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Abstract

A consequence of the integration of photovoltaic module and thermoelectric generator is the presence of thermal contact, which affects the heat 

transfer in the hybrid system. Thermal and electrical contact are inevitable in a thermoelectric generator and their effects on the performance of the 

thermoelectric generator can be significant if not properly managed. Therefore, this study presents a comprehensive three-dimensional numerical 

investigation on the effect of contact resistances on the performance of concentrated photovoltaic-thermoelectric using COMSOL 5.4 Multiphysics 

software. Four contact resistances are studied including thermoelectric thermal contact resistance, thermoelectric electrical contact resistance, 

photovoltaic-thermoelectric interface thermal contact resistance and thermoelectric generator-heat sink interface thermal contact resistance. Twelve 

contact resistance cases are considered, and a comparison study is presented to investigate the most important contact resistance. In addition, a 

parametric optimization study is performed to investigate the optimum values for thermoelectric leg height, load resistance, concentration ratio and 

convective heat transfer coefficient. Results show that ignoring all contact resistances in the hybrid system causes an overestimation of overall power 

output and efficiency by 7.6% and 7.4% respectively using the base values considered in this study. In addition, the thermal contact resistance 

between the thermoelectric generator and heat sink, and that between the photovoltaic-thermoelectric interface are found to be the most important 

contact resistances, which should be reduced. Furthermore, results show that the optimum thermoelectric external load resistance in a hybrid system is 

lower than that of the thermoelectric generator only system. This study will provide valuable guidance on photovoltaic-thermoelectric accurate 

modelling.

Keywords: Photovoltaic-thermoelectric; Contact resistance; Thermal contact; Electrical contact; Finite element method

Nomenclature

C Concentration ratio

Specific heat capacity,  

G Solar irradiance,  

h Convective heat transfer coefficient,  

Heat sink heat transfer coefficient,  

Current, A

P Power output, W

PV power generation, W

Volumetric energy absorption,  

Thermoelectric thermal contact resistance,  

Thermoelectric electrical contact resistance,  

Rin Internal resistance,   

RL Load resistance,   

PV-TE interface thermal contact resistance,  

TEG-heat sink interface thermal contact resistance,  

T Temperature, K

ZT Figure of merit
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Greek symbols

Greek symbols

 Seebeck coefficient,   

 Efficiency, %

 Electrical conductivity,   

 Thermal conductivity,   

PV temperature coefficient,   

Abbreviations

Abbreviations

PV-TE Photovoltaic-thermoelectric

TE Thermoelectric

TEG Thermoelectric generator

TPT Tedlar polyester tedlar

Subscripts

Subscripts

a Ambient

pv PV cell

sky Sky

1 Introduction

Renewable energy sources are eco-friendly and do not cause serious environmental issues like climate change and air pollution therefore, there is a recent 

paradigm shift from fossil fuels to renewable energy sources like solar energy [1,2] . Generally, solar power can be divided into non-concentrating (e.g. flat-plate 

photovoltaics) and concentrating solar power systems  [3] . Photovoltaic (PV) can provide direct conversion of solar energy into electricity via the Photovoltaic 

effect  [4]  however, the conversion efficiencies of the commercially available photovoltaic systems are still low such as 14–20% for silicon solar cells and 25–

30% for III-V multi-junction solar cells  [5] . The concentration of solar radiations on photovoltaic cells can enable the replacement of expensive photovoltaic area 

with less expensive concentrating mirrors or lenses thereby providing electricity at a reduced cost  [6] . Although the electricity generation per unit area of a 

concentrated photovoltaic (CPV) is greater than that of the non-concentrated PV, the increase in temperature of the solar cells due to increased solar radiations 

after concentration leads to reduced efficiency and cell degradation  [7] . Therefore, effective thermal management of concentrated photovoltaic systems is 

essential to improve its conversion efficiency and increase its life span  [8,9] .

Research on photovoltaic thermal management with the use of thermoelectric devices has grown exponentially recently. A thermoelectric device is a bi-

directional energy converter that can convert thermal energy directly into electricity via the Seebeck effect  [10]  while the reverse phenomenon is called Peltier 

effect by which electricity is converted to thermal energy  [11] . A thermoelectric generator (TEG) operates based on the Seebeck effect while a thermoelectric 

cooler operates based on the Peltier effect. The advantages of a thermoelectric generator include solid-state operation, gas-free emission, vast scalability, 

maintenance-free operation, clean energy production, long life-span and high reliability  [12] . However, the low conversion efficiency and high material cost of 

the thermoelectric generator are the two main factors limiting its wide spread application [13] . The performance of a thermoelectric material is usually 

determined by a dimensionless parameter call figure of merit (ZT) which is expressed as   . Where    is the Seebeck coefficient,    is temperature,    is 

electrical conductivity and    is thermal conductivity. Therefore, a high figure of merit value provides a high thermal efficiency for the thermoelectric generator  

[14] . Asides improving the ZT of materials, geometry optimisation is another effective method to optimise the performance of TEGs  [15] .

Furthermore, an alternative optimisation method is the hybridization of thermoelectric generators. Consequently, one of the research directions being explored 

recently is the integration of thermoelectric generators into photovoltaic systems for enhanced overall performance. Combining a photovoltaic module and 

thermoelectric generator will allow the use of wider solar spectrum as the photovoltaic utilizes the ultraviolent and visible regions of the solar spectrum while the 

thermoelectric utilizes the infrared region. The addition of a thermoelectric generator directly behind the photovoltaic module will allow the utilization of the PV 

waste heat for additional electricity generation while simultaneously lowering the PV temperature thereby, resulting in an enhanced hybrid system overall 

performance  [16] . The integration of photovoltaic and thermoelectric generator requires special attention because the photovoltaic and the thermoelectric 

generator have an opposite relationship with temperature. While the PV requires low temperature to achieve high efficiency, the TEG’s conversion efficiency 

depends on achieving high temperature difference. Therefore, several researchers have paid attention to the effective integration of photovoltaic-thermoelectric 

(PV-TE). Two main integration approaches have been researched extensively for a PV-TE including direct coupling  [17]  and spectrum splitting  [18] . The 

difference between the two approaches is the absence or presence of a beam splitter.

