for distances up to 150 km. The fitting has
been accomplished by the minimization of the error function

Error =


|Corr f it ted − Corrmeasured | (12)

where Corr f it ted is the fitted correlation function and
Corrmeasured is the measured value.

Note that the correlation curve rapidly falls off beyond
150 km. There is no suitable model for distances above
200 km, even the published models. Table IV lists the model
parameter values obtained from fitting the proposed model for
different spatial integration lengths from 5 to 20 km.

Fig. 10 shows the computed spatial correlation function
of rainfall rate with different temporal averaging. The EU
NIMROD data provide near-instantaneous rainfall rates at
15 min sampling intervals. Averaging n consecutive rainfall
rate values for the same 5 km diameter region yields a coarse
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TABLE V

EXPERIMENTAL PARAMETER VALUES OF SPATIAL CORRELATION
FUNCTIONS OF RAINFALL RATE FOR EACH TEMPORAL

INTEGRATION LENGTH AT PORTSMOUTH (L = 5 km)

Fig. 11. Comparison of spatial correlation functions of rain, for five
European locations, derived from 5 years of radar data (here L = 5 km and
T = 15 min).

estimate of the (n−1)×15 min temporal integration. It shows
that temporal correlation also increases with increasing tempo-
ral integration length, similar to spatial correlation. The fitted
parameter values for integration lengths from 15 to 120 min
are given in Table V.

Five locations distributed across the Western European
radar-scanned area were investigated to assess how spatial
and temporal correlation functions of rainfall rate change with
location. Fig. 11 presents their spatial correlation functions
calculated using 5 years of data. The spatial correlation is
very close for all locations for the scales (0−15 km), which
is a typical scale for rain storms. For larger scales, the
spatial correlation is more variable with increasing differences
between the locations. This is consistent with the findings of
Manabe et al. [41] who studied eight locations in Europe. The
large difference in correlation values between Paris and Rennes
suggests a strong climatological or topographic dependency.
It also shows that all the distributions are close to exponential
over the range 50 200 km. The range beyond 300 km yields
negative correlation values. This could be used to optimize
diversity gain when choosing locations for satellite ground
stations. For all locations studied, the proposed correlation
model [see (11)] provides a very good fit to the calculated
values. This supports the results reported in [40]. In addition,
the authors have relied on the NIMROD system to produce
the unbiased results. Although the resolution of the data will
be higher nearer radars, this should not affect the correlation.
The rain fields have been assumed to be isotropic and, hence,
the correlations to be rotationally symmetric. It seems more
reasonable to assume that maritime and continental locations
will experience a different mix of weather systems and so
exhibit different correlation functions.

2) Temporal Correlation Function of Rain Rate: The tem-
poral correlation function of rainfall rate is important for

Fig. 12. Temporal correlation function of rainfall rate for five European
locations, here L = 5 km and T = 15 min.

Fig. 13. Fitted lines for the temporal correlation function of rainfall rate
with different temporal integration lengths at Portsmouth, here L = 5 km.

TABLE VI

EXPERIMENTAL PARAMETER VALUES OF TEMPORAL CORRELATION

FUNCTION OF RAINFALL RATE FOR DIFFERENT TEMPORAL

INTEGRATION LENGTHS AT PORTSMOUTH (L = 5 km)

network reliability design, sufficient link power margin provi-
sion, and adequate fade mitigation employment. Fig. 12 com-
pares the temporal correlation functions of rainfall rate of the
five European locations based on 5 year data. At a correlation
value of 0.37 (equal to the value of 1/e), correlation times of
between 60 and 200 min are obtained at different locations
indicating a strong location dependency. Fig. 12 also shows
that the temporal correlation function of rainfall rate signif-
icantly changes with temporal integration lengths between
15 and 120 min. Similar results have been reported in [45]
for sampling periods of 10 s and 1 min using data measured
using a disdrometer.

