
Earth and Planetary Science Letters 532 (2020) 116023

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/epsl

What determines the downstream evolution of turbidity currents?

Catharina J. Heerema a,∗, Peter J. Talling a, Matthieu J. Cartigny a, Charles K. Paull b, 
Lewis Bailey c,d, Stephen M. Simmons e, Daniel R. Parsons e, Michael A. Clare d, 
Roberto Gwiazda b, Eve Lundsten b, Krystle Anderson b, Katherine L. Maier b,f,g, 
Jingping P. Xu h,i, Esther J. Sumner c, Kurt Rosenberger f, Jenny Gales j, Mary McGann f, 
Lionel Carter k, Edward Pope a, Monterey Coordinated Canyon Experiment (CCE) Team
a Departments of Geography and Earth Sciences, Durham University, Durham, DH1 3LE, UK
b Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
c Ocean and Earth Science, University of Southampton, European Way, Southampton, SO14 3ZH, UK
d National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
e Energy and Environment Institute, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
f Pacific Coastal and Marine Science Center, U.S. G.S., Santa Cruz, CA 95060, USA
g National Institute of Water and Atmospheric Research, Wellington, New Zealand
h Southern University of Science and Technology of China, Shenzhen, 518055, China
i Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
j University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
k Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 May 2019
Received in revised form 11 November 2019
Accepted 7 December 2019
Available online 19 December 2019
Editor: J.-P. Avouac

Dataset link: 
https://doi.org/10.1594/IEDA/324529

Keywords:
turbidity current
submarine canyon
ignition
dissipation
autosuspension
flow behaviour

Seabed sediment flows called turbidity currents form some of the largest sediment accumulations, 
deepest canyons and longest channel systems on Earth. Only rivers transport comparable sediment 
volumes over such large areas; but there are far fewer measurements from turbidity currents, ensuring 
they are much more poorly understood. Turbidity currents differ fundamentally from rivers, as turbidity 
currents are driven by the sediment that they suspend. Fast turbidity currents can pick up sediment, 
and self-accelerate (ignite); whilst slow flows deposit sediment and dissipate. Self-acceleration cannot 
continue indefinitely, and flows might reach a near-uniform state (autosuspension). Here we show how 
turbidity currents evolve using the first detailed measurements from multiple locations along their 
pathway, which come from Monterey Canyon offshore California. All flows initially ignite. Typically, 
initially-faster flows then achieve near-uniform velocities (autosuspension), whilst slower flows dissipate. 
Fractional increases in initial velocity favour much longer runout, and a new model explains this 
bifurcating behaviour. However, the only flow during less-stormy summer months is anomalous as it 
self-accelerated, which is perhaps due to erosion of surficial-mud layer mid-canyon. Turbidity current 
evolution is therefore highly sensitive to both initial velocities and seabed character.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Seafloor sediment density flows (called turbidity currents) are 
the dominant global mechanism for transporting sediment from 
the continental shelf to the deep sea. These flows play a crucial 
role in global organic carbon burial and geochemical cycles (Galy et 
al., 2007), and supply of nutrients to deep-sea ecosystems (Canals 
et al., 2006). Only rivers transport sediment over comparable ar-
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eas, although one turbidity current can carry more sediment than 
the annual flux from all the world’s rivers combined (Talling et 
al., 2013). Powerful turbidity currents can badly damage seafloor 
infrastructure, including oil and gas pipelines, and telecommuni-
cation cable networks. The latter carry over 95% of global data 
traffic (Carter et al., 2014), forming the backbone of the internet 
and financial markets. Turbidity current deposits host valuable oil 
and gas reserves, and form thick sequences of ancient rocks that 
record Earth’s history (Nilsen et al., 2008). The downstream evo-
lution of velocities and runout lengths controls how sediment is 
dispersed, the resulting deposit character and shape, and hazards 
to seafloor infrastructure. It is thus important to understand how 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Ignition, dissipation and autosuspension of turbidity currents. (A) Ignition 
is caused by net sediment erosion that increases flow density, causing increased 
velocities. This positive feedback cannot continue indefinitely, as elevated sediment 
concentrations eventually damp turbulence, shield the bed from erosion, or increase 
friction. (B) Dissipation is caused by sediment deposition, which leads to spatial 
decreases in flow density, and thus velocity. This negative feedback causes the flow 
to eventually die out. (C and D) Autosuspension comprises a situation in which flow 
density remains constant, and flow velocities are constant spatially. (C) Flow may 
be powerful enough to suspend all of the sediment it carries, but the substrate 
is too hard to erode. Alternatively, localised areas of erosion and deposition may 
also balance each other out, leading to no net change in suspended sediment. (D)
Sediment deposition may be balanced by an equal amount of substrate erosion. 
Models for autosuspension in (C) and (D) assume flow is dilute and fully turbulent. 
We subsequently present an alternative model for autosuspension (Fig. 7), where 
flow is driven by a dense near-bed layer.

turbidity currents work, especially what controls their runout, and 
changes in flow velocity with distance.

