
Machine Vision and Applications            (2020) 31:2 
https://doi.org/10.1007/s00138-019-01051-7

ORIG INAL PAPER

Towards infield, live plant phenotyping using a reduced-parameter
CNN

John Atanbori1 · Andrew P. French1,2 · Tony P. Pridmore1

Received: 2 October 2018 / Revised: 11 April 2019 / Accepted: 6 November 2019
© The Author(s) 2019

Abstract
There is an increase in consumption of agricultural produce as a result of the rapidly growing human population, particularly
in developing nations. This has triggered high-quality plant phenotyping research to help with the breeding of high-yielding
plants that can adapt to our continuously changing climate. Novel, low-cost, fully automated plant phenotyping systems,
capable of infield deployment, are required to help identify quantitative plant phenotypes. The identification of quantitative
plant phenotypes is a key challenge which relies heavily on the precise segmentation of plant images. Recently, the plant
phenotyping community has started to use very deep convolutional neural networks (CNNs) to help tackle this fundamental
problem. However, these very deep CNNs rely on somemillions of model parameters and generate very large weight matrices,
thus making them difficult to deploy infield on low-cost, resource-limited devices. We explore how to compress existing very
deep CNNs for plant image segmentation, thus making them easily deployable infield and on mobile devices. In particular,
we focus on applying these models to the pixel-wise segmentation of plants into multiple classes including background,
a challenging problem in the plant phenotyping community. We combined two approaches (separable convolutions and
SVD) to reduce model parameter numbers and weight matrices of these very deep CNN-based models. Using our combined
method (separable convolution and SVD) reduced the weight matrix by up to 95% without affecting pixel-wise accuracy.
These methods have been evaluated on two public plant datasets and one non-plant dataset to illustrate generality. We have
successfully tested our models on a mobile device.

Keywords Pixel-wise segmentation for plant phenotyping · Lightweight deep convolutional neural networks ·
Separable convolutions · Singular value decomposition

1 Introduction

The world population will reach 9.1 billion by 2050, about
34% higher than it is today. The UN Food and Agricul-
ture Organisation (FAO) has estimated that in order to feed
this larger and more urban population, food production must
increase by 70% [5]. Plant phenotyping will play an impor-
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tant role in achieving this target. Plant phenotyping refers to
a quantitative description of the plant’s anatomical, physio-
logical and biochemical properties [34]. Traditionally, plant
phenotyping is carried out by experts and involves manually
measuring and recording plant traits, such as plant size and
shape, number of leaves and flowers. High-quality, precise
phenotyping of various plant traits can help improve yield
under different climatic conditions (Fig. 1).

However, recently, image-based plant phenotyping has
gained more attention due to its inherent merits in handling
large-scale phenotyping: it is less tedious and error prone. In
particular, image-based phenotyping techniques have been
used in plant segmentation [1,3] and leaf counting [1,3,11]
and to automatically identify root and leaf tips [24]. Most
of these approaches rely on visual plant trait identification,
before measuring quantities that provide the data to discover
high-yielding crops under different climatic conditions.
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Fig. 1 Flower and leaf images in the first row, their ground truthmask in
the second row and the predicted CNN mask in the last row. The plants
and flowers classes are predictedwith a different colour indicating class.
Images sources: The plant phenotyping and Oxford Flower datasets

Today, deep convolutional neural networks have been
used to phenotype plants in an attempt to gain much better
accuracy [1,21,22,25,28]. In the computer vision commu-
nity, these models have been shown to increase accuracy
but at the expense of very many parameters (in millions)
and expensive computations in the convolution layers (more
multiplications and additions) [7,17,19,39,42]. Due to the
number of model parameters, they are sometimes inefficient
on low-cost, resource-limited devices.

Jin et al. [15], Wang et al. [35] and Iandola et al. [14] have
attempted to reduce the computation time of CNNs, but the
methods used by themwere not applied to plant phenotyping.
Theobjective of this research is to demonstrate howverydeep
CNNmodel parameters can drastically be reduced in number
with very little reduction in pixel accuracy. In this paper we
present the following new contributions. We have:

1. Formed ‘tiny’models (modelswith the number of param-
eters drastically reduced) for pixel-wise segmentation
by reducing the parameters of baseline very deep con-
volutional neural networks using separable convolution,
without compromising pixel accuracy.

2. Demonstrated that the accuracy of these tiny models was
as good as their baseline counterparts (un-compressed)
on plant phenotyping datasets and a non-plant dataset.

3. Formed very tiny models (smaller weight matrix than
the tiny models) using SVD and demonstrated on plant
phenotyping datasets and a non-plant dataset that their
pixel accuracy remains practically unaffected.

4. Evaluated the size of our ‘tiny’ models’ parameters with
existing popular CNNs, demonstrating their potential for
infield deployment.