Kraemer et al.  [19]  proposed a general optimisation technique using spectrum splitting integration approach for a hybrid PV-TE using different solar cells which 

operated at ambient temperature and different solar TEG designs. Results showed the strong influence of the solar cell spectral efficiency and solar TEG 

efficiency on the maximum hybrid system efficiency. Contrarily, van Sark  [20]  introduced the application of direct coupling approach for studying the feasibility 

of PV-TE modules in two different cities. Results obtained from the idealized model employed by the authors suggested that the efficiency of roof integrated PV-



TE modules could be enhanced by 23% when typical ZT value of 1.2 is used. Similarly, Rezania et al. [21] presented a feasibility study for concentrated PV-TE 

system using a thermally coupled model. The economic viability of the hybrid system was evaluated using critical system parameters such as concentration ratio 

and heat transfer coefficient. Results showed that the power generation of the TEG in the hybrid system is significant at high sun concentrations. Furthermore, Ju 

et al. [22] presented a numerical and optimization study for a concentrated spectrum splitting PV-TE system. The thermal and electrical performance of a hybrid 

PV-TE system comprising of GaAs (Gallium arsenide) solar cell and Skutterudite CoSb
3
 (Cobalt antimony) solar TEG were studied and the results showed that 

cooling of the hybrid system is very essential and the TEG contributed about 10% of the overall power output of the hybrid system.

Passive cooling techniques have been applied to improve the performance of hybrid PV-TE systems. Rodrigo et al. [23] presented an integrated electrical, 

thermal and economic model for a concentrated PV-TE system which allowed the thermoelectric generator area to be adjusted. Results showed that the use of 

low thermal resistance heat sinks could enable the achievement of a maximum hybrid system efficiency of 39.2% at 800x concentration factor. A novel 

photovoltaic-thermoelectric system with flat plate micro-channel heat pipe was presented by Li et al. [24,25]. A theoretical study was performed to analyse the 

hybrid system performance under different ambient conditions and results showed that the new PV-TE system provided a higher electrical output and economic 

performance compared to the conventional system. Similarly, Shittu et al. [26] recently presented a comparative three-dimensional study of a concentrated PV-

TE with and without flat plate heat pipe. The influence of key system parameters such as concentration ratio, ambient temperature, wind speed and TEG cold 

side temperature were analysed in detail and the results showed that the use of heat pipe is beneficial for PV-TE performance enhancement. Asides heat pipe, 

phase change material (PCM) has also been incorporated into PV-TE. Recently, Darkwa et al. [27] developed a numerical model to study the performance of a 

hybrid PV-TE with PCM and the model was validated by experimental results. The authors argued that thicker PCM layers are more effective in lowering the PV 

temperature for long periods. Similarly, Cui et al. [28] performed an experimental investigation of a concentrated PV-TE system with PCM. A comparison 

between the PV-TE-PCM and conventional PV system was made, and the results showed that interface thermal contact resistance and poor PCM thermal 

conductivity can cause high temperature variations in the PV cell, PCM and TEG which is not beneficial for the hybrid system performance.

Pounraj et al. [29] presented a detailed experimental study on a Peltier based hybrid photovoltaic/thermal (PV/T) active solar still. The function of the Peltier 

device in the hybrid system was to enhance the production of distilled water during the processes for evaporation and condensation. Results revealed that the 

new hybrid system provided an efficiency that was 30% higher than that of the conventional passive still. Furthermore, the hybrid system efficiency was higher 

than that of the actual solar PV system by 38%. Tijani et al. [30] developed an automatic solar-powered domestic water cooling system which had multi-stage 

Peltier devices. The system was developed as a solution to the lasting problem of domestic hot water especially during summer climatic conditions in regions 

with little or no rain. Real time results showed that the laboratory prototype was an effective solution. Furthermore, Daghigh and Khaledian [31] presented an 

experimental and theoretical study on a solar thermoelectric cooling-heating system which used a photovoltaic collector under weather conditions in Iran. It was 

found that the hybrid system could be used to provide preheating support for domestic hot water and heating systems simultaneously. Similarly, He et al. [32] 

presented an experimental and theoretical study on a thermoelectric cooling and heating system which was driven by a heat pipe photovoltaic/thermal panel and 

operated in winter condition. They found that the PV/T panel electrical efficiency was 16.7% and thermal efficiency of the system was 23.5%.

External load resistance attached to the thermoelectric generator significantly affects the power output of the TEG and the hybrid PV-TE. While it is generally 

agreed that for the thermoelectric generator alone can achieve its maximum power output when the load resistance is equal to the TEG internal resistance [33], 

such agreement is not applicable for the hybrid PV-TE system. In fact, Li et al. [34] argued that the thermoelectric load resistance for maximum power output of 

the TE alone and hybrid PV-TE is different. This finding was also echoed by Yin et al. [35] who found that the TE module achieved its highest power output at a 

different load resistance compared to that of the hybrid concentrated PV-TE system. Furthermore, they argued that the optimal performance of the hybrid CPV-

TE system could be achieved when the TE load resistance is slightly smaller than the optimum resistance for maximum TE power output. However, some studies 

do not agreed with this finding such as Lamba et al. [36] and Lin et al. [37] who both found that the optimum TE load resistance for the hybrid PV-TE is greater 

than the TE internal resistance. Therefore, it is imperative to investigate the optimum load resistance of the hybrid PV-TE and TE only with a detailed numerical 

model with reduced assumptions.

The thermoelectric thermal and electrical contact resistance are two important parameters that significantly influence the performance of the TEG. In fact, 

Ouyang et al. [38] argued that the thermoelectric electrical contact resistance in particular could significantly reduce the power output and efficiency of the TEG. 

In addition, the authors found that an increase in thermal contact resistance leads to an increase in the temperature distribution profile of the TEG. Wang et al. 

[39] experimentally studied the effects of thermal contact resistance on the performance of TEG. They found that the application of thermal grease to the contact 

interface enabled the decrease of the thermal contact resistance of the TEG thereby improving its performance. Furthermore, Kim et al. [40] presented a 

numerical model to analyse the performance of a TEG while considering its thermal and electrical contact resistance. The effect of thermoelectric leg height on 

the TEG performance in presence of thermal and electrical contact resistances were studied and results showed that the effect of the contact resistances become 

very significant when short thermoelectric legs are used, and they reduce the power output of the TEG. Zhang et al. [41] presented a theoretical analysis on the 

effect of contact resistance and thermoelectric geometry on the performance of annular thermoelectric generator (ATEG). They found that the increase in thermal 

and electrical contact resistance decreases the performance of the ATEG. Högblom et al. [42] performed a significant study on the effect of thermal and contact 

resistance on TEG performance using simulations and experiments. Results showed that ignoring the contact resistances in numerical simulations could lead to a 

significant over-prediction of the actual performance of the TEG. Bjørk [43] presented an analytical model to study the influence of thermal contact resistance on 

the efficiency of a TEG and found that the consideration of contact resistance allows for a more accurate prediction of the actual TEG performance.