Turbidity currents differ profoundly from terrestrial rivers; un-
like rivers they are driven by the weight of sediment they carry, 
and this sediment can be entrained or deposited onto the seafloor 
along turbidity current pathways. Previous work suggested that 
exchange of sediment with the seabed may lead to positive feed-
backs, such that turbidity current behaviour is inherently unstable 
and diverges (Fig. 1) (Bagnold, 1962; Parker, 1982). These stud-
ies proposed that flows which erode sediment become denser, and 
thus accelerate, causing increased erosion, and further accelera-
tion (Fig. 1a). This process is called ignition, and it may play a 
pivotal role in producing powerful and long runout flows. Con-
versely, flows that deposit sediment may decelerate, leading to fur-
ther deposition (‘dissipation’; Fig. 1b). Such positive feedbacks may 
produce thresholds in behaviour that depend on small differences 
in initial flow state. It has also been proposed that flows could 
achieve a near-uniform state in which erosion is balanced by sedi-
ment deposition, termed autosuspension (Fig. 1c, d) (Pantin, 1979). 
Here, turbulence within the flow is strong enough to keep parti-
cles in suspension, and counteracts their settling velocity (Parker, 
1982). However, unlike ignition, there is no net gain of sediment 
from the bed, as the bed is too hard to erode (Fig. 1c), or sedi-
ment erosion balances sediment deposition during autosuspension 
(Fig. 1d). Flows that balance erosion and deposition will tend to-
wards spatially uniform velocities, assuming that seabed gradient 
and flow width do not change markedly. Self-acceleration due to 
ignition is unlikely to continue indefinitely: increased sediment 
concentrations will eventually damp the turbulence that keeps 
sediment aloft (Baas et al., 2009) and shield the bed from rapid 
erosion, or increase frictional drag and thus reduce flow veloc-
ities. However, there is considerable debate over what happens 
after ignition ceases (Fig. 1a). Do the flows reach a state of au-
tosuspension; and if so, what do autosuspending flows look like? 
In particular, do flows develop a dense near-bed layer that drives 
the event (as proposed by e.g. Winterwerp, 2006), or remain an 
entirely dilute and fully turbulent suspension (e.g. Cantero et al., 
2012)?

Turbidity currents are notoriously difficult to monitor in action, 
due to their location, episodic occurrence, and ability to dam-
age instruments in their path (Inman et al., 1976; Talling et al., 
2013). Consequently, there are very few direct measurements from 
oceanic turbidity currents, ensuring fundamental theories on how 
turbidity currents work are poorly tested. In particular, ignition and 
autosuspension have been difficult to reproduce in laboratory ex-
periments (Southard and Mackintosh, 1981). This may be because 
most laboratory experiments are relatively slow moving, compared 
to full-scale oceanic flows, and thus have limited ability to erode 
their substrate, or fully support sediment with realistic grain sizes. 
Experimental flows thus tend to dissipate. Sequeiros et al. (2009, 
2018) successfully produced self-accelerating turbidity currents in 
relatively slow moving (< 20 cm/s) laboratory experiments with 
low density particles, but they did not reproduce fully realistic pro-
cesses of seabed erosion. However, new technologies have recently 
led to major advances in monitoring of active turbidity currents 
(Hughes Clarke, 2016). This includes acoustic Doppler current pro-
filers (ADCPs) that measure velocity profiles to within a few meters 
of the seafloor (Xu, 2010). Here we use ADCP and other sensor data 
to observe spatial patterns of flow ignition, dissipation, and auto-
suspension in unprecedented detail; and to study how flows work 
in general.