The remainder of this paper is structured as follows.
In Sect. 2, we review existing work that reduces model
parameters and/or the weight matrix for devices with lim-

ited resources. In Sect. 3, we introduce the two public plant
phenotyping datasets and the non-plant dataset used in our
experiments and proceed in Sect. 4 to describe our meth-
ods used in compressing the baseline CNNs designed for
pixel-wise segmentation. We describe our experimental set-
up including a benchmark in Sect. 5. Then we proceed to
present and discuss our results in Sect. 6 and conclude in
Sect. 7

2 Related work

Traditionally, plant phenotyping approaches using computer
vision have looked at plant density estimation from RGB
images [16,18,30] and counting leaves using a simple arti-
ficial neural network (ANN) or a support vector machine
(SVM). However, these approaches are sometimes not fully
automated and require some feature selection techniques to
be applied prior to training classifiers. Minervini et al. [21]
extracted dense SIFT descriptors from the green colour chan-
nel and quantised the SIFT space using k-means clustering
to create a codebook for segmentation of plants. In a colla-
tion study [28], segmenting and counting leaves have also
used traditional computer vision methods. The best results
from these were based on super-pixel-based methods, water-
sheds and Chamfer matching. The results of these methods
depend on the user fine-tuning parameters of the system and
therefore may make them difficult for infield use. The super-
pixel-based method needs the fine-tuning of five parameters,
including those of canny edge detector in order to achieve
good results. The watershed approach requires the use of
morphological operations after plant segmentation to remove
noise in the segmentation. This not only adds a step to the
process but also requires additional parameter tuning step by
the user.

More recent computer vision approaches to plant pheno-
typing are based on deep learning methods; these have been
shown to perform better than the traditional methods [1].
Aich and Stavness [1] adopted the SegNet architecture and
achieved better results on the dataset used in [21,28]. The
methods used by Aich and Stavness [1] have been used suc-
cessfully by Aich et al. [3] in estimating phenotypic traits
from wheat images and also in conjunction with global sum
pooling [2] for counting wheat spikes accurately. Another
plant phenotyping approach that uses deep learning achieved
state-of-the-art automatic identification of ear base, leaf base,
root tips, ear tips and leaf tips inwheat [24]. These deep learn-
ing approaches for plant phenotyping have beenmotivated by
the recent successes in applying them to other fields for both
segmenting and classification, some of which are considered
in the remaining paragraphs of this section.

Long et al. [19] have popularised CNNs for dense pre-
dictions. The key features of their work are the 1 × 1

123



Towards infield, live plant phenotyping using a reduced-parameter CNN Page 3 of 14     2 

convolution with the channel dimension equal to the num-
ber of classes being predicted, and a deconvolution layer
used for bilinear up-sampling of the coarse outputs to a
dense pixel output for prediction. Badrinarayanan et al. [7],
however, showed that using the max-pooling indices to
up-sample the coarse outputs can increase the pixel accu-
racy of the model. While Badrinarayanan et al. reported
some improvements in pixel accuracies over the methods
used by Long et al., their decoder had more parameters
and was therefore less memory efficient. There have been
other semantic segmentation networks [17,40,42], which
achieved better pixel accuracies on similar datasets. How-
ever, these networks are very deep and thus have more
parameters and use up more memory. The shortcomings
of most convolutional neural networks lie within the con-
volutional layers and the fully connected layers. In the
convolutional layer, the multiply and add operations are
time-consuming and the fully connected layers also gen-
erate many parameters. It has been demonstrated by Yu
et al. [38] that even though recognition accuracies of
deep neural networks improve as the depth of a network
increases, a large proportion of the parameters generated
by these models contribute little to recognition and pixel
accuracy.

Various attempts to reduce network size have focused on
thinning the convolutional layer, reducing parameters in the
fully connected layer of networks and compressing weight
matrices generated by network models. While the first two
focus on speeding up the training of models, the last focuses
on testing. Reducing the number of parameters in a network
can be achieved using a 1× 1 convolution after 3× 3 convo-
lutions as in Inception [33] and ShuffleNet [41]. Depthwise
separable convolutions have also been used in MobileNet
[13] and Xception [8] to achieve this. ShuffleNet [41], how-
ever, used a combination of the two approaches. Since the
vast majority of weight parameters reside in the fully con-
nected layers, truncated SVD has been used in [9,10,31,37]
to reduce weight matrices in these layers. Denton et al. [9]
and Girshick [10] demonstrated that using SVD speed up
prediction while keeping accuracy within 1% of the original
model.

The traditional approaches to plant phenotyping are usu-
ally semi-automated and thus not suitable for infield applica-
tion. Recent developments in image-based plant phenotyping
are based on state-of-the-art CNN methods. Even though
these methods can be fully automated, they require signif-
icant storage and memory, thus making them unsuitable
for deployment on low-cost devices (especially those with
limited memory and processing power). Some current devel-
opments in CNNs aim to reduce their number of parameters,
thusmaking themmore efficient on low-cost devices but with
some reduction in accuracy. This work, which builds on our
previous [6], is based on this premise and, to the best of our

Fig. 2 The Oxford flower dataset

knowledge, is one of the first applied to infield plant pheno-
typing.

Similar to our work, previous authors [4] have attempted
to reduce theFCNandSegNetmodel parameters by replacing
the deconvolution operationwith sub-pixels [29]which intro-
duced a negligible computational cost. However, our work is
different from sub-pixel convolution since we focused on
reducing parameters by replacing two-dimensional convolu-
tions with two-dimensional separable convolution and then
applying SVD.

3 Datasets

We use two plant datasets: the Oxford flower dataset (Fig.
2) [23] and the CVPPP leaf segmentation challenge dataset
also known as the plant phenotyping dataset (Fig. 3) [20,21]
and a non-plant dataset, the CamVid dataset (Fig. 4) [7] to
perform our experiments.

The Oxford flower dataset has ground truth segmenta-
tion for most images. We use the same criteria as Nilsback
and Zisserman [23] to form our segmentation dataset: flower
classes that were under-sampled in the original dataset were
removed. Following these criteria, five classes (Dandelion
Taraxacum, lily of the valley Convallaria majalis, Cowslip
Primula veris, Tulip Tulipa and BluebellHyacinthoides non-
scripta) had insufficient images and were removed. This
leaves 12 flower classes with a total of 753 images. Examples
of images in this dataset are shown in Fig. 2.