Photovoltaic-thermoelectric thermal resistance optimization has been proposed as an effective method to improve the PV-TE performance [44]. Yin et al. [45] 

presented a detailed thermal resistance analysis for PV-TE performance optimization. Four types of PV cells were studied, and three cooling methods were 

compared. The impacts of the thermal resistances of the contact surface and TEG were studied using a one-dimensional numerical model. Results showed that 

the hybrid system performance could be improved significantly by increasing the thermal resistance of the thermoelectric generator. Furthermore, in a different 

study, the same authors found that decreasing the contact resistance can increase the temperature difference of the TEG and thermal grease is effective in 



suppressing the effect of thermal contact resistance [46]. Similarly, Zhang et al. [47] argued that the thermal contact resistance has a considerable influence on 

the PV-TE performance therefore, it should be reduced. In a subsequent work [48] the same authors investigated the effect of thermal resistances on the 

performance of highly concentrated PV-TE system. Two different cooling systems were investigated, and results showed that decreasing the thermal resistance 

between the TEG and heat sink should take more precedence than that of the PV and TE. Furthermore, Mahmoudinezhad et al. [49] studied the impact of 

thermal contact resistance on the performance of CPV-TE using a one-dimensional finite volume method. Results showed that the thermal contact resistance has 

a substantial effect on the performance of the hybrid system and should not be ignored.

Numerical simulations play a very significant role in research because they can help save costs and time while offering high accuracy [50,51]. In fact, three-

dimensional studies using finite element method in particular allow for detailed investigation and optimization activities to be carried out with high accuracy 

while also providing a user-friendly interface [52,53]. Mahmoudinezhad et al. [54] carried out an experimental and numerical investigation using COMSOL 

Multiphysics software on the transient behaviour of a concentrated hybrid PV-TE. The authors argued that the TEG enabled the achievement of a stable overall 

hybrid system power output. Similarly, the optimum TE geometry in a hybrid PV-TE was investigated by Li et al. [55] using finite element method and 

COMSOL Multiphysics software. Results showed that the optimum TE geometry in a hybrid system is different from that of a TEG only. In addition, Fallan 

Kohan [56] presented a three-dimensional numerical study of a PV-TE system. The authors argued that effective cooling of the thermoelectric generator is 

essential for performance enhancement of the hybrid system.

The detailed literature review presented above shows that although there is a plethora of one-dimensional studies available on PV-TE, there are very few three-

dimensional studies currently available. In addition, the significance of thermoelectric thermal and electrical contact resistance on the performance of TEG have 

been shown however, they are usually ignored in most numerical simulations for hybrid PV-TE. Furthermore, the inconsistency in optimum TE load resistance 

results available in literature necessities the need for further investigation using a more detailed numerical model with little assumptions. Therefore, for the first 

time, this study presents a detailed three-dimensional numerical investigation of a hybrid concentrated photovoltaic-thermoelectric system with consideration of 

all contact resistances. The significance of this is that a more accurate model is provided which can predict the actual performance of the hybrid systems under 

high solar concentrations. Temperature dependent thermoelectric material properties are utilized and the numerical study is performed using COMSOL 5.4 

Multiphysics software without any simplification or ignorance of Joule heating, Thomson heating and Peltier heating. The effect of thermoelectric thermal and 

electrical contact resistances, photovoltaic-thermoelectric generator contact resistance and thermoelectric generator-heat sink contact resistance on the 

concentrated PV-TE performance are studied in detail. In addition, a parametric study is performed to investigate the optimum thermoelectric leg height, load 

resistance, concentration ratio and convective heat transfer coefficient. The optimum load resistance of TE in hybrid PV-TE and TE only is also investigated. 

Furthermore, a comparison of the contact resistance effects on the concentrated PV-TE performance is presented and the most significant contact resistance is 

analysed. Finally, the overestimation percentage of the concentrated PV-TE efficiency and power output resulting from the neglect/use of specific contact 

resistance is presented to show the significance of these contact resistances. The remainder of this paper is organized as follows:  presents a detailed 

structure description and material selection, numerical model is presented in , results and discussion are shown in  and conclusions from this 

study are presented in .

2 Structure description and material selection

A direct coupling approach is used in this study for the concentrated photovoltaic-thermoelectric system (CPV-TE). As shown in Fig. 1a, the thermoelectric 

generator is directly attached to the back of the photovoltaic (PV) module and a heat sink is coupled to the TEG for cooling. The five layers of the PV including 

glass, ethylene vinyl acetate (EVA) top layer, polycrystalline silicon cell, EVA bottom layer and tedlar polyester tedlar (TPT) are shown in Fig. 1b. The PV layers 

all have unique functions such as glass cover, which provides mechanical strength and rigidity with high transmittance and low reflection. The solar cell is 

encapsulated between the two layers of the EVA and it is used to achieve the photovoltaic effect by which electricity is generated from solar radiation. Thus, the 

EVA provides adhesion between the solar cell, the glass layer and the back TPT layer. Lastly, the TPT provides durability and reliability for the PV module 

under extremely weather conditions. All the layers of the PV are of equal dimensions and in direct contact. Furthermore, the thermoelectric generator (TEG) is 

made up of a ceramic top and bottom layer which provides thermal conductivity, copper electrode which provides electrical connection and semiconductor 

thermoelectric materials (p-type and n-type) as shown in Fig. 1c. An external load resistance is connected across the terminals of the TEG to obtain its power 

output and the thermoelectric legs are of equal dimension. Convective cooling is used in this study therefore; copper heat sink with fins is attached to the cold 

side of the thermoelectric generator. The location of the first thermal contact between the PV back sheet (TPT) and the TEG top surface (ceramic) is shown in 

Fig. 1b. The second thermal contact between the TEG bottom surface (ceramic) and the heat sink is also shown in Fig. 1b. Furthermore, Fig. 1c shows the 

locations of the top side and bottom side thermoelectric thermal and electrical contacts. Therefore, in this study, the effect of four different contact resistances are 

investigated including thermal contact resistance between PV back surface and TEG top surface , thermal contact resistance between TEG bottom surface 

and heat sink , thermoelectric thermal contact resistance  and electrical contact resistance .

