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Abstract 

Testing moderation effects is highly common in the hospitality literature. Most theories in the field 

depend on variables that alter the nature and direction of the relationship between two variables. 

While moderation continues to be heavily used, methods for testing moderation effects are not 

always robust. One common problem that researchers face is the need to pre-assign a particular 

functional form. The aim of this note is to address this problem. We describe three different non-

parametric models that offer more flexibility in testing moderating effects without a need to pre-

impose a specific functional form. We test the three models on an interesting application involving 

the moderating role of corporate social responsibility (CSR) on the relationship between 

advertising and firm value. The results revealed interesting moderating effects that go beyond the 

simple linear moderation.  
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1. Introduction 

It is highly common in the tourism and hospitality literature to test moderating hypotheses 

using a parametric regression model of the form 𝑦 = 𝛽1𝑥 + 𝛽2𝑧 + 𝛽3𝑥𝑧 , where 𝑥  is an 

explanatory variable, 𝑧 is a moderator, and the moderating effect is simply tested with 𝛽3 (one 

can derive the moderating effect mathematically with the cross-derivative of 𝑦 with respect to 

(𝑥, 𝑧): 
𝜕2𝑓(𝑥,𝑧)

𝜕𝑥𝜕𝑧
=𝛽3). One potential problem with such an approach is that one needs to pre-assign 

a functional form (in this case linear) prior to testing moderation effects.   

This note takes up a different approach to relax such assumption. We consider non-parametric 

estimation based on local linear likelihood methods in panel data, where firm effects are necessarily 

present. To wipe out these effects we use a differencing estimator. As many models have been 

proposed in the literature, it is not entirely clear what functional forms other than 𝑦 = 𝛽1𝑥 +

𝛽2𝑧 + 𝛽3𝑥𝑧 are allowed to test for moderation effects. In fact, there is no guarantee that such a 

functional form is necessarily true. In other words, simply relying on such model runs the risk of 

mispecifying the functional form when testing for moderation.  

The issue of misspecification of functional forms has increased the need for non-parametric 

estimation (see Su and Ullah, 2011). In this paper, we extend the use of such models to the context 

of moderated regression. We describe three different models which are open for testing. It is also 

possible that these models may reveal a simple linear moderation, but the goal is not to make this 

assumption a priori. With the use of non-parametric regression and the models we are proposing 

one would let the data speak for itself and determine the best fitting moderation, if any. 

 

2. Models 

 

In this section, we propose three different formulations that can be estimated in a non-

parametric framework. These models do not require pre-assigning a specific functional form and 

hence, are far more flexible than the traditional linear regression commonly used in the literature 

to test for moderation effects (for example see Ro, 2012; Lee et al., 2013; Sun and Lee, 2018; and 

Yoon et al., 2016).   

 

2.1 Model A  

 

In the first model (Model A) we suggest a formulation of the following form: 

 

 𝑦𝑖𝑡 = 𝛼0 + 𝛼1𝑥𝑖𝑡 + 𝛼2𝑧𝑖𝑡 + 𝑤𝑖𝑡
′ 𝛾 + 𝑥𝑖𝑡𝛽(𝑧𝑖𝑡) + 𝜇𝑖 + 𝑣𝑖𝑡, (1) 
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where 𝑥𝑖𝑡  is the single regressor, 𝑧𝑖𝑡  is the single moderator, 𝑤𝑖𝑡  is a vector of 

predetermined variables, and 𝛽(𝑧𝑖𝑡) is an unknown function, 𝜇𝑖 is a firm specific effect and 𝑣𝑖𝑡 

is an error term with zero mean.  

To simplify further, omit the linear terms for simplicity and consider:  

 

 

 

𝑓(𝑥, 𝑧) = 𝑥𝛽(𝑧). 
(2) 

 

Suppose we expand 𝛽(𝑧𝑖𝑡) in a Taylor series expansion. This gives:  

 

 𝑓(𝑥, 𝑧) = 𝛽1𝑥𝑧 + 𝛽2𝑥𝑧2+. .. (3) 

 

Other than 𝑤, no linear terms in 𝑥, 𝑧 need to be present. Therefore, in this case 𝑧 can 

moderate (nonlinearly) a linear relation between 𝑦 and 𝑥.  