This study analyses the most detailed (7 locations at sub-
minute intervals) field measurements yet from oceanic turbidity 
currents, which include the fastest (up to 7.2 m/s) flows cap-
tured via moored instruments. These measurements come from 
the upper 52 km of Monterey Canyon, offshore California (Fig. 2a) 
(Paull et al., 2018). Previous direct monitoring of turbidity cur-
rents has typically involved measurements at a relatively small 
number (≤ 3) of locations along their pathway, which provides 
limited information on how flows behave (Khripounoff et al., 2009; 
Liu et al., 2012; Azpiroz-Zabala et al., 2017). By having measure-
ments in seven locations along a turbidity current pathway we are 
able to determine how flows evolve. Here we focus on changes in 
the average flow front velocities between measurement locations 
(termed transit velocities), maximum internal velocities, as well as 
duration of flow velocities in each event (as measured by ADCPs).

1.1. Aims

The first aim is to document changes in turbidity current ve-
locity and runout distance, and hence flow behaviour. What is 
the observed pattern of ignition, autosuspension and dissipation; 
and do multiple flows show a consistent pattern of behaviour? 
The second aim is to understand what causes these patterns of 
flow behaviour. In particular, we consider how two factors (initial 
velocity and substrate erodibility) affect flow behaviour, and how 
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Fig. 2. Location, runout distances and velocities of turbidity currents in Monterey Canyon. (A) Bathymetry map of Monterey Canyon showing location of moorings in this 
study (MS1 to MS7, SIN), and Navy Slump. (B) Timing and runout distance of turbidity currents in Monterey Canyon between October 2015 and April 2017. Horizontal 
lines show 13 events registered by ADCPs. The green and yellow boxes show the 6-month deployment periods. Locations of moorings (MS1 to MS7, SIN) are indicated. The 
exact point where flows terminate between moorings is uncertain. (C) Changes in flow velocity with distance along Monterey Canyon’s thalweg. Solid dots and solid lines 
show frontal velocities between moorings. Open symbols and dotted lines show maximum internal velocity measured at each mooring by an ADCP, including for some flows 
that only reached the first mooring (solid squares). (D) Changes in thalweg gradient. (E) Changes in axial channel width, defined by the width of mapped bedforms. (For 
interpretation of the colours in the figures, the reader is referred to the web version of this article.)
near-uniform flow (autosuspension) may follow ignition. Our third 
aim is to determine if broadly similar flow behaviour is seen else-
where, although suitable field data are sparse. Our fourth aim is 
to compare these field observations to most widely accepted theo-
ries for ignition and autosuspension. To what extent do these new 
field data provide a test of past theories? Finally, we develop a new 
generalised model for how turbidity currents operate in submarine 
canyons floored by loose-sand, which better explains these novel 
field observations.

1.2. Terminology

Turbidity current is used here as a general term for all types 
of submarine sediment density flow. Dense flow signifies sedi-
ment concentrations that are high enough to damp turbulence 
significantly, such that turbulence is no longer the main support 
mechanism, whilst dilute flow is fully turbulent. There is no single 
threshold value for sediment concentration at which turbulence 
is strongly damped, as this depends on multiple factors includ-
ing flow velocity, sediment mineralogy and grainsize. But dilute 
flows typically have sediment concentrations of � 1%, whilst dense 
flows might often contain > 10% sediment by volume. Diverging
behaviour denotes how small changes in initial flow velocity are 
linked to large changes in subsequent runout. It does not imply 
that flow behaviour is bimodal, and intermediate runout lengths 
can still occur.

2. Material and methods

The Coordinated Canyon Experiment (CCE) monitored the upper 
52 km of Monterey Canyon (California, USA) to water depths of 
1850 m, for 18 months from 2015 to 2017 (Fig. 2) (Paull et al., 
2018). Sand is primarily delivered to the canyon head via longshore 
drift, with little river input (Paull et al., 2005). The entire canyon-
channel system extends for over 300 km, but flows that runout 
for over 60 km, to a water depth of 2,850 m, only occur every 
few hundred years (Stevens et al., 2014). Flows are confined, and 
experience a constant seafloor gradient and width in the upper 
part of Monterey Canyon (Fig. 3). The upper Monterey Canyon, up 
to 2100 m water depth, has a sinuosity of 1.9 (Paull et al., 2011). 
The canyon briefly narrows at a constriction between 1300 and 
1400 m water depth, called the Navy Slump (Figs. 2 and 3) (Paull 
et al., 2011). This study uses data recorded by ADCPs along the 
canyon thalweg (Fig. 2), which were part of a larger instrumental 
array (Supplementary Fig. 1) (Paull et al., 2018).