Section 2

Section 3 Section 4

Section 5

Fig. 1



2.1 Material selection

This study is carried out using commercial bismuth telluride (Bi
2
Te

3
) TEG device manufactured by Thermonamic Co. (TEP1-1264-3.4). The TEG is  

  in dimension and it consists of 126 pairs of p-type and n-type thermoelectric legs, which are connected, thermally in parallel and electrically in 

series. The geometric parameters of the hybrid system studied are listed in Table 1   [57] . Aluminium oxide is used as the ceramic material and a copper heat sink 

is used. For low-range temperature operations   , bismuth telluride (Bi
2
Te

3
) is the best performing TE material therefore, it is used. Temperature 

dependent Bi
2
Te

3
 materials are employed in this study which are expressed as polynomial functions shown in  Table 2   [57] . The optical properties of the 

polycrystalline PV layers considered in this study are shown in  Table 3  [58]  and the remaining material properties used in this study are shown in  Table 4 .

Schematic diagram of (a) PV-TE three-dimensional view (b) PV-TE front view and (c) TE uni-couple.

Table 1

Hybrid system geometric parameters and properties.

Parameter Base value Parametric value Reference

Photovoltaic  

Area     [26] 

Glass thickness     [58] 

EVA thickness     [58] 

Polycrystalline silicon thickness     [58] 

Tedlar polyester tedlar thickness     [58] 

Thermoelectric generator  

Area     [57] 

Leg area     [57] 

Leg height      [26] 

Upper copper thickness     [57] 

Lower copper thickness     [57] 

Ceramic thickness     [57] 

Heat sink

Area     

Height     

Number of fins      

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though the data is the same. To preview the actual presentation, 

view the Proof.



Other design parameters  

Wind speed     [65] 

Concentration ratio      [47] 

Heat sink heat transfer coefficient        [47] 

       [45] 

       [45] 

       [38] 

       [66] 

Table 2

Polynomial functions for thermoelectric material  [57] .

Property p-type polynomial expression n-type polynomial expression

Seebeck 

coefficient   

    

Thermal 

conductivity  

 

    

Electrical 

resistivity   

    

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though the data is the same. To preview the actual presentation, 

view the Proof.

Table 3

Photovoltaic optical material properties  [58] .

Material Reflectivity Absorptivity Transmissivity

Glass 4.00 × 10
−2

4.00 × 10
−2

9.20 × 10
−1

EVA 2.00 × 10
−2

8.00 × 10
−2

9.00 × 10
−1

Polycrystalline silicon 8.00 × 10
−2

9.00 × 10
−1

2.00 × 10
−2

TPT 8.60 × 10
−1

1.28 × 10
−1

1.20 × 10
−2

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though the data is the same. To preview the actual presentation, 

view the Proof.

Table 4

Other material properties considered  [26,52,57,58] .

Heat capacity,      Density,      Seebeck coefficient,   Electrical conductivity,      Thermal conductivity,   Emissivity

Glass 5 × 10
2

2.45 × 10
3 – – 2.00 0.85

EVA 2.09 × 10
3

9.60 × 10
2 – – 3.11 × 10

−1
 

Silicon 2.09 × 10
3

2.33 × 10
3 – – 1.30 × 10

2
 

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though the data is the same. To preview the actual presentation, 

view the Proof.



2.2 System operation

The hybrid system is thermally and directly coupled therefore; the input heat flux for the TEG is obtained directly from the back sheet of the PV. Solar radiation 

is concentrated on the top surface of the glass using typical Fresnel lens and this radiation is transmitted through the different layers of the PV. The 

polycrystalline silicon layer converts the radiation into electricity while the remaining unused heat is transmitted through the tedlar to the TEG. The heat sink 

attached to the TEG cold side helps to maintain a temperature difference across the TEG, which is necessary for power production. The overall performance of 

the hybrid system is simply a combination of the PV and TEG performance in terms of power output and efficiency.

3 Numerical model description

The photovoltaic, thermoelectric generator and hybrid system models used in this numerical study are described below. The PV and TEG are firstly modelled 

separately before they are integrated to form the hybrid PV-TE system.

3.1 Thermoelectric generator model

The thermoelectric generator operation is governing by the following equations which are solved using finite element method  [59] :

where    is specific heat capacity,   is heat flux vector,    is the density,    is temperature and    is the heat generation rate per unit volume.

Electric charge continuity equation is expressed as  [60] ,

where    is the electric flux density vector and    is the electric current density vector.

The following thermoelectric constitutive equations are used to couple the Eqs.  (1) and (2)   [61] ,

where    is the thermal conductivity matrix,    is the Seebeck coefficient matrix, and    is the electrical conductivity matrix.

where    is the electric scalar potential and    is the electric field intensity vector.

The combination of the above equations results in the coupled thermoelectric equations which are expressed as,

TPT 1.25 × 10
3

1.20 × 10
3 – – 1.50 × 10

−1
0.92

Ceramic 900 3900 – – 36 0.9

Bi2Te3 154 7700     Table 2     Table 2     Table 2  

Copper 385 8960 – 58,100,000 238 0.07

(1)

(2)

(3)

(4)

(5)

(6)

(7)



where  represents the dielectric permittivity matrix.

Rewriting equations (6) and (7) results in [62],

The thermoelectric generator electrical performance (power output and efficiency) are derived from the equations below  [13] :

where    is the Seebeck coefficient,    is the open circuit voltage, and    is the temperature difference between the hot and cold sides of the TEG.

where    is the TEG internal resistance,    is the output load voltage, and    is the TEG current which is expressed as,

The thermoelectric generator power output is expressed as,

The efficiency of the thermoelectric generator is given as,

where    is the input power at the top surface of the TEG and    is the thermoelectric generator efficiency.

3.2 Photovoltaic model

The governing equations for the photovoltaic layers are given as  [56] :

where  ,    and    are the specific heat capacity, thermal conductivity and density of each layer.    is the temperature,    is the volumetric solar energy 

absorption and    is the power generation per volume and this value is considered zero for all layers of the PV excluding the polycrystalline silicon cell layer.

The volumetric solar energy absorption in each layer is modelled as an internal heat generation and it is expressed as,

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)



where   ,   , and    are the absorptivity, volume and reflectivity of the ith layer respectively.    represents the volumetric solar energy absorption at each layer,  

  is solar concentration ratio,    represents the area of the ith layer and    is the solar radiation intensity at each layer. The reference irradiance    used 

throughout this study is   .