The data and the fitted curves based on (11) for different
temporal integration lengths are provided in Fig. 13. The fitted
curves are in good agreement with the measured data for time
lags up to 1000 min. The values of the parameters of (11) for
each temporal integration length are provided in Table VI.

Fig. 14 shows the short-lag temporal correlation function
at Portsmouth for different spatial integration lengths ranging
from L = 5 km up to L = 75 km with T = 15 min.
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Fig. 14. Temporal correlation function of rainfall rate for different spatial
integration lengths at Portsmouth, here T = 15 min.

TABLE VII

FITTED PARAMETER VALUES OF TEMPORAL CORRELATION FUNCTIONS

OF RAINFALL RATE FOR EACH SPATIAL INTEGRATION LENGTH
AT PORTSMOUTH (T = 15 min)

It shows that the temporal correlation function gradually
becomes smoother due to spatial averaging with increasing
integration length.

The differences between the temporal correlation between
L = 5 km and L = 75 km indicate a strong integration
length dependency. However, the temporal correlation quickly
falls off for any spatial integration length with short time lags
to below 0.37 (roughly 1/e) at approximately 500 min. The
fitted parameter values of the proposed mathematical model
are given in Table VII.

Typically, the temporal correlation function of point rainfall
rate is affected by advection. The variation of rainfall rate
at a point is due to two processes; the evolution of the
rain event and the movement of the rain event. Rain event
evolution tends to be slow but dominates at time lags of 40
min or longer, while the movement of rain event over a point
dominates for short time lags. This variation is modeled as
the movement (advection) of a fixed pattern of rain over a
point using the frozen storm hypothesis [46]. It states that
the statistics of rain at a point is the same as the statistics of
rain along a line parallel with advection. The interpretation
of this is R(x0, t) = R(x0 − V (t − t0), t0), where V is the
advection vector, and x0 and t0 are an arbitrary position and
time, respectively. This means that for time lags less than
40 min, the temporal covariance of point rainfall rate for a
lag τ = (t − t0) is the same as the spatial covariance for a
spatial lag of |V ∗ τ |, assuming that the rain field is homoge-
neous and isotropic. The temporal correlation presented is the
actual correlation experienced at a point. At short time lags,
it averages over the range of advection speeds experienced.
For lags greater than about 40 min, the results are determined

Fig. 15. Comparison of spatial correlation function of rainfall rate at
Portsmouth achieved from different databases (L = 5 km and T = 15 min).

by a combination of the evolution of large rain events and the
clustering of rain events.

3) Validation: Comparing rain model predictions with mea-
sured data is commonly performed to validate the model’s
performance. The predictions of the model proposed in this
article, however, are not rainfall rates but the derived key
characteristics of rain. Because of this, it is necessary to
compute the parameters from measured data and compare
them with model-predicted rain characteristics parameters to
validate the model’s performance.

One year of U.K. NIMROD data (2008) have been used
to validate the model’s performance. The data have been
upscaled to achieve the same integration length as the EU
data with 5 km spatial resolution and 15 min time resolution.
Fig. 15 presents the spatial correlation function of rainfall rate
at Portsmouth estimated from both the EU NIMROD database
and U.K. NIMROD database. It compares the U.K. and EU
data of 2008 and a combined 5 years (2005–2009) of the EU
NIMROD data. The upscaled U.K. 1 km grid data from 2008
yield very similar results as the EU 5 km data for the same
period. This provides assurances of the validity of the approach
adopted. The curve derived from combining 5 years of EU
data is significantly different showing that there could have
been significant year-to-year rainfall rate variations. The two
near-exponential ranges, from 0 to 50 km and between 50 and
200 km, are present in all curves. This suggests that the same
processes are present but in different proportions. This finding
is in accordance with the results presented in Figs. 8–11.

Fig. 16 compares temporal correlation functions of rainfall
rate at Portsmouth using data from the EU NIMROD database
and U.K. NIMROD database for 2008. Although there is a
small difference, the results show that the proposed approach
gives good estimates of data at one location.