 

2.2 Model B  

 

For Model B we suggest adopting a formulation of the following form: 

 

 𝑦𝑖𝑡 = 𝛼0 + 𝛼1𝑥𝑖𝑡 + 𝛼2𝑧𝑖𝑡 + 𝑤𝑖𝑡
′ 𝛾 + 𝑔(𝑥𝑖𝑡)𝑧𝑖𝑡 + 𝜇𝑖 + 𝑣𝑖𝑡 , (4) 

 

where 𝑥𝑖𝑡  is the single regressor, 𝑧𝑖𝑡  is the single moderator, 𝑤𝑖𝑡  is a vector of 

predetermined variables, and 𝑔(𝑥𝑖𝑡) is an unknown function, 𝜇𝑖 is a firm effect and 𝑣𝑖𝑡 is an 

error term with zero mean.  

To illustrate further, omit the linear terms for simplicity and consider:  

 

 𝑓(𝑥, 𝑧) = 𝑔(𝑥)𝑧. (5) 

 

Suppose we expand 𝛽(𝑧𝑖𝑡) in a Taylor series expansion. This gives: 

  

 𝑓(𝑥, 𝑧) = 𝛼1𝑥𝑧 + 𝛼2𝑥2𝑧+. .. (6) 

   

Other than 𝑤  no linear terms in 𝑥, 𝑧  need to be present. In this model, 𝑧  moderates 

linearly a nonlinear relationship between 𝑦 and 𝑥. The marginal effect of 𝑥 in Models A and B 

is as follows:  
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𝜕𝑓(𝑥, 𝑧)

𝜕𝑥
= 𝛽(𝑧), for model A,

𝜕𝑓(𝑥, 𝑧)

𝜕𝑥
= 𝑔′(𝑥)𝑧, for model B.

 (7) 

 

Therefore, the moderation effect of 𝑧 is:  

 

 

𝜕2𝑓(𝑥, 𝑧)

𝜕𝑥𝜕𝑧
= 𝛽′(𝑧), for model A,

𝜕2𝑓(𝑥, 𝑧)

𝜕𝑥𝜕𝑧
= 𝑔′(𝑥), for model B.

 (8) 

 

Therefore, the two models have different implication in that the moderation effect depends 

only on 𝑧 in model A and only on 𝑥 in model B.  

 

2.3 Model C 

 

Of course, there is the more general Model C in which, apart from linear terms, we have:  

 

 𝑦 = 𝐹(𝑥, 𝑧) = 𝛿1𝑥2 + 𝛿2𝑧2 + 𝛿3𝑥𝑧 + ⋯. (9) 

   

One should be able to determine which of three models A, B, C receives more support in the 

light of the data. Focusing on Model A, and using the so-called local linear approach, we have:  

 

 𝛽(𝑧) = 𝛽0 + 𝛽1 ⋅ (𝑧 − 𝑧𝑜), (10) 

 

so that the value of 𝛽 at 𝑧 = 𝑧𝑜 is 𝛽0 and its first derivative is 𝛽1. Of course, 𝛽0, 𝛽1 will 

be different for different 𝑧𝑜. The same holds for Model B if we interchange the roles of 𝑥𝑖𝑡 and 

𝑧𝑖𝑡.  

 

3. Model Estimation  

 
We focus on estimating (1) as the treatment of (5) is the same if we interchange the roles of 

𝑥𝑖𝑡 and 𝑧𝑖𝑡. Model C is somewhat different. The main problem is the presence of firm specific 

effects 𝜇𝑖. One approach is to use temporal differences to obtain: 

  

 
△ 𝑦𝑖𝑡 = 𝛼1 △ 𝑥𝑖𝑡 + 𝛼2 △ 𝑧𝑖𝑡 +△ 𝑤𝑖𝑡

′ 𝛾

+ {𝑥𝑖𝑡𝛽(𝑧𝑖𝑡) − 𝑥𝑖,𝑡−1𝛽(𝑧𝑖,𝑡−1)} + 𝑣𝑖𝑡 − 𝑣𝑖,𝑡−1, 
(11) 
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where △ 𝑦𝑖𝑡 = 𝑦𝑖𝑡 − 𝑦𝑖,𝑡−1  etc. Although the linear terms do not introduce any special 

problems, there is a problem with the non-parametric part which now is {𝑥𝑖𝑡𝛽(𝑧𝑖𝑡) −

𝑥𝑖,𝑡−1𝛽(𝑧𝑖,𝑡−1)}. If we omit the linear terms for simplicity in notation, we have:  

 

 △ 𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽(𝑧𝑖𝑡) − 𝑥𝑖,𝑡−1𝛽(𝑧𝑖,𝑡−1) + 𝑢𝑖𝑡 , (12) 

 

where 𝑢𝑖𝑡 = 𝑣𝑖𝑡 − 𝑣𝑖,𝑡−1. Henderson et al. (2008) suggested using an iterative procedure with 

a profile likelihood approach, whereas Mammen et al. (2009), on the other hand, suggested using 

a smoothed backfitting algorithm. 