In the polycrystalline silicon cell layer, power generation is considered as an internal heat sink and is given as  [63] :

where    is the temperature coefficient,    is the reference efficiency,    is the polycrystalline silicon layer average temperature,    is the reference 

temperature of 298.15 K,    is the volumetric solar energy absorption at the silicon layer and    is the PV efficiency.

The power generation obtained from Eq.  (19)  is determined by the temperature distribution in each PV layer therefore, finite element method is used to solve the 

coupled thermal and electrical Eqs.  (15)–(19)  simultaneously.

3.3 Hybrid photovoltaic-thermoelectric model

The overall hybrid system power output is a combination of the photovoltaic and thermoelectric individual power outputs expressed as,

Likewise, combining the photovoltaic and thermoelectric generator efficiencies provides the overall hybrid system efficiency expressed as,

3.4 Boundary conditions

The boundary conditions considered in the thermoelectric generator model are listed below.

1. Steady state conditions are assumed throughout this study.

2. Adiabatic conditions are assumed on surfaces of the thermoelectric generator.

3. Fins are attached to completely cover the cold surface of the TEG and an equivalent convective heat transfer coefficient is used to model the heat 

transfer from the TEG to ambient.

4. Both the n-type and p-type leg coppers are connected to the different ends of an external load resistance.

The boundary conditions for photovoltaic model are as follows.

1. Convective and radiative heat loss are considered on the glass surface of the PV.

2. The initial temperature of the system is equal to the ambient temperature.

3. PV reference efficiency is 17% at 298.15 K reference temperature and temperature coefficient of 0.0045 1/K  [58] .

4. For radiative heat loss calculation, the glass surface of the PV is taken to view the sky.

At the glass surface of the PV, the radiative heat loss is calculated with the sky temperature expressed as  [58] :

where    is temperature of sky and    is temperature of ambient.

Convective heat transfer coefficient for calculating the heat loss due to convection from the top surface of the PV is given in terms of the wind speed as  [64] :

(17)

(18)

(19)

(20)

(21)

(22)



where    is the convective heat transfer coefficient    is the wind speed (m/s).

Thermal contact resistance can be defined as a ratio between the interface temperature drop and the interface average heat flow expressed as  [49] ,

Interface heat transfer equation, which is given below, is used to evaluate the effect of thermal contact resistance between the thermoelectric copper-ceramic 

upper and lower interface, photovoltaic-thermoelectric generator interface and thermoelectric generator-heat sink interface.

where  is the thermal contact conductance which is simply the inverse of the thermal contact resistance and  is the effective temperature difference at 

the interface.

3.5 Computation procedure

The thermal and electrical contacts considered in this study are modelled as boundary conditions. The thermoelectric contact resistances are assumed the same 

on both sides of the p-type and n-type semiconductor materials and all the contact resistances values are assumed temperature independent. The magnitude of 

thermal and electrical contact resistance is considered over a wide range shown in Table 1, which have been obtained from referenced literatures. Furthermore, 

the thermal contact is implemented using COMSOL 5.4 Multiphysics thermal contact boundary feature under the heat transfer in solids interface. Equivalent thin 

resistive layer contact model is used, and the thermal contact resistance is provided. Furthermore, the surface emissivity of the upper and lower interface layers is 

provided as shown in Table 4. The electrical contact is implemented using the electrical contact boundary feature under the electric current interface. The 

constriction conductance is provided which is the inverse of the electrical contact resistance (  and it is solved using the equation from COMSOL 

Multiphysics shown below.

where    is the electrical contact conductance,    is the interface voltage difference,    is normal vector and    is the current density.

3.6 Model validation

Two kinds of verifications are used to test the accuracy of the model. Firstly, a mesh convergence test is carried out to ensure the results are independent of the 

mesh size by using the in-built COMSOL Multiphysics mesh settings. Six different mesh element size are tested, and the results are shown in  Table 5 . The 

average PV cell temperature and the power output of the hybrid system are obtained and as can be seen in  Table 5 , they converge when the Normal mesh is used. 

Therefore, the Fine mesh is used for increased accuracy. Furthermore, the photovoltaic and thermoelectric generator models used in this study are validated with 

previous published works found in literature. The simulations conditions are reset to those in the referenced literatures and results are compared to test the 

accuracy of the models. The photovoltaic model is validated using a similar finite element model presented in  [58]  and the results are shown in  Fig. 2 a. In 

addition, the thermoelectric generator model is validated using a detailed TEG model which accounted for the thermoelectric thermal and electrical contact 

resistances presented in  [57]  and the results are shown in  Fig. 2 b.

(23)

(24)

(25)

(26)

Table 5

Mesh convergence test.

Number of domain elements Element size Average PV cell temperature (K) Hybrid power output (W)

27,177 Extremely coarse 397.66 1.4181

41,137 Extra coarse 397.71 1.4174

70,093 Coarser 397.74 1.4171

132,759 Coarse 397.76 1.4169

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though the data is the same. To preview the actual presentation, 

view the Proof.



Fig. 2 a shows that the photovoltaic model used in this study agrees very well with the previous model developed in  [58] . In addition,  Fig. 2 b shows that the 

thermoelectric generator model is also in good agreement with previous model developed in  [57] . In addition, it can be seen from  Fig. 2 b that the thermal and 

electrical contact models used in this model are also accurate as the values obtained considering these contact resistances are in agreement with those reported in 

the referenced literature. Therefore, it is acceptable to say that the models used in this present study are accurate and justifiable.

4 Results and discussion

A detailed analysis of the results from this study is presented in this section and the results obtained are shown. Firstly, the selection of number of heat sink fins 

is presented, followed by the contact resistance study. Furthermore, a parametric optimization study is presented for the essential parameters influencing the 

performance of the hybrid system and finally a comparison of the contact resistance effects on the hybrid system performance is presented.

4.1 Heat sink fins selection

The number of fins present in a heat sink affects its heat removal capacity therefore, different number of fins are analysed to find the optimum value. As shown 

in  Fig. 3 a, the temperature of the PV cell, TE hot side and cold side all decrease as the number of fins increased. Consequently, the efficiency of the hybrid 

system, PV and TE all increase as shown in  Fig. 3 b. However, it can be seen clearly that the decrease in temperature and efficiency is no longer significant after 

30 fins. Therefore, the number of fins used in the heat sink throughout this study is 30. The base values shown in  Table 1  are used to investigate the optimum 

number of heat sink fins. In addition,  Fig. 3 b shows that the PV contributes the larger percentage of the overall efficiency of the hybrid system. The small 

difference between the TE hot and cold side temperature shown in  Fig. 3 a is the reason for its low efficiency as the performance of the TEG is highly dependent 

on the temperature difference across its surfaces.