C. Probability of Rain Occurrence

The probability of rain occurrence P0 has been studied using
5 years of radar data. Each location has its own P0 value and
the P0 value for any size of map can be obtained by averaging
the P0 values of all points within that map. It should be noted
that the value of P0 is poorly defined, as it is very difficult to
tell whether rain is light or it is not raining at all. Its value
is influenced by the way rainfall rate is measured as many
instruments become unreliable at low rainfall rates. For radars,
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Fig. 16. Comparison of temporal correlation function of rainfall rate
at Portsmouth achieved from both the EU NIMROD database and U.K.
NIMROD database, for L = 5 km and T = 15 min.

Fig. 17. Variation in probability of rain occurrence for five locations changes
with an increasing size of map, here L = 5 km and T = 15 min.

light rain could either be masked or falsely generated by noise
within the radar equipment. In many studies, the value of P0
is determined less by the measurements of very light rain but
by the optimized fit of a rainfall rate distribution model to the
full range of rainfall rates [47].

An example that reveals how the probability of rain
occurrence changes with varying map sizes, S, is presented
in Fig. 17. If a sufficiently long time interval is studied,
the spatial variation in P0 will exist due to orographic effects
and microclimates. In this study, it is assumed that the 5 years
of data are sufficiently long to estimate the long-term first-
order statistics of rainfall rate. The P0 is estimated through
studying the proportion of 5 km cell with rainfall rates (R > 0)
over the 5 year period. Fig. 17 shows significantly different
rain probabilities between locations. For example, the rain
occurrence pattern at Rennes is specific to this location which
is at the end of the radar scan area and suffers from low data
availability. As such, it exhibits larger than normal fluctuation
than other chosen locations. The authors believe that the curves
are valid for small surfaces (<100 km 2) as they have been
validated using 1 km spatial resolution scans from the British
Isle-based radars. The proposed model gives sub-kilometer
estimates but due to lack of data, their accuracies cannot be
ascertained. In general, this difference poses a significant chal-
lenge in characterizing P0 using a generic mathematical equa-
tion that encompasses three factors; L, T , and S. However,
characterizing P0 on a point-by-point basis avoids the prob-
lems introduced by averaging over inhomogeneous regions.

Fig. 18. Probability of rain occurrence for increasing integration length in
Europe. (a) P0 for different spatial integration lengths L(km) and (b) P0 for
varying temporal integration lengths T (min).

This is the difference between the approach proposed in this
article and those reported elsewhere, where focus was on using
the joint probability of rain to investigate the relationship
between two locations, i.e., [48]. Those researchers estimated
P0 values for unmeasured location from measured ones.

According to [3], there is no easy physical way to determine
P0. In this article, P0 has been studied from a grid point of
view (with small area of S = 5 km × 5 km, the best estimate
from the NIMROD radar systems for Europe) over a 5 year
period with a range of spatial and temporal integration lengths
at all locations. The results from the five studied locations are
provided in this section. A mathematical equation has been
proposed that gives a useful fit to the curves derived from the
radar measurements

P0(x) = 100 − bex p(cxe) (13)

where b, c, and e are model parameters which can be
determined for each location and x denotes either spatial
integration length L or temporal integration length T . The
equation indicates that P0 is constrained by two factors: L
and T . Hence, the values of b, c, and e also exhibit variability
for different spatial and temporal integration lengths.