The plant phenotyping dataset is a challenging dataset
introduced in [21] and available online at http://www.
plant-phenotyping.org/datasets.Weused all 165Arabidopsis
images (Arabidosis thaliana) in the Ara2013 dataset and 62
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Fig. 3 The plant phenotyping dataset

Fig. 4 The CamVid dataset

tobacco (Nicotiana tabacum) images in the datasets. Exam-
ples of images in this dataset are shown in Fig. 3.

The CamVid dataset is a road scene understanding dataset
with 367 training images, 101 validation images and 233 test-
ing images of day and dusk scenes, available at http://mi.eng.
cam.ac.uk/research/projects/VideoRec/CamVid/. The chal-
lenge is to segment 12 classes, including background, such
as road, building, cars, pedestrians, signs, poles, and side-
walk. Examples of images in this dataset are shown in
Fig. 4.

All plant datasets were first divided into ‘80/20’ for
train/test; then the training data were further divided into
‘80/20’ for training/validation. We normalise all images by
scaling RGB values to the range 0–1, before passing them to
the deep neural networks. The RGB image annotations were
first converted into a class label. For example, an RGB value

of [255, 255, 0] belonging to class one is represented as [1,
1, 1], RGB value [255, 64, 64] belonging to class two is rep-
resented as [2,2,2], and so on. Finally, we converted the class
labels into a binary class matrix (one-hot encoding) before
passing them to our networks.

4 Methods

Wehave reducedmodel parameters of three popular semantic
segmentation networks (FCN, SegNet and Sub-Pixel) using
the two methods detailed in this section. We used separable
convolutions to reduce the model parameter number before
training the network, and singular value decomposition to
reduce weight matrix size after.

4.1 Separable convolution

MobileNet [13], MobileNetV2 [27] and Xception [8] use
separable convolution to reduce the model parameters. Sepa-
rable convolution reduces the number of multiplications and
additions in the convolutional operation, thus reducing the
model’s weight matrix and speeding up the training and test-
ing of large CNNs.

A 2D convolution can be defined as in Eq. 1.

y(m, n) =
k−1∑

i=0

k−1∑

j=0

h(i, j)x(m − i, n − j) (1)

where x is the (m×n)matrix being convolved with a (k×k)
kernel h. If the kernel h can be separated into two kernels, say
h1 of dimension (m × 1) and h2 of dimension (1 × n), then
the 2D convolution can be expressed as a 1D convolution as
in Eq. 2.

y(m, n) =
k−1∑

i=0

h1(i)

[ k−1∑

j=0

h2( j)x(m − i, n − j)

]
(2)

The 2D convolution requires k × k multiplications and
additions. However, in the case of separable convolution,
since the kernel is decomposed into two 1D kernels, the
required multiplications and additions are reduced to k + k,
thus reducing the number of model parameters.

We converted the 2D convolutions in the baseline seman-
tic segmentation networks (FCN, SegNet and Sub-Pixel)
into separable versions. For SegNet, the convolutional lay-
ers in both the encoder and decoders were made separable.
However, with FCN and Sub-Pixel only the encoders were
separable, as the decoder had few or no parameters. We
then applied batch normalisation and ReLU activations to
the separable convolutions. It is important to note that the
first convolution layer of each network was not separated, as
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Fig. 5 Architecture of our Tiny-FCN. This is a typical VGG-19 archi-
tecturewith only four blocks. The building blocks are comprised of a 2D
convolution (Conv2D), 2D seperable convolution (SeparableConv2D),
batch normalisation (BN), a ReLU activation, max-pooling and up-
sampling

Fig. 6 Architecture of ourTiny-SegNet. This is a typicalVGG-19 archi-
tecturewith only four blocks. The building blocks are comprised of a 2D
convolution (Conv2D), 2D seperable convolution (SeparableConv2D),
batch normalisation (BN), ReLU and softmax activations, max-pooling
and up-sampling

this holds important high-detail features. The reduced archi-
tectures are illustrated in Figs. 5 and 6

4.2 Singular value decomposition

Singular value decomposition, which has been successfully
applied to image compression [26], can be used to reduce
the size of weight matrices [9,10,37]. AssumingW ∈ R

m×n

is the weight matrix from the separable convolutions model,
then the singular value decomposition of matrix W can be
factorised into the form shown in Eq. 3.

W = U · S · V T (3)

where U ∈ R
m×n is an m × n left-singular vector, V ∈

R
n×n is an n × n right-singular vector and S ∈ R

n×n is an
n × n rectangular diagonal matrix called the singular values
of the weight matrix W . Then assuming diagonals of S =
{d(1,1), d(2,2), d(3,3)..., d(n,n)} and {d(1,1) ≥ d(2,2) ≥ d(3,3) ≥
... ≥ d(n,n) ≥ 0}, we can reconstruct a new matrix W ′ as in
Eq. 4

W ′ = U ′ · S′ · V T ′
(4)

where U′ ∈ R
m×k , VT′ ∈ R

k×n and S′ ∈ R
k×k .

W′ ∈ R
m×n is the reconstructed weight matrix, which has

the same dimensions as W . It is important to note that W ′
was reconstructed with the first k singular values of S and
k = min(m, n). Selecting k in this way reduces the size of
the weight matrix.