310,815 Normal 397.8 1.4166

766,093 Fine 397.8 1.4166

Fig. 2

(a) PV model validation with  [58]  and (b) TEG model validation with  [57] .

Fig. 3



4.2 Contact resistance study

Contact resistance between the interfaces of the hybrid system can significantly affect its performance therefore their effects are studied in this section. The 

effects of four different contact resistances are studied including, thermoelectric thermal contact resistance   , thermoelectric electrical contact resistance   

, photovoltaic-thermoelectric interface thermal contact resistance   and thermoelectric generator-heat sink interface thermal contact resistance   .

4.2.1 Effect of thermoelectric thermal and electrical contact resistance

The effect of the thermoelectric thermal contact resistance on the performance of the hybrid system is shown in  Fig. 4 . The base values are used for this study 

except the TE thermal contact resistance which is varied from 1E-6 to 1E-3   as reported in  [38] . The TE thermal contact resistance is applied at the 

interface between the top and bottom electrical conductor and the top and bottom ceramic plates. It can be seen from  Fig. 4 a that the TE thermal contact affects 

the system performance as the efficiency and power output of the PV-TE, PV and TE all decrease when the contact resistance increased. In addition, an almost 

steady trend is noticed in  Fig. 4 a for low values of contact resistance however, as the value increases, a sharp decrease is noticeable therefore; the thermoelectric 

thermal contact resistance should be kept minimal. Thermal contact resistance results from surface roughness at the related interfaces and this leads to an 

increase in temperature as shown in  Fig. 4 b. Similar to the trend in  Fig. 4 a, the effect of the thermal contact is not that significant for low values however, once 

the TE thermal contact resistance attains a high value such as 1E-4    and upward, its drastic effect on the hybrid system performance becomes very clear. 

This is in agreement with the reported findings in  [38]. In addition,  Fig. 4  shows that there is an acceptable range (1E-6 – 1E-4  ) of TE thermal contact 

resistance that have little influence on the hybrid system performance however, beyond this range, the concentrated PV-TE efficiency and power output decrease 

significantly.

Variation of heat sink fins with (a) temperature and (b) efficiency.

Fig. 4



Fig. 5  shows the effect of thermoelectric electrical contact resistance on concentrated PV-TE performance. The electrical contact resistance is varied from 1E-9 

to 1E-6    which is an acceptable range obtained from  [38]  while other parameters are kept at base values shown in  Table 1 . The TE electrical contact is 

applied at the interface between the p-type, n-type legs and the top and bottom electrical conductor. It can be seen from  Fig. 5 a that the efficiency and power 

output of the hybrid system decrease as the electrical contact resistance increased. However, the decrease in performance becomes insignificant from 1E-7   . 

The reason for this is shown in  Fig. 5 b where it can be seen that the PV cell temperature increase and TE temperature difference reaches a plateau from 1E-7  

  consequently, the performance of the hybrid system is no longer severely affected. The effect of contact resistance is more significant for short 

thermoelectric legs, which are used in this study. Furthermore, large values of electrical contact resistance allow a lower current density therefore, increase in 

electrical contact resistance leads to decrease in current flow and a subsequent decrease in power output and efficiency.

4.2.2 Effect of coupling interface thermal contact resistance

Relationship between TE thermal contact resistance and (a) efficiency, power output and (b) temperature.

Fig. 5

Effect of TE electrical contact resistance on (a) efficiency, power output and (b) temperature.



The effect of thermal contact resistance between the PV lower layer and the TEG top surface on the performance of the hybrid system is shown in Fig. 6. Base 

values of concentration ratio 30, convective heat transfer coefficient 500 and others shown in Table 1 are used while the thermal contact resistance 

between the PV and TEG  is varied from . As shown in Fig. 6a, the efficiency of the PV-TE, PV and TE all decrease as the thermal 

contact resistance increased. This is expected as the increase in thermal contact resistance leads to a decrease in heat transfer from the PV to the TEG and a 

subsequent increase in temperature as shown in Fig. 6b. The TEG heat removal capability from the PV is decreased as the thermal contact resistance increases. 

The efficiency of the hybrid system decreases by about 12.6% when  increases from . Therefore, it is imperative to reduce this contact 

resistance as low as possible in a hybrid system.

Fig. 7  shows the variation of the hybrid system performance with the thermal contact resistance between the TEG and heat sink   . A similar trend to the 

one observed in  Fig. 6  is shown in  Fig. 7  as the increase in thermal contact resistance between the TEG and heat sink reduces the cooling effectiveness of the 

heat sink. Since the performance of the TEG and the hybrid system is greatly affected by the temperature distribution in the system,  Fig. 7 a shows that the 

efficiency of the hybrid system will reduce as the thermal contact is increased. This reduction in efficiency is caused by the increase in temperature shown in  Fig. 

7 b. The efficiency of the hybrid system decreases by about 13.23% when    increases from   .  Figs. 6 and 7  show that the effect of the 

thermal contact resistances (   and   ) on the efficiency and power output of the hybrid system is not that significant at values less than    

therefore, there is no significant advantage to reducing the thermal contact resistance to   . This is in agreement with the reported findings in  [47] .

Fig. 6

Relationship between PV-TE interface thermal contact resistance and (a) efficiency and (b) temperature.

Fig. 7



A comparison between the effects of    and    on the power output of the hybrid system and TE temperature difference is shown in  Fig. 8 . It can be 

seen clearly that the thermal contact resistance between the TEG and heat sink    has a greater effect on the system performance compared to that 

between the PV and TE. Therefore, as shown in  Fig. 8 , decreasing    should take precedence over    as it is more important.

4.2.3 Three-dimensional temperature and voltage distributions

The three-dimensional nature of this study allows valuable temperature and voltage distribution information to be obtained to better understand the performance 

of the hybrid system. The temperature and voltage distributions in the hybrid system using the base values are shown in  Fig. 9 a and b respectively. As expected,  

Fig. 9 a shows that the PV has the highest temperature value since it is directly receiving the concentrated solar radiation while the TEG cold side has the lowest 

temperature value because of the convective cooling via heat sink.  Fig. 9 b shows the voltage distribution through the total 252 legs of the thermoelectric 

generator.