2.1. ADCP measurements

ADCPs documented velocity profiles through the turbidity cur-
rents (Fig. 3; Supplementary Fig. 1), although they are typically 
unable to make measurements within a few meters of the bed. The 
shallowest five mooring stations (MS1 to 5), and deepest moor-
ing station (MS7), had downward-looking 300 kHz ADCPs located 
approximately 65 m above the bed seafloor (Paull et al., 2018). 
ADCPs on these moorings recorded velocity at 30 second inter-
vals. A Seafloor Instrument Node (SIN) was located on the seafloor 
between MS5 and MS7, which contained three separate upward-
looking ADCPs recording at 10 second intervals, using acoustic 
sources with three different frequencies (300, 600, 1200 kHz). No 
reliable ADCP measurements of current velocity are available from 
the shallowest mooring (MS1) for some flows, as this mooring 
broke loose on January 15, 2016 (Paull et al., 2018).

2.2. Maximum flow velocity measured by ADCPs

Determining the maximum reliable velocity measured by the 
ADCP is not straightforward. The arrival of an event is accompanied 
by mooring tilt and high near-bed sediment concentrations, influ-
encing the ability of ADCPs to accurately record velocities (Paull 
et al., 2018). Side-lobe interference may compromise some ADCP 
measurements within 1-3 m of the seabed (Teledyne RD Instru-
ments, 2011), although this depends on the relative strength of 
backscatter from side-lobe areas and sediment in the flow. We thus 
adopted a consistent procedure for calculating maximum ADCP-
measured velocities, which excludes the 20 highest values during 
an event. The overall trend of internal velocities remains the same, 
and therefore our ADCP data processing does not change this pa-
per’s main conclusions.
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Fig. 3. Velocities of turbidity currents in Monterey Canyon and properties of the thalweg. (A) Changes in flow velocity with distance along Monterey Canyon’s thalweg. Solid 
dots and solid lines show frontal velocities between moorings. Open symbols and dotted lines show maximum internal velocity measured at each mooring by an ADCP, 
including for some flows that only reached the first mooring (solid squares). (B) Changes in thalweg gradient. (C) Changes in axial channel width, defined by the width of 
mapped bedforms.
2.3. Transit velocities and runout distance

Flow arrival times at the 6 ADCP moorings and SIN were used 
to measure transit velocities, which are average front velocities 
across distances between 0.5 km and 15 km (Fig. 3a). Arrival times 
are based on 30 second (or 10 second for SIN) recording interval 
of the ADCPs, corrected for clock drift. Distances between sen-
sors were measured along the canyon thalweg, based on a 15 m 
bathymetric grid. It is assumed that flows principally followed the 
thalweg (Fig. 2a).

2.4. Duration of powerful flow measured by ADCPs

As frontal or maximum velocities only tell part of how flow 
is evolving, and changes in velocity structure, the duration of a 
fast-moving flow is also quantified and presented (Table 1; Sup-
plementary Fig. 4). This duration, determined for three different 
velocity thresholds, provides an additional indication of how flows 
may lengthen or stretch over time.

2.5. Canyon topography

Seafloor gradient is determined along a midline through the 
canyon thalweg (Fig. 3b), using an average of 10 grid-cells, each 
of which has a length of 15 m. Canyon width is defined using the 
area of active bedforms (Paull et al., 2018), and measured every 
200 m down the canyon. The canyon floor is delimited by steep 
canyon walls with slopes of ∼10 to 45◦ .

2.6. Grain sizes

Sediment traps were mounted at 10 meters above the seafloor 
on moorings (Supplementary Fig. 1). They were tilted and brought 
closer to the bed by the initial powerful stages of some flows. 
Grain sizes in sediment traps from the upper canyon (MS1, MS2, 
and MS3) were used for most events. For the September 1st event, 
MS3 and MS4 are used, as the event ignited farther down in the 
canyon. Laser particle grain size measurements were taken every 
1-5 cm from traps. Discs released automatically into the traps at 8-
day intervals provided time markers. Supplementary Fig. 5 shows 
grain size distribution for the flow events, including mean grain 
sizes used for Fig. 6.