We compressed the weight matrices generated by the sep-
arable convolution models (which we call Tiny-FCN, Tiny-
SegNet andTiny-Sub-Pixel) to formavery tinymodel (which
we call Very-Tiny-FCN, Very-Tiny-SegNet and Very-Tiny-
Sub-Pixel, respectively) using the SVD approach presented
in this section. In both models, we skipped the first three
blocks and only applied SVD to the remainder, as this will
ensure that high-detail features are not lost and thus not drasti-
cally reduce themodel’s performance, as the first three blocks
already have a small number of parameters.

5 Experiments

For our evaluation, we used the three datasets detailed in
Sect. 3 to perform the following experiments. We produce:

– Pixel-wise segmentation into classes using the original
semantic segmentation networks (FCN, SegNet and Sub-
Pixel)

– Pixel-wise segmentation into classes using our tiny mod-
els, Tiny-FCN, Tiny-SegNet and Tiny-Sub-Pixel, which
is made up of only separable convolutions.

– Pixel-wise segmentation into classes using our very tiny
models, Very-Tiny-FCN, Very-Tiny-SegNet and Very-
Tiny-Sub-Pixel, which is made up of separable convo-
lutions and SVD.

– Background and foreground segmentation (two classes)
of the Oxford flower dataset to help further evaluate the
models on smaller datasets and to show that the baseline
models performed better with fewer classes.

5.1 Set-up

We perform all our experiments using the VGG-16 style
architecture but without the last block, known as VGG-16
Basic, as recommended by Badrinarayanan et al. [7] when
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evaluating SegNet, FCN and Sub-Pixel. The convolutional
layers in each model’s encoder were followed by batch nor-
malisation and ReLU activation layers. Except for the last,
we placed a max-pooling layer at the end of each encoder
block.

The FCN architectures (including the ‘Tiny’ versions)
used the FCN-8 decoder style as described in [19]. Since the
FCN’s decoder had fewer parameters, we did not perform
separable convolutions on them. However, with the excep-
tion of the first layer, all convolutional layers of theTiny-FCN
encoder were converted into separable convolutions and then
eachwas followedby a batch normalisation andReLUactiva-
tion layers. The set-up of the Sub-Pixel architecture is similar
to the FCN but its decoder is made of sub-pixel convolution,
which generates no parameters.

The SegNet used same settings as in [7] and we used
the max-pooling indices for up-sampling. Tiny-SegNet’s
encoder used a similar set-up as the Tiny-FCNs. Similarly,
apart from the first layers, all convolutional layers were con-
verted into a separable convolution and followedwith a batch
normalisation andReLUactivation layers.UnlikeTiny-FCN,
we applied separable convolutions to all convolutional layers
of SegNet decoder and followed themby batch normalisation
and ReLU activation layers, to form our Tiny-SegNet model.

Training of the CNN models was performed on a Linux
server with three GeForce GTX TITAN X GPUs (12 GB
memory each). The models were implemented using Python
3.5.3 and Keras 2.0.6 with Tensorflow backend and were
tested on a windows 10 computer with 64 GB RAM and a
3.6 GHz processor. We also developed a mobile app to test
capabilities of our tiny models using Android studio 3.1.2 on
windows and tested it using a 1) Samsung Galaxy J1 mobile
phone running Android 4.4 and 2) Google Nexus 5x mobile
phone emulator running Android 8.1.

5.2 Benchmarks

For benchmarking, we compared with the baseline mod-
els (FCN, SegNet and Sub-Pixel) on the three datasets, the
Oxford flower dataset (http://www.robots.ox.ac.uk/~vgg/
data/flowers/17/index.html), the plant phenotyping data-
set (http://www.plant-phenotyping.org/datasets) and the
CamVid dataset (http://mi.eng.cam.ac.uk/research/projects/
VideoRec/CamVid/), We compare the results to our ‘tiny’
models (Tiny-FCN, Very-Tiny-FCN, Tiny-SegNet and Very-
Tiny-SegNet). In particular, we evaluated the following:

– Number of parameters per our model versus the baseline
deep CNN models.

– Size of weight matrix per our model versus the baseline
deep CNN models

– Accuracy (pixel accuracy, mean IoU, precision and
recall) per model

– Average processing time using three devices for segmen-
tation.

We also performed background and foreground (two-
class) segmentation with the Oxford flower dataset to eval-
uate the performance of the FCN, SegNet and Sub-Pixel
models with the multi-class segmentation. We tested the tiny
models on two types of mobile device: Google Nexus 5x
and Samsung Galaxy J1 smartphone. The Samsung Galaxy
J1 was used also for real-time infield segmentation, to show
that the tiny models work on mobile devices infield. Finally,
we compare tiny and very-tiny model parameters to some
popular existing models (see Table 8) that have used some
form of parameter and or weight matrix reduction technique.

For all models, we set the number of epochs to 200 with a
batch size of 6. We use categorical cross-entropy loss as the
objective function for training the network and anAdamopti-
miser with an initial learning rate of 0.001. We then reduced
the learning rate by a factor of 10 whenever training plateaus
for more than 10 epochs. The input images were all resized
to (224× 224) since most input images were approximately
this size, and also to help avoid a fractional output size that
may result from the max-poolings in the network. We did
not apply data augmentation as there were no problems of
overfitting and the performance of the models was good.

Due to the large variations in the number of pixels in each
class as per the training samples, we weighted the loss dif-
ferently based on the true class (known as class balancing).
We applied median frequency balancing, which is the ratio
of median class frequency computed on the entire training
samples divided by the class frequency. The implication of
this is that larger classes in the training set are given less
weight, while smaller ones are given more.