Variation of TEG-heat sink thermal contact resistance with (a) efficiency and (b) temperature.

Fig. 8

Comparison of PV-TE interface and TEG-heat sink thermal contact resistance effect.

Fig. 9



The distributions of temperature and voltage at the thermal and electrical contact interfaces in the thermoelectric generator are shown in  Fig. 10 . As shown in  

Fig. 10 a and b, the temperature of the interface layers increases significantly when the TE thermal contact resistance increases from 1E-6 to 1E-3   . This 

is the reason for the decrease in hybrid system performance observed in  Fig. 9 a. Furthermore,  Fig. 10 c and d show that the voltage at the electrical contact 

interface of the TEG decreases as the electrical contact resistance increases from 1E-9 to 1E-6    consequently, the efficiency and power output of the hybrid 

system decrease as shown in  Fig. 5 a. The temperature distributions at the PV-TE and TEG-heat sink contact interfaces are shown in  Fig. 11 a and b respectively 

for the base values considered. The high values shown in  Fig. 11 a are because of the contact location, which is close to the PV where the most heat is generated 

while the lower values shown in Fig. 11 b are because the contact location is at the TEG cold side.

4.3 Parametric optimization study

(a) Temperature and (b) voltage distribution for base values.

Fig. 10

(a, b) Temperature distribution for TE thermal contact resistance interface and (c, d) voltage distribution for TE electrical contact resistance interface.

Fig. 11

Temperature distribution for (a) PV-TE contact interface and (b) TEG-heat sink contact interface.



Parameters such as thermoelectric leg height, external load resistance, concentration ratio and convective heat transfer coefficient significantly affect the 

performance of the concentrated PV-TE. Therefore, a parametric study is carried out to determine the optimum value for each of these parameters. This 

parametric study is carried out using the parametric values shown in Table 1 for the investigated parameters while the remaining parameters are kept at their base 

value.

4.3.1 Effect of leg height and load resistance

Fig. 12 shows the effect of thermoelectric leg height on the hybrid system performance. As can be seen in Fig. 12a, short thermoelectric legs provide the highest 

power output and efficiency for the hybrid system however; this is not the case for the TE in the PV-TE. This is because, as the leg height increases, the 

temperature of the PV and TE hot side increases as shown in Fig. 12b therefore, the power output and efficiency of the TE subsystem will increase. Since the PV 

greatly determines the performance of the hybrid system, short thermoelectric legs are necessary to improve the heat transfer in the legs and reduce the 

temperature of the PV. Fig. 12a shows that the hybrid system efficiency decreases by about 69% when the thermoelectric leg height increases from 1 mm to 

8 mm.

Fig. 13  shows the effect of load resistance on performance of the hybrid PV-TE and a standalone TEG. This comparison is made to investigate the optimum 

thermoelectric load resistance for maximum power output and efficiency in a hybrid PV-TE and TEG only. It can be seen from  Fig. 13 a that the optimum TE 

load resistance is actually different for PV-TE and TE only. In fact, the maximum power output and efficiency of the hybrid system is obtained when the load 

resistance is    while that of the TE only is obtained when the load resistance is   . Therefore, it can be concluded that the optimum TE load resistance in a 

hybrid PV-TE is lower than the TE internal resistance at which point the TE only attains its highest performance and this finding is in agreement with  [35] . The 

temperature distribution in the hybrid system as load resistance is varied is shown in  Fig. 13 b. It can be seen from  Fig. 13 b that the increase in external load 

resistance leads to an increase in the PV cell temperature and thermoelectric temperature difference. The temperature increase experienced is because heat 

transfer in a thermoelectric generator depends on both heat conduction and Peltier effect of the thermoelectric legs. Consequently, as the external load resistance 

attached to the TEG is increased, the thermoelectric current is decreased thus; the quantity of thermal/heat energy transferred from the thermoelectric hot side to 

its cold side based on Peltier effect is reduced.

Fig. 12

Variation of thermoelectric leg height with (a) efficiency, power output and (b) temperature.

Fig. 13



4.3.2 Effect of concentration ratio and convective cooling

Increase in concentration ratio implies an increase in solar radiation intensity on the surface of the PV.  Fig. 14  shows the effect concentration ratio has on the 

efficiency, power output and temperature distribution in the hybrid system. As expected,  Fig. 14 a shows that an increase in concentration ratio leads to a 

significant decrease in PV-TE and PV efficiency. However, increase in concentration ratio leads to an increase in TE efficiency and power output. This is 

because, when the concentration ratio increases, the temperature of the PV rises significant as shown in  Fig. 14 b and this leads to an increase in the hot side 

temperature of the TEG resulting in a larger TE temperature difference and higher power output. Since all other parameters are kept constant at their base values 

except the concentration ratio, it can be seen from  Fig. 14 a that there exists an optimum concentration ratio for the hybrid PV-TE and PV at which maximum 

power output can be obtained. Increase in concentration ratio above this optimum value leads to a decrease in hybrid system performance because the TEG is no 

longer able to cool the PV and now acts as an additional thermal resistance.

Effect of load resistance on (a) efficiency, power output and (b) temperature.

Fig. 14

Effect of concentration ratio on (a) efficiency, power output and (b) temperature.



Fig. 15 shows the significance of cooling system in a hybrid PV-TE. It can be seen from Fig. 15a that the hybrid system efficiency increases by about 20.6% 

when the convective heat transfer coefficient increases from . However, it is important to note that the efficiency enhancement achieved by the 

increase in heat transfer coefficient becomes insignificant at values above . This is because, the concentration ratio and other parameters are kept 

constant while varying only the heat transfer coefficient therefore, as shown in Fig. 15b, the reduction in PV cell temperature and TE hot side temperature 

become insignificant above . Therefore, it can be concluded from Figs. 14 and 15 that the selection of appropriate values for concentration ratio and 

convective heat transfer coefficient is paramount for optimum hybrid system performance.

4.4 Comparison of contact resistance effects

This section is very important as is provides valuable insights into the significance of each contact resistance considered in this study. Twelve different cases are 

discussed in this section corresponding to different contact resistance scenarios as shown in  Table 6 . Since there are four contact resistances  

  considered in this study, 12 combinations are possible which are explained in the sections below. When a specific contact resistance is not 

considered, that means perfect contact condition is assumed.

Fig. 15

Variation of TEG cold side heat transfer coefficient with (a) efficiency and (b) temperature.