3. Results

The entire sensor array in Monterey Canyon recorded 15 flows 
(Paull et al., 2018). Here we consider only the 13 flows mea-
sured using the moored ADCP array (Fig. 2b; Supplementary Figs. 1 
and 2), as we rely on ADCP measurements. Twelve of these 13 
ADCP-measured flows started in the upper canyon at water depths 
of < 300 m. Flows were measured first by ADCPs at Mooring Sta-
tion (MS) 1, located 6.7 km from the canyon head (Figs. 2a and 
3a). Many flows then rapidly dissipated, including six flows that 
died out entirely before MS2, which is 9 km downstream of MS1 
(Fig. 3a). Of the seven flows measured at multiple moorings, three 
flows terminated within the sensor array. One event occurred only 
in the mid-canyon, between MS4 and MS5. Three further flows 
swept through the entire sensor array, running out for over 50 km 
from the canyon head, although they had very different velocities 
and durations at the final sensor site (Figs. 3a and 4). Most (12 of 
13) flows were initiated during the winter months (Fig. 2b), dur-
ing which time storm waves are most pronounced and are thought 
to be important for flow initiation (Paull et al., 2018). Only one 
event occurred in the summer months. This event on September 
1st 2016 did not coincide with large wave heights, a river flood, or 
earthquake; suggesting another, as yet poorly understood, trigger 
(Paull et al., 2018).

Transit velocities are available for the seven flows that reached 
multiple moorings (Fig. 3a). The transit velocities between the first 
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Table 1
Flow duration (in minutes) for each mooring station and event. For each event, a threshold flow velocity was set to determine the duration of the flow at each mooring. 
The ADCP data was displayed using contour lines corresponding to each threshold, allowing for determination of flow duration at every mooring. Left hand columns denote 
flow velocity threshold ≥ 1 m/s. Middle columns denote flow velocity threshold ≥ 2 m/s. The right-hand column denotes flow velocity threshold ≥ 3 m/s. Where no flow 
duration is given, there was no ADCP measurement (January 15, MS1, and September 1, MS4). A duration of 0 min indicates the flow is no longer measured at the specified 
threshold velocity at that mooring.
two moorings (MS1 and MS2) have broadly similar values of be-
tween 4 and 6 m/s. The runout length of these flows varied greatly, 
with large increases in runout length correlating with only slightly 
faster initial frontal velocity (Fig. 3a). However, one event recorded 
during the CCE experiment showed a different trend, and it was 
the only event occurring outside the winter months, on September 
1st (Fig. 1b). This event started with an initial comparatively low 
frontal velocity between MS1 and MS2 of ∼4 m/s, identical to the 
initial frontal velocity of the November 24th event (Fig. 1c) (Paull 
et al., 2018). However, the November 24th event failed to reach 
MS3; whilst the September 1st event accelerated between MS3 and 
MS5, and reached the end of the instrument array (Fig. 3a).

The maximum ADCP velocities measured within flows occurred 
within the first 10 minutes of the flow front arrival. These inter-
nal velocities show a broadly similar pattern to the transit veloci-
ties (Fig. 3a). Flows with slower maximum ADCP-measured veloc-
ities at the first mooring tended to die out abruptly in the upper 
canyon, whilst events with faster ADCP-measured velocities ran 
out for much longer distances (Fig. 3a). Note that ADCP measure-
ments define six shorter runout events that are only recorded at 
one mooring, and thus lack transit velocity data.

Flow behaviour is only partly captured by transit and maximum 
ADCP measured velocities. For example, modest increases in tran-
sit velocity are often associated with more prolonged periods of 
powerful flow (Fig. 4, Table 1). As a powerful flow is more efficient 
in entraining substrate, the duration of powerful flow is impor-
tant for ignition or autosuspension. Flows tend to stretch, as the 
frontal part of the flow runs ahead from the slower moving body 
and tail (Fig. 4) (Azpiroz-Zabala et al., 2017). Overall, long run-
out events occurring in winter tended to significantly stretch, such 
that they extended for almost the entire length of the instrument 
array. Shorter winter events, based on data from the shorter win-
ter event on November 24th, are initially ∼10 km in length as the 
event arrives at MS2, but die out in the upper-canyon. The long 
runout summer event was initially weak, but became much more 
prolonged and faster mid-canyon, as well as increasing its transit 
velocity; before dissipating rapidly between MS5 and MS7 (Fig. 4). 
Most flows started with a flow front thickness < 10 m. The long 
run-out events in winter developed thicknesses > 30 m (Fig. 4) 
(Paull et al., 2018).
4. Discussion