Fig. 7 The training and validation loss versus epochs’ curves for the
flower dataset based on the SegNet model
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Fig. 8 The training and validation loss versus epochs curves for the
flower dataset based on the Tiny-Sub-Pixel model

Finally, we ensured that the baselinemodels and tinymod-
els neither over- nor underfit by monitoring the training and
validation losses. Figures 7 and 8 show the loss curves for
SegNet and Tiny-Sub-Pixel on the flower dataset for 200
epochs. Both figures represent a drop in training and valida-
tion error as the number of epochs increases, which indicates
that the networks are learning from the data that are given
as input and not overfitting or underfitting. Similar pattern
curves occurred for all the other models, which can be down-
loaded from this section’s footnote 1.

5.3 Metrics used

We report four metrics from common pixel-wise segmen-
tation evaluations that are variations on pixel accuracy and
region intersection over union (IoU), where ni j is the number
of pixels of class i predicted to belong to class j , n ji is the
number of pixels of class j predicted to belong to class i and
c is the total number of classes.

– Pixel accuracy: This tells us about the overall effective-
ness of the classifier and is defined in Eq. 5.

∑c
i=1 nii∑c

i=1(
∑c

j=1 ni j )
(5)

– Mean IoU: This compares the similarity and diversity of
the complete sample set and is defined in Eq. 6:

1

c
∗

c∑

i=1

nii∑c
j=1 ni j + (

∑c
j=1 n ji ) − nii

(6)

1 https://github.com/Amotica/Low-Cost-Plant-Phenotyping.

– Average Precision: This tells us about the class agree-
ment of the data labels with the positive labels given by
the classifier and is defined in Eq. 7.

1

c
∗

c∑

i=1

nii∑c
j=1 n ji

(7)

– Average Recall: This is the effectiveness of classifier to
identify positive labels and is defined in Eq. 8.

1

c
∗

c∑

i=1

nii∑c
j=1 ni j

(8)

6 Results

Table 1 shows the results of parameter reduction when
we applied only separable convolutions (Tiny-FCN, Tiny-
SegNet and Tiny-Sub-Pixel models) and when we com-
bined separable convolutions and SVD (our Very-Tiny-FCN,
Very-Tiny-SegNet and Very-Tiny-Sub-Pixel models). The
highlighted rows show data for the existing pixel-wise seg-
mentation models, which we used as our baseline models.

The models compressed with only separable convolu-
tion achieved a little above 88% in storage space savings.
However, our models compressed using both separable con-
volution and SVD had the most storage space savings.

Table 2 shows the accuracies of the baseline deep CNN
models versus their tiny counterparts. These results are based
on segmenting the test samples of the plant phenotyping
dataset into three classes (background, Tobacco (Nicotiana
tabacum) and Arabidopsis (Arabidopsis thaliana) plants).
The best performing models based on this dataset are the
FCNs and Sub-Pixel, which outperformed the SegNet mod-
els by almost 1% based onmean IoU. The difference in mean
IoU between the tiny models and original deep CNN coun-
terpart is less than 0.75% and 0.02% for the SegNet and
FCN, respectively, which shows that our compressed FCN
andSegNetmodels are comparable to the original deepCNN.

In Table 3, we present the accuracies of the baseline deep
CNN models versus their tiny counterparts on the test sam-
ples in the Oxford flower dataset, segmenting into 13 classes
including the background. The results show the SegNet mod-
els to perform better than the FCN based on all the evaluation
metrics. The baseline SegNet and FCNmodels outperformed
their tiny counterparts by less than 0.01% and 0.35% based
on mean IoU, respectively. This shows the tiny models to be
comparable to the baselines used in our experiments.

To further investigate the results and illustrate generality
of our multi-class segmentation, we trained all models on
the CamVid dataset, which is of similar size as our multi-
class flower dataset but for a different problem domain (road
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Table 1 Model parameters and
size of weight matrices on disc
for all models used in our
experiments

Parameters Weight matrix

# Reduction (%) Size on disc (MB) Storage savings (%)

FCN 7,647,950 – 87.6 –

Tiny-FCN 885,528 88.42 10.2 88.36

Very-Tiny-FCN 885,528 88.42 3.51 95.99

SegNet 17,649,795 – 202.0 –

Tiny-SegNet 2,034,499 88.47 23.4 88.42

Very-Tiny-SegNet 2,034,499 88.47 7.96 96.06

Sub-Pixel 7,646,043 – 88.0 –

Tiny-Sub-Pixel 881,142 88.48 10.9 87.6

Very-Tiny-Sub-Pixel 881,142 88.48 3.6 95.9

The baseline models have been highlighted in bold

Table 2 Accuracies for both
original and tiny models based
on the plant phenotyping dataset

Precision (%) Recall (%) Pixel accuracy (%) Mean IoU (%)

FCN 98.59 98.57 98.58 95.49

Tiny-FCN 98.45 98.44 98.45 95.47

Very-Tiny-FCN 98.45 98.44 98.45 95.47

SegNet 98.27 98.20 98.23 94.82

Tiny-SegNet 98.09 98.03 98.06 94.07

Very-Tiny-SegNet 98.09 98.03 98.06 94.07

Sub-Pixel 98.68 98.62 98.65 96.20

Tiny-Sub-Pixel 98.73 98.56 98.65 96.18

Very-Tiny-Sub-Pixel 98.73 98.56 98.65 96.18

Plants were segmented into three classes

Table 3 Accuracies for both
original and tiny models based
on the Oxford flower dataset