Table 6

Contact resistance case description.

Case number Description

1 No contact resistance is considered.

2 Only TE thermal contact resistance is ignored.

3 Only TE electrical contact resistance is ignored.

4 Only PV-TE interface thermal contact resistance is ignored.

5 Only TEG-heat sink interface thermal contact resistance is ignored

6 TE thermal and electrical contact resistances are ignored.

7 PV-TE and TEG-heat sink thermal contact resistances are ignored.

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though the data is the same. To preview the actual presentation, 

view the Proof.



4.4.1 Different contact resistance case

Firstly, the variation of hybrid system efficiency with different contact resistance case number is shown in  Fig. 16 a. It can be since clearly that when no contact 

resistance is considered (Case 1), the highest the hybrid system efficiency is obtained. This is expected as the presence of contact resistance of any kind reduces 

the efficiency of the hybrid system. In addition, it is obvious from  Fig. 16 a that the TE electrical contact resistance is more significant than the TE thermal 

contact resistance because the magnitude of efficiency decreases when each one is ignored is different. Case 2 implies that all other contact resistances are 

considered except the TE thermal contact resistance and since the efficiency is still as low as the efficiency for Case 12 where all contact resistance are 

considered, it can be concluded that the effect of the TE thermal contact resistance is not that significant. However, it is very important to note that this 

comparison is carried out using the base values. Furthermore,  Fig. 16 a shows that the TEG-heat sink interface thermal contact resistance is more important than 

the PV-TE interface resistance. In fact, it is the most important contact resistance that needs to be decreased. The same trend observed in hybrid system can be 

seen in the PV as shown in  Fig. 16 b. In addition, it can be seen that increase in convective heat transfer coefficient generally improves the efficiency of the 

system.  Fig. 16 c better explains the significance of thermoelectric thermal and electrical contact resistance. As can be seen from  Fig. 16 c, the thermoelectric 

electrical contact resistance is the most important contact resistance in the TEG. The trends shown in  Fig. 16 a and b are because of the temperature distribution 

in the system, which is shown in  Fig. 16 d. It can be seen from  Fig. 16 d that the increase in heat sink heat transfer coefficient leads to a significant decrease in the 

PV cell temperature. Consequently, effective cooling of the thermoelectric is essential for adequate thermal management of photovoltaic. Furthermore, it is clear 

that from  Fig. 16 d that the PV cell temperature in Case 1 is the lowest compared to all the other cases because the presence of contact resistance leads to an 

increase in temperature. This is the reason for the highest efficiency obtained for Case 1 shown in  Fig. 16 a.

8 Only TE thermal contact resistance is considered.

9 Only TE electrical contact resistance is considered.

10 Only PV-TE interface thermal contact resistance is considered.

11 Only TEG-heat sink thermal contact resistance is considered.

12 All contact resistances are considered.

Fig. 16



4.4.2 Overestimation calculation

To quantify the effect of the contact resistances on the hybrid system performance, an overestimation calculation is made using the base values. Overestimation 

simply means the percentage increase in efficiency and power output resulting from ignoring one or more contact resistance. The percentage of overestimation is 

calculated using the equation below.

Since contact resistances are essential parameters that need to be considered in any numerical study, the values obtained when all the contact resistances are 

considered (Case 12) is taken as the actual correct value. Therefore, the overestimation percentage is calculated only for Case 1 to Case 11 using the equation 

Effect of different contact resistance case with (a) PV-TE efficiency (b) PV efficiency (c) TE efficiency and (d) temperature.

(27)



above and the result is shown in Fig. 17.

It can be seen from  Fig. 17 a that ignoring all contact resistances (Case 1) leads to an overestimation of the PV-TE power output and efficiency by about 7.6% 

and 7.4% respectively. In addition, it can be seen that ignoring both the PV-TE interface and TEG-heat sink contact resistance causes an overestimation of PV-

TE power output and efficiency by 5.5% and 5.4% respectively. Furthermore,  Fig. 17 b shows that the PV efficiency and power output are mainly affected by the 

PV-TE interface and TEG-heat sink thermal contact resistances. While  Fig. 17 c shows that the thermoelectric thermal and electrical contact resistances are the 

main resistances affecting the performance of the TEG. It is important to note that the overestimation calculation is specially based on the base values therefore, 

the use of parametric values listed in  Table 1  will definitely alter the results and higher overestimation percentage could be obtained.

5 Conclusion

A comprehensive three-dimensional investigation on the effects of contact resistances on hybrid concentrated photovoltaic-thermoelectric performance has been 

carried out in this study. Furthermore, a parametric optimization study has been presented to enable better understanding of the effects of key parameters like 

thermoelectric leg height, load resistance, concentration ratio and heat sink convective heat transfer coefficient on the hybrid system performance. In addition, an 

exhaustive literature review was provided to enable quick understanding of the current works already performed in this area and to justify the importance of this 

present study. COMSOL 5.4 Multiphysics software was used to perform the numerical simulations and temperature dependent material properties were 

considered. In addition, four different contact resistances were studied and their effects on hybrid system perform were analysed in detailed. The main 

conclusions from this study are listed below.

1. Ignoring all contact resistances in the hybrid system leads to an overestimation of hybrid concentrated photovoltaic-thermoelectric power output 

and efficiency by about 7.6% and 7.4% respectively.

2. The optimum thermoelectric external load resistance in a hybrid concentrated photovoltaic-thermoelectric is different from that of the 

Fig. 17

Overestimation calculation for (a) PV-TE (b) PV and (c) TE.



thermoelectric only.

3. The thermal contact resistance between the thermoelectric generator and heat sink, and that between the photovoltaic-thermoelectric interface are 

the most important contact resistances in the hybrid system that need to be reduced.

4. Hybrid system efficiency decreases by about 69% when thermoelectric leg height increases from 1 mm to 8 mm therefore, shorter legs are 

essential.

5. Efficient cooling of the thermoelectric generator leads to an efficiency increase of about 20.6% in the hybrid system when convective heat transfer 

coefficient increases from .

6. The hybrid system efficiency decreased by 12.6% and 13.23% when the photovoltaic-thermoelectric interface thermal contact resistance and 

thermoelectric generator-heat sink thermal contact resistance increased from  respectively.

7. Increase in concentration ratio without subsequent increase in thermoelectric generator cooling capacity will lead to a sharp reduction in hybrid 

system power output after an initial performance enhancement.
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