In non-parametric regression, we are interested in obtaining the value of the unknown function 

at a given point. For example, if the model is 𝑦𝑖𝑡 = 𝐹(𝑥𝑖𝑡, 𝑧𝑖𝑡) + 𝑢𝑖𝑡 , we are interested in the 

value of 𝐹(𝑥, 𝑧) where 𝑥, 𝑧 are given. Similarly, in our case, we are interested in the value of 

𝑓(𝑥, 𝑧) = 𝑥𝛽(𝑧)  where 𝑥, 𝑧  are given. Specifically, we are interested in the value of 𝛽(𝑧) 

which gives the marginal effect of 𝑥 and, of course, in the moderation effect, which is the first 

derivative of 𝛽(𝑧), viz. 𝛽′(𝑧). To obtain the value of the function at a point (𝑥, 𝑧) agreeing 

𝑧𝑖𝑡 = 𝑧𝑖,𝑡−1 = 𝑧, the usual approach is to solve the problem (Rodriguez-Poo and Soberon, 2014, 

2015):  

 min
𝛽(𝑧)

: ∑ ∑{△ 𝑦𝑖𝑡 − 𝑥𝑖𝑡𝛽(𝑧) + 𝑥𝑖,𝑡−1𝛽(𝑧)}
2

𝑛

𝑡=1

𝑛

𝑖=1

𝐾𝐻(𝑧𝑖𝑡, 𝑧𝑖,𝑡−1). (13) 

 

where 𝐾𝐻(𝑥, 𝑥′) denotes a bivariate kernel with scale matrix 𝐻. The novelty is that the kernel 

function 𝐾𝐻(𝑧, 𝑧′) depends on both 𝑧𝑖𝑡  and its lag. It is common practice to use a product 

kernel of the form: 𝐾𝐻(𝑧, 𝑧′) = ℎ−2𝐾(𝑧/ℎ)𝐾(𝑧′/ℎ), where 𝐾(𝑧) is a univariate kernel such 

that 𝐾(𝑧) ≥ 0, and ∫ 𝐾
∞

−∞
(𝑧)𝑑𝑧 = 1; for example 𝐾(𝑧) = (2𝜋)−1/2𝑒−𝑥2/2, and ℎ > 0 is a 

bandwidth parameter. (see Fan and Gijbels, 1995b; Ruppert and Wand,1994; or Zhan-Qian,1996). 

For estimation purposes we need to define the objective function at two different points 𝑧𝑖𝑡 =

𝑧𝑜 and 𝑧𝑖,𝑡−1 = 𝑧𝑜
′ so that the objective becomes:  

 
min
𝛽(𝑧)

𝑄 (𝑧𝑜 , 𝑧𝑜
′; 𝐷): ∑ ∑{△ 𝑦𝑖𝑡 − 𝑥𝑖𝑡𝛽(𝑧𝑜)

𝑛

𝑡=1

𝑛

𝑖=1

+ 𝑥𝑖,𝑡−1𝛽(𝑧′
𝑜)}

2
ℎ−2𝐾(𝑧𝑖𝑡/ℎ)𝐾(𝑧𝑖,𝑡−1/ℎ), 

(14) 

 

where 𝐷  denotes all available data. Of course, terms that are linear in 𝑥𝑖𝑡 , 𝑧𝑖𝑡, 𝑤𝑖𝑡  may 

appear in the term inside the brackets with constant coefficients. In the so-called local linear 

approach, we have:  
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 𝛽(𝑧) = 𝛽0 + 𝛽1 ⋅ (𝑧 − 𝑧𝑜), (15) 

 

so that the value of 𝛽 at 𝑧 = 𝑧𝑜 is 𝛽0 and its first derivative is 𝛽1. Therefore, the objective 

function becomes:  

min
𝛽(𝑧)

𝑄 (𝑧𝑜 , 𝑧𝑜
′; 𝐷): ∑ ∑ {△ 𝑦𝑖𝑡 − 𝑥𝑖𝑡[𝛽0 + 𝛽1(𝑧𝑖𝑡 − 𝑧𝑜)] + 𝑥𝑖,𝑡−1[𝛽0 + 𝛽1 ⋅ (𝑧𝑖,𝑡−1 − 𝑧′