Precision (%) Recall (%) Pixel accuracy (%) Mean IoU (%)

FCN 94.98 94.02 94.38 72.73

Tiny-FCN 94.08 93.29 93.57 72.38

Very-Tiny-FCN 94.08 93.29 93.57 72.38

SegNet 95.08 94.26 94.41 74.51

Tiny-SegNet 94.46 94.06 94.20 74.50

Very-Tiny-SegNet 94.46 94.06 94.20 74.50

Sub-Pixel 94.21 94.04 94.04 72.18

Tiny-Sub-Pixel 93.81 93.60 93.72 71.92

Very-Tiny-Sub-Pixel 93.81 93.60 93.72 71.92

The flowers were segmented into 13 classes

scenes instead of plants). Table 4 shows the accuracies of
baseline deep CNN models versus their tiny counterparts
based on segmenting test samples of this dataset into 12
classes including the background. We observe an interesting
result, which this time shows the FCN models to outper-
form the SegNet models by approximately 1%. Furthermore,
the very deep FCN and SegNet models outperformed their
tiny counterparts by approximately 3% and 0.8% mean IoU,
respectively.

We segmented the test samples in the Oxford flower
dataset into just two classes (background and flower) using

all baseline and tiny models. We present the results in Table
5. The result shows the baseline deep CNNmodels, and their
tiny counterparts, to perform better on this dataset with two
classes. The two-class problem outperformed the 13-class
problem by approximately 19% based on mean IOU alone.
SegNet outperformed FCN on this problem domain by a very
narrow margin. Furthermore, even though SegNet was the
best performing model, the other models remain compara-
ble.

Finally, we developed mobile applications using Android
studio to show that our tiny models can run well on these
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Table 4 Accuracies for both
original and tiny models based
on the CamVid dataset

Precision (%) Recall (%) Pixel accuracy (%) Mean IoU (%)

FCN 93.01 92.73 92.25 55.89

Tiny-FCN 90.73 88.88 88.98 51.59

Very-Tiny-FCN 90.73 88.88 88.98 51.59

SegNet 92.59 89.75 90.85 54.48

Tiny-SegNet 90.87 89.77 89.80 53.69

Very-Tiny-SegNet 90.87 89.77 89.80 53.69

Sub-Pixel 93.51 88.72 88.85 51.89

Tiny-Sub-Pixel 90.53 88.12 88.28 51.77

Very-Tiny-Sub-Pixel 90.53 88.12 88.28 51.77

The road scenes were segmented into 12 classes (including the background)

Table 5 Accuracies for both
original and tiny models based
on the Oxford 17 flower dataset

Precision (%) Recall (%) Pixel accuracy (%) Mean IoU (%)

FCN 97.10 97.10 97.10 93.29

Tiny-FCN 96.80 96.80 96.80 92.64

Very-Tiny-FCN 96.80 96.80 96.80 92.64

SegNet 97.27 97.27 97.27 93.65

Tiny-SegNet 97.08 97.08 97.08 93.24

Very-Tiny-SegNet 97.08 97.08 97.08 93.24

Sub-Pixel 97.18 97.18 97.18 93.47

Sub-Pixel 96.92 96.92 96.92 92.87

Tiny-Sub-Pixel 96.92 96.92 96.92 92.87

The flowers were segmented into two classes (flowers and background)

devices compared with the baseline models. We tested the
applications on a Google Nexus 5X emulator and Samsung
Galaxy J1 smartphone. Figures 9 and 10 show the results of
segmentation on the flowers dataset for Google Nexus 5X
and Samsung Galaxy J1, respectively. We have also included
Fig. 11, which shows the results of using the Samsung
Galaxy J1 for segmenting leaf images collected from the
internet. The Samsung Galaxy J1 has been used infield suc-
cessfully to segment flowers,while theGoogleNexus 5Xwas
only emulated with Android studio. The average processing
speed was tested for segmenting flowers and leaves only. We
used the data captured infield with the Samsung Galaxy J1
to test the flower mobile application, and a set of images col-
lected from the web to test the leaf mobile application, and
then discuss these results in Sect. 6.1.

We noted that the smaller parameter models were faster
in segmenting both flowers and leaves (see Tables 6 and 7).
As expected, the ‘tiny’ models process faster than the base-
line model since they have fewer parameters. The FCN and
Sub-Pixel-based models with only 0.9 million parameters
segment flowers and leaves nearly 2 s faster than the SegNet
models for 13 classes (see Table 7).

The average processing speed of segmenting a single
flower infield with the Samsung J1 mobile phone is 3.32
and 3.95 s for the two- and 13-class problems, respectively.

Fig. 9 Mobile test results using Google Nexus 5X emulators. From
left to right: Flower segmentation into 13 classes, leaf segmentation
into 3 classes and flowers segmentation into 2 classes (foreground and
background)

Segmenting the same images using aWindows computer or a
Google Nexus 5xmobile phone emulator is faster due to their
considerably higher processing power. Considering that the
Samsung J1 only runs anAndroid 4.4.4 compared toAndroid
8.1 on Google Nexus 8.1 further justifies the results.