The variation in P0 with increasing integration length, both
in space and time, together with the fitted curves, is shown in
Fig. 18. P0 is calculated using the same approach described
in Section IV after integration. It shows that the value of P0
also increases with an increase in the integration length. (The
same information can be found in Tables VIII and IX.) It is
evident (and logical) that P0 values will drop close to 0 when
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TABLE VIII

PROBABILITY OF RAIN AT FIVE LOCATIONS WITH DIFFERENT SPATIAL RESOLUTIONS RANGING FROM 5 TO 75 km, HERE T = 15 min

TABLE IX

PROBABILITY OF RAIN AT FIVE LOCATIONS WITH DIFFERENT TEMPORAL RESOLUTIONS RANGING FROM 15 TO 120 min, HERE L = 5 km

TABLE X

EQUATION (13) FITTED PARAMETERS FOR A RANGE OF SPATIAL
AND TEMPORAL INTEGRATION LENGTHS

integration length approaches 0 or increases up to 100 when
the integration length is long enough. Interestingly, Kundu and
Siddani [49] found exactly the same empirical equations for
the probability of rain occurrence based on rain gauge data.

The model parameter values of (13), for each location, are
presented in Table X. The results show that the proposed
P0 expression gives good estimates throughout the whole
range of integration lengths, especially in the time domain
[see Fig. 18(b)]. This is because there are a large number of
samples (5 years in total) for studying P0 in the time domain
but smaller number of samples in the space domain as only
one location is focused on during each processing time.

VI. CONCLUSION

This article has presented the outcome of an extensive study
of 5 years (2005–2009) of rain radar data spanning Oceanic
climate in North-Western Europe. Four key characteristics
of rainfall rate have been studied for a range of spatial and

temporal integration lengths: 1) the annual statistical
distribution; 2) the annual spatial correlation function; 3) the
temporal correlation function; and 4) the point probability of
rain/no rain.

It has been found that all the key characteristics of rain
are strongly dependent on the spatial integration length (L)
and temporal integration length (T ). The results show that
integration length has a significant impact on all key rain
parameters owing to the high variability that rainfall intensity
exhibits. This article proposes a new model that can be used to
estimate the spatial and temporal correlations of rainfall rate at
different integration lengths for any location in North-Western
Europe. The method is capable of producing estimates at
spatial integration lengths from L = 5 km to L = 75 km
and temporal integration lengths from T = 15 min to
T = 1440 min. This is critical for future simulation studies
and will be highly applicable to satellite network research and
planning.

The probability of rain occurrence has been shown to exhibit
spatial variation over distances as short as 5 km. So far,
no physical equation has been found that can combine the
three factors (L, T , and S) to provide good estimates of P0.
An empirical model has been proposed in this article that can
accurately estimate the P0 value for a wide range of integration
lengths: from L = 5 km to L = 75 km and between
T = 15 min and T = 1440 min (1 day). The proposed model
is valid when one of the spatial or temporal integration lengths
is fixed for a fixed map size. In short, at least two factors
should be constant when utilizing the proposed model to esti-
mate P0 values, and the combination is either {L, S} or {T, S}.

Finally, the results presented in this article show that rain
field structure is not constant over large areas but vary from
one location to another. This has also been partially demon-
strated by other researchers such as in [6]. The statistical
model proposed in this article yields more accurate results
as rain characteristics have been studied at multiple loca-
tions for a wide range of integration volumes. In particular,
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the proposed model significantly reduces the complexities and
improves the accuracy of estimating rain characteristics and,
hence, radio wave attenuation, for wide-area high-frequency
communication network planning in North-Western Europe.
This is because network planners and designers of physical
layer fade mitigation techniques require knowledge of rain
characteristics at smaller space and time scales than are
typically available from radar or rain gauge measurements.
Also, the prediction of quality of service (QoS) and the design
of rain attenuation mitigation techniques rely on knowledge
of short integration time of rain attenuation time series. This
article has proposed a statistical model that can be used to
estimate rain characteristics at finer scales that are required
by rain field simulators to generate useful information such
as rain-rate estimates for rain-induced attenuation statistics
computation.

However, the proposed equations for modeling the rainfield
characteristics are only valid for cases where either the spatial
integration length or the temporal integration length is con-
stant, while the other is changing. Therefore, our future work
will focus on characterizing the rainfall fields in the space and
time domains simultaneously.
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