𝑜)]}
2𝑛

𝑡=1
𝑛
𝑖=1 ℎ−2𝐾 (

𝑧𝑖𝑡

ℎ
) 𝐾 (

𝑧𝑖,𝑡−1

ℎ
) =

min
𝛽0,𝛽1

∑ ∑ {△ 𝑦𝑖𝑡 −△ 𝑥𝑖𝑡𝛽0 −△ (𝑥𝑖𝑡𝑧𝑖𝑡)𝛽1 + 𝛽1 ⋅ [𝑥𝑖𝑡𝑧𝑜 − 𝑥𝑖,𝑡−1𝑧𝑜
′]}

2𝑛
𝑡=1

𝑛
𝑖=1 ℎ−2𝐾𝑧𝑖𝑡/ℎ)𝐾(𝑧𝑖,𝑡−1/ℎ),

  

where △ (𝑥𝑖𝑡𝑧𝑖𝑡) = 𝑥𝑖𝑡𝑧𝑖𝑡 − 𝑥𝑖,𝑡−1𝑧𝑖,𝑡−1 . Effectively, this is a weighted least squares 

problem. When 𝑧𝑜 = 𝑧′
𝑜 it simplifies to:  

 

 

min
𝛽0,𝛽1

𝑄 (𝑧𝑜; 𝐷, 𝛽)

= ∑ ∑{△ 𝑦𝑖𝑡 −△ 𝑥𝑖𝑡(𝛽0 − 𝛽1𝑧𝑜) − 𝛽1

𝑛

𝑡=1

𝑛

𝑖=1

△ (𝑥𝑖𝑡𝑧𝑖𝑡)}2 ℎ−2𝐾(𝑧𝑖𝑡/ℎ)𝐾(𝑧𝑖,𝑡−1/ℎ), 

(17) 

 

where 𝛽 = [𝛽0, 𝛽1]′ . The form (17) can be used to determine the value of the function 

𝛽(𝑧) = 𝛽0 + 𝛽1 ⋅ (𝑧 − 𝑧𝑜) through 𝛽𝑜 and its derivative 𝛽1 which are, of course, specific to a 

particular value 𝑧𝑜, given the bandwidth parameter ℎ. The bandwidth parameter is determined 

using leave-one-out cross-validation, see for example Henderson et al. (2008) and Henderson and 

Ullah (2005).  

 

4. Application 

We test Models A, B and C using an interesting sample involving both restaurant and hotels 

firms from the United States. In our application, we test the impact of advertising on firm value, 

while using corporate social responsibility (CSR) as a moderator. While several studies tested the 

impact of advertising on firm value, the findings remain inconsistent. More particularly, only a few 

studies have included moderating variables in testing such a relationship. In line with recent 

research, we argue that “the positive reputation created by CSR activities, helps to maximize the 

effectiveness of advertising on sales and firm value due to more favorable attitudes toward the 

firm. This effectiveness will directly influence sales, and in turn, the value of the firm” (Roberts 

and Dowling 2002, p1079). 
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In this paper, we aim to test the moderating effect of CSR using the flexible models we are 

proposing. As mentioned, we have a combined sample of hotels and restaurants. In total, we have 

a sample of 232 observations ranging from 2001 to 2012. We collected the advertising spending 

and firm value data using the COMPUSTAT database. For CSR data, we used the KLD Research 

and Analytics’ KLD STAT, which covers seven major types of CSR initiatives. Some descriptive 

statistics are reported in Table 1. 

 

5. Results  

5.1. Model Comparison 

 

Using our application,1 we first test which of the three models we are proposing fits the data 

better.2 Model selection is based on the error sum of squares (ESS) from models A, B and C which 

can be converted to an 𝑅2-like measure, as 𝑅2 = 1 −
𝐸𝑆𝑆

𝑇𝑆𝑆
, where TSS is the total sum of squares. 

As one-off model selection is a dangerous practice, we try to examine whether 𝑅2-like measures 

are sensitive to particular firms. Therefore, we omit 𝑀 firms from the sample (viz. all its temporal 

observations) and we solve (17) using cross-validation in the resulting sample. Here, 𝑀  is 

randomly selected between 1 and 5 and the firms are randomly chosen as well. We repeat this 

exercise 1,000 times. In other words: 

 

 we omit M firms from the sample 

 we solve (17) for the sample of remaining firms 

 we compute 𝑅2 

 we repeat 1,000 times to determine the sample distribution of 𝑅2. 