Both baseline FCN and Sub-Pixelmodels have 7.6million
parameters and take approximately 3 s to segment a flower
or a leaf on a windows 10 computer, 5 s on the Google Nexus
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Fig. 10 Real-time infield test on Samsung Galaxy J1 smart phone. This
was performed only for the flowers dataset

Fig. 11 Segmenting leaf data collected from the internet on the Sam-
sung Galaxy J1 smart phone

Table 6 Average processing speed in seconds for segmenting a leaf and
a flower into two or 13 classes using the tiny models

Windows Nexus 5x Samsung J1

Tiny-FCN

Flower-2 classes 0.10 ± 0.01 0.18 ± 0.03 3.32 ± 0.24

Flower-13 classes 0.11 ± 0.02 0.19 ± 0.03 3.95 ± 0.30

Leaf 0.12 ± 0.02 0.20 ± 0.05 3.91 ± 0.14

Tiny-SegNet

Flower-2 classes 0.16 ± 0.02 0.21 ± 0.03 5.32 ± 0.14

Flower-13 classes 0.18 ± 0.01 0.27 ± 0.06 6.13 ± 0.23

Leaf 0.17 ± 0.07 0.31 ± 0.07 6.42 ± 0.13

Tiny-Sub-Pixel

Flower-2 classes 0.13 ± 0.04 0.18 ± 0.05 3.92 ± 0.31

Flower-13 classes 0.14 ± 0.06 0.18 ± 0.04 4.21 ± 0.40

Leaf 0.14 ± 0.04 0.19 ± 0.07 4.37 ± 0.22

These have been tested on three devices (Windows 10 computer, Google
Nexus 5x emulator and Samsung J1 mobile). These were computed
using 15 test flower and leaf images. The average processing speed
shows plus/minus standard deviation

5x and 23 s on the Samsung J1 mobile phone. The baseline
SegNet model is the slowest to process a flower or leaf, even
though this takes approximately 7 and 8 s on windows 10 and
Google Nexus 5x, respectively. When segmenting with Seg-
Net model (17.5 million parameters), the application crashes

Table 7 Average Processing speed in seconds for segmenting a leaf
and a flower into two or 13 classes using the Baseline models

Windows Nexus 5x Samsung J1

FCN

Flower-2 classes 2.59 ± 0.14 4.02 ± 0.17 22.41 ± 0.82

Flower-13 classes 2.73 ± 0.12 4.10 ± 0.10 23.05 ± 0.58

Leaf 2.37 ± 0.07 3.91 ± 0.12 22.90 ± 0.52

SegNet

Flower-2 classes 6.73 ± 0.14 7.95 ± 0.23 –

Flower-13 classes 6.93 ± 0.21 8.01 ± 0.15 –

Leaf 6.64 ± 0.16 7.75 ± 0.24 –

Sub-Pixel

Flower-2 classes 2.49 ± 0.10 3.96 ± 0.08 21.21 ± 059

Flower-13 classes 2.94 ± 0.13 4.03 ± 0.11 22.01 ± 071

Leaf 2.91 ± 0.09 3.89 ± 0.11 21.73 ± 0.61

These have been tested on three devices (Windows 10 computer, Google
Nexus 5x emulator and Samsung J1 mobile). These were computed
using 15 test flower and leaf images. The average processing speed
shows plus/minus standard deviation

due to the large number of parameters and the low processing
power of this device.

6.1 Discussion

We present in Table 8 the number of parameters in millions
for some popular segmentationmodels. The topmodels were
our Tiny-FCN, Very-Tiny-FCN, Tiny-Sub-Pixel and Very-
Tiny-Sub-Pixel models, which all had less than a million
parameters. The Very-Tiny-Sub-Pixel had the smallest num-
ber of parameters when compared to the nearest thousand.
The replacement of the decoders with sub-pixel convolution
made this possible. The other models used some form of
parameter reduction techniques while preserving the accu-
racy of the model. SqueezeNet (1.3 million) was the next
model reduced in parameters followed by our Tiny-SegNet
and Very-Tiny-SegNet models and then MobileNet, which
were all designed for mobile platforms.

Howard et al. [13] reported that reducing CNN model
parameters using separable convolution usually reduces the
accuracy of the network. The experiments we performed
also confirm this finding. We observed that with a care-
ful reduction in the number of parameters in the baseline
deep CNN model, accuracies are comparable. We noted that
when using separable convolutions to reduce model param-
eters, a good practice is not to apply them to convolutional
layers with a smaller number of parameters. For example,
we only applied separable convolutions to the FCN encoder
but not the decoder. Due to this, Howard et al. had used a
parameter called depth multiplier which controls the num-
ber of channels generated as output (output_channels =
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Table 8 Comparing parameters of some popular models with ours

Model Parameters (Millions)

Tiny-FCN (Ours) 0.9

Very-Tiny-FCN (Ours) 0.9

Tiny-Sub-Pixel (Ours) 0.9

Very-Tiny-Sub-Pixel (Ours) 0.9

SqueezeNet [14] 1.3

Tiny-SegNet (Ours) 2.0

Very-Tiny-SegNet (Ours) 2.0

MobileNet[13] 4.2

GoogleNet [32] 6.8

Sub-Pixel [4] 7.6

FCN (VGG-16 Basic) [19] 7.6

VGG-16 Compressed [12] 11.3

AlexNet - QCNN [36] 12.6

SegNet (VGG-16 Basic)[7] 17.5

Xception [8] 22.9

Inception V3 [33] 23.2

SVD [9] 47.6

The number of parameters is in millions

input_channels∗depth_multiplier ). Thus, using a smaller
depth_multiplier shrinks the model parameters even fur-
ther but at the expense of accuracy. We preferred to work
with a depth multiplier of one, as this produces good results
when separable convolutions are applied to large parameter
generating convolutional layers.