4.1. Is there a consistent pattern of behaviour for turbidity currents?

Eleven of the twelve flows show a broadly consistent pattern 
of runout behaviour, which can be based on the initial transit 
velocity between the first two moorings, and the maximum ADCP-
measured velocities at the first mooring (Fig. 3a). Flows with the 
fastest initial velocities tend to run out further. However, small 
changes in initial transit velocities, or maximum ADCP-measured 
velocities, lead to much larger changes in runout distance and sub-
sequent flow velocity. Runout distances are thus highly sensitive 
to initial velocities, leading to diverging flow behaviour (Fig. 3a). 
All flows initially accelerate, and the initially fastest flows have 
near-uniform transit velocities for several tens of kilometres and 
can stretch up to 35 km in length (Fig. 4). Flows with only 
fractionally slower (∼0.5 m/s) initial transit velocities, or maxi-
mum ADCP-measured velocities, die out mid-canyon. The six slow-
est moving flows at MS1 terminate rapidly before reaching MS2 
(Fig. 3a). These flows that die out in the upper or mid-canyon are 
initially powerful, and can sometimes carry heavy (800 kg) ob-
jects, or move moorings down-canyon, at velocities of ≥ 4 m/s, 
but their power does not persist for several kilometres. Only the 
fastest flows at the first mooring maintain their velocity for longer 
distances, and lengthen significantly. The single exception to this 
general pattern of behaviour (Figs. 2c and 3) occurred on Septem-
ber 1st 2016. This flow’s transit velocity and maximum ADCP-
measured velocity increased in the mid-canyon (Fig. 3a), and the 
duration of powerful flow lengthened markedly (Fig. 4).

These field data thus provide new insights into where and how 
flows ignite, dissipate or autosuspend. A notable observation is that 
the four most powerful flows at MS1 have near-uniform transit 
velocities for ∼20-35 km, from MS1 to MS3; and near-uniform 
maximum internal (ADCP-measured) velocities from MS1 to MS2 
(Fig. 3a). This suggests that an initial phase of acceleration (ig-
nition) is followed by near-uniform flow velocities (autosuspen-
sion), at least near the flow front. Transit velocities are averages 
over substantial distances, and internal (ADCP-measured) veloci-
ties come from a few specific locations. Thus, it is possible that 
flow velocities show greater localized variability than depicted in 
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Fig. 4. Turbidity current structure at consecutive snap-shots in time, showing 
changes in flow-length, internal velocity-structure, and flow-thickness. Flow ve-
locities between moorings are inferred, as are velocities in the lower 3-4 m of the 
flow (due to ADCP side-lobe interference). (A) Long run-out flow, which is initially 
fast, based primarily on the January 15th event. The MS1 mooring was dragged 
down-canyon during the January 15th event. Thus, ADCP-data from the February 
3rd event are used for MS1 in T1 snapshot, and it is unknown if the 15th Jan-
uary flow was present at MS1 during the T1+70 min snapshot. (B) Shorter runout 
flow that was initially powerful, but then dissipated rapidly, based on November 
24th event. This event carried an 800 kg object at ≥ 4 m/s, for ∼1 km in the up-
per canyon (Paull et al., 2018). (C) Example of an initially-weak turbidity current on 
September 1st, which then accelerated markedly in the mid-canyon, and dissipated 
rapidly between MS5 and MS7. This is the only event that occurred during summer 
months (Fig. 2b).

Fig. 3a. However, available field data indicate near-uniform transit 
velocities (autosuspension) over substantial distances.

4.2. What factors control turbidity current behaviour?

We now seek to understand what controls these patterns of 
flow behaviour. Twelve flows accelerated rapidly from rest within 
the upper 6.7 km of the canyon, reaching velocities of at least 3 
to 6 m/s at MS1 (Fig. 2). These turbidity currents were most likely 
generated by seabed failure, typically during storm events, as sed-
iment plumes from rivers are weak or absent (Paull et al., 2018). 
An initial phase of acceleration will partly result from gravitational 
acceleration of the failed mass, but it may also indicate that flows 
eroded the seabed and self-accelerated (ignited). However, the rel-
ative importance of simple gravitational acceleration of an initial 
failure, and ignitive self-acceleration via subsequent seabed ero-
sion, is uncertain due to a lack of repeat bathymetric surveys with 
high enough frequency upstream of MS1.