 

The results are presented in Figure 1. From the results it seems that models B and C do roughly 

the same, model A does roughly the same in some instances but, most of the time, it does 

considerably better as the 𝑅2  has a dominant mode near 0.55.3 We proceed, therefore, on the 

assumption that model A does best, in this data set, and we report results in Figure 2. 

                                                 
1 All estimations were performed in Fortran 77. Codes can be provided upon request. 
2 Our purpose here is to illustrate the performance of all three models. However, we also believe 
that the selection of a particular specification should be driven by theoretical arguments. 
3 Following Ullah and Wang (2013) and Hurvich et al. (1998) we also calculated the Akaike 
information criterion (AIC), which again proved that Model A performs best. 
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It is important to note that we also run specification tests of each of the non-parametric models 

against two different parametric models. The null hypothesis is that a parametric model is correctly 

specified. The results are reported in Table 2 where the p-value without a parenthesis corresponds 

to a simple parametric model which includes the following variables: constant, advertising, CSR, 

size and advertising*CSR. The p-value in the parenthesis corresponds to a more involved 

parametric model which also includes the square of advertising multiplied by CSR. All parametric 

models are estimated in a panel framework and include firm specific effects. As we can see from 

the results, all non-parametric models seem to outperform each of the two parametric 

specifications. For instance, the p-value in each case indicates a rejection of the null hypothesis 

that a parametric model is correctly specified. 

 

5.3. Moderating Effect 

 

Using Model A, we show in Figure 2 the moderation effect of 𝑧 when we fix 𝑥 at different 

values. Also reported in Figure 2 is the 95% confidence interval to test for significance. The 

moderation effect is, of course, given by the cross-derivative of 𝑦 with respect to (𝑥, 𝑧). We can 

see that that the moderation effect is clearly non-linear. As the moderator “𝑧” increases from the 

lowest 10% through the sample median to the upper 10%, the effect becomes more stable, 

implying that at higher values of the moderator, there tends to be more convergence. In our case, 

this would mean that heterogeneity is less pronounced at values of 𝑧 near the upper 10% of 𝑦 -

values. Practically, this would mean the moderating effect of CSR tends to be more stable at a 

higher level of advertising spending.  

The link between advertising and firm value has been researched extensively, but the findings 

have been inconclusive or even conflicting (see Luo and de Jong, 2012 and Assaf et al., 2017). As 

emphasized by Luo and deJong (2012), there is a need for a contingency approach. The link 

between “advertising spending and firm value is not simple, and assuming that there are no 

variables interacting with this relationship is unrealistic” (Assaf et al., 2017, p.1485). Yet, research 

on potential moderators is scant. Results from this study seem to confirm the importance of CSR 

for such a relationship. Practically, the results indicate that for CSR to have a more effective role, 

managers need to invest more in advertising as the effect of CSR is more pronounced at a higher 

level of advertising.   

 

6. Concluding Remarks 
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This note has described three different models for testing moderation effects in a non-

parametric fashion. Our main/central argument is that simply testing moderation effects using a 

pre-assigned functional form may not be necessarily true. To avoid running the risk of 

misspecification one can use a non-parametric approach and let the data speak for itself. The three 

models proposed in this paper are flexible and do not restrict the moderation effects to simple 

linear moderation. We tested the models on an interesting data set involving the moderating effect 

of CSR on the relationship between advertising and firm value. The results clearly indicated that 

all three non-parametric models fit the data better than their parametric counterpart did. It was 

also clear that the moderation effect is non-linear ranging from non-significant to significant effect 

at a low value of advertising and then becoming stable as advertising increases. Of course, the 

models we are proposing are open for testing and the researcher is encouraged to try to compare 

between them before resorting to the correct specification.  

 

Table 1. Descriptive Statistics 

Variable Mean SD 

MTA 1877.33 8244.15 

Advertising 92.58 163.88 

CSR 0.80 5.88 

Size 3.08 0.61 

 

Figure 1. Cross-validated 𝑹𝟐 
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Table 2. Misspecification Tests 

 misspecification test p-value 

Model A 0.000 

(0.000) 

Model B 0.032 

(0.001) 

Model C 0.046 
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(0.001) 
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Figure 2. Moderation effect and 95% confidence intervals (in elasticity form) 

Notes: Elasticity is 𝜀 = (
𝜕𝑦

𝜕𝑥
) (

𝑥

𝑦
). 
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