Furthermore, caution is needed when using singular value
decomposition to reducemodelweightmatrices. Someworks
have reported a drop in accuracy when SVD is applied [9,10,
31,37]. Our results show that applying SVD correctly further
decreases the size of weight matrices while preserving pixel
accuracies.

Skipping the first three convolutional layers, we apply
SVD (with k = 4) to all other convolutional layers to recon-
struct the models’ weight matrices. This careful application
of SVDnot only reduced the size of themodel on disc but also
resulted in comparable pixel accuracies to the state-of-the-art
non-compressed counterparts.

Our tiny models’ performance on the plant phenotyping
datasets compare to their non-compressed counterparts. On
test samples where the non-compressed models achieved
good segmentation results, the tiny models also did. For
example, on the Oxford flower dataset (13-class problem),
the Fritillary, Iris, Wind Flower, Colts’ Foot and Daisy test
samples in Fig. 13 were well segmented by all models. Addi-
tionally, the non-compressed deepCNNcounterparts showed
better results in some instances than the tiny models and vice
versa (see examples in Fig. 14).

These observations are true for the plant phenotyping
dataset too; see Fig. 12. Using the Oxford flower dataset

Fig. 12 Sample test instances from the Plant Phenotyping dataset

Fig. 13 Sample test instances from theOxford flower dataset with visu-
ally very good segmentation (two classes)

Fig. 14 Multi-class segmentation: Sample test instances from the
Oxford flower dataset with some segmentation errors present

for background and foreground (flowers) segmentation, the
segmentation results of our tiny models were similar to
that of their non-compressed deep CNN counterparts (see
Fig. 15).

The models with more parameters performed better on
the datasets with more classes. For example, SegNet with
17.5 million parameters performed better on the flower and
CamVid datasets when compared with all the other mod-
els. However, the tiny models’ (Tiny-FCN, Tiny-SegNet and
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Fig. 15 Two-class (background and flower) segmentation: Sample test
instances from theOxford flower dataset with some segmentation errors

Fig. 16 Multi-class segmentation: Sample test instances from the
CamVid dataset with some segmentation errors

Tiny-Sub-Pixel) performance were comparable to the base-
line models on the datasets with fewer classes. The model
with the smallest number of parameters is the sub-pixel,
which performed better mostly on the datasets with fewer
classes. The sub-pixel model’s performance was better on
all the datasets except the CamVid, which had more classes.
Therefore, truly challenging scenarios may not benefit from
the proposed reduction techniques (Fig. 16).

Our tiny models apply the compression technique before
model training, which reduces its parameters. Therefore,
these models can easily be pre-trained and the pre-trained
model loaded and used to initialise another model since they
only rely on separable convolutions. Our very tiny models,
however, cannot be pre-trained as they are compressed after
training. The reader interested in pre-training the very tiny
models can rather pre-train the tiny models and run the SVD
algorithm on the generatedweightmatrix. It is also important
to note that even though our models use the VGG-16 archi-
tecture, they cannot benefit from pre-trainedmodels since we
have converted the 2D convolutions to 2D separable convo-
lutions.

7 Conclusion

We have used two methods (separable convolution and a
combination of separable convolution and SVD) to com-

press three baseline deep CNNs for pixel-wise segmentation.
The compressed (tiny) models, when compared to the base-
lines deep CNN counterpart, obtained more than 88% and
95% parameter reduction and storage space savings, respec-
tively. We have compared our tiny models to some popular
compressed models and found that our Tiny-FCN and Tiny-
Sub-Pixel were the most compressed models (see Table 8 ).
Our Tiny-SegNet models were the fourth most compressed
after SqueezeNet.

We evaluated the models on two challenging plant pheno-
typing datasets (the Oxford flower and plant phenotyping
datasets) and a road scene dataset (CamVid). The results
from our tiny models were practically as good as their deep
CNN counterparts. We noted that where the baseline models
classified and segmented plants, flowers and other objects
correctly, the tiny models also did in most cases. On plant
phenotyping dataset, the Sub-Pixel and FCN models out-
performed the SegNet based on mean IoU alone. While the
SegNet models were the best on the Oxford flower dataset,
we noted a 19% reduction in pixel accuracy when segment-
ing flowers into 13 classes. Investigations showed that the
decrease was due to the inability of baseline deep CNNs
(FCN and SegNet) to handle large classes on the plant phe-
notyping dataset.

Currently, most deep learning approaches are limited to
deployment in laboratories due to resource requirements.
Ongoing work including ours is aiming to bring these tech-
niques onto low-cost devices for infield plant phenotyping.
We have demonstrated the practicality of our tiny models on
two mobile devices for infield segmentation of flowers. We
noted that on the latest mobile device emulator running the
latest Android operating system, it took less than a second to
segment flowers, while it took approximately 3.5 s to perform
the same task on an old mobile device running a lower ver-
sion of Android. In the future, we will compress models that
are known to perform better on datasets with more classes
using our twomethods, as an attempt to increase accuracy on
the 13-class segmentation problem.We are also working on a
cassava root dataset that wewish to release with a benchmark
result based on the proposed tiny CNNs introduced in this
paper; such a technology will advance phenotyping capabil-
ity of such crops even in lower- to middle-income countries.

URL of additional resources

The following resources from this research are available for
download from the link in this section’s footnote 2 :

– All the source code.

2 https://github.com/Amotica/Low-Cost-Plant-Phenotyping.
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– For those not using Python and Keras, the model archi-
tectures have been provided in a pdf.

– Model weight matrices including compressed versions
– Graphs of training and validation losses and accuracies
against epochs.
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