Beyond MS1, small (< 0.5-1 m/s) increases in initial transit or 
maximum ADCP-measured velocities are associated with profound 
differences in subsequent flow behaviour (Figs. 2c and 3). We thus 
infer that initial velocities in the upper canyon determine later 
flow behaviour. Flows with only fractionally higher initial transit 
velocities, or maximum internal ADCP-measured velocities, tend to 
run out for much greater distances (Fig. 3a; Table 1). This strongly 
diverging flow behaviour is not due to changes in seafloor gradi-
ent or canyon width, as canyon axial channel width (∼200 m) and 
gradient (∼2◦) are relatively uniform from MS1 to MS3 (Fig. 2d, e), 
and all of these flows experienced similar changes in canyon slope 
and width. However, the axial channel widens significantly beyond 
MS3 (from ∼200 to ∼600 m), which may explain why most flows 
consistently decelerate beyond MS3 and MS4 (Fig. 3).

The September 1st event is anomalous, as it was initially slow 
moving but its transit velocity then increased mid-canyon (Fig. 3a), 
and the duration of powerful flow velocities increased (Fig. 4; 
Table 1). This acceleration is not related to steepening or nar-
rowing of the canyon, and cannot be explained by a ‘tail wind’ 
from internal tides (Supplementary Fig. 3). This flow was also the 
only event to occur in summer (Fig. 2b). One hypothesis is that 
self-acceleration of the September 1st event resulted from entrain-
ment of a surficial-mud layer, deposited during less-stormy sum-
mer months. Surficial-mud layers that are 1-12 cm thick occur in 
the nearby La Jolla Canyon (Paull et al., 2013), whilst mud layers in 
cores from MS7 in Monterey Canyon are 1-3 cm thick, with modal 
grain sizes of ∼50-80 μm (Fig. 8 of Maier et al., 2019). However, 
it is not clear whether surficial-mud layers are better developed 
during summer months, as information from repeat coring during 
different seasons is lacking. Moreover, strong (50-80 cm/s) internal 
tides in Monterey Canyon rework canyon floor mud throughout the 
year (Maier et al., 2019). An alternative hypothesis for mid-canyon 
ignition of the September 1st event is triggering of a local sub-
strate failure, forming a knickpoint. Such knickpoints are observed 
in several places on the canyon floor, and they have been termed 
‘master head scarps’ in past work (Paull et al., 2010). However, we 
also lack suitably detailed time-lapse seabed surveys from the mid-
canyon to determine whether a local knickpoint failure occurred.

4.3. Do submarine flows in other locations show similar behaviour?

Having determined that there is a consistent pattern of flow 
behaviour in Monterey Canyon, albeit with one exception, we now 
seek to understand if similar behaviour occurs elsewhere, and is 
thus of more general importance. There are few other locations 
worldwide where the transit or internal velocities of oceanic tur-
bidity currents have been measured at more than 4 locations along 
the flow pathway. Indeed, we are aware of only 3 such datasets 
(Fig. 5).

One of these field datasets comes from cable breaks along 
Gaoping Canyon, offshore Taiwan, which (unlike Monterey Canyon) 
is fed by a major river mouth (Fig. 5b) (Gavey et al., 2017). Seabed 
gradients along Gaoping Canyon (0.3◦-1.0◦; Gavey et al., 2017) are 
somewhat lower than Monterey Canyon (1.6◦-2.3◦; Paull et al., 
2011) (Fig. 5). Transit velocities in Gaoping Canyon are nearly con-
stant for ∼100 km, suggesting that the turbidity currents reach 
a near-uniform equilibrium state. This pattern of uniform flow 
front velocities (autosuspension) is thus not specific to Monterey 
Canyon, and it may persist over even longer distances.

A second data set comes from a turbidity current that broke 
submarine cables offshore from the Grand Banks, Newfoundland, 
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Fig. 5. Changes in frontal velocities of turbidity currents over distance. Variations in seabed gradient and flow confinement are also shown. (A) Frontal velocities of flows in 
Monterey Canyon. Fig. 3 shows detailed changes in seabed gradient and channel floor width. (B) Frontal velocities of flows confined within Gaoping Canyon, offshore Taiwan, 
based on cable breaks (Gavey et al., 2017). Average seabed gradients are shown, but detailed surveys of canyon width are currently lacking. (C) Frontal velocities of the 
Grand Banks turbidity current in 1929, offshore Newfoundland, based on cable breaks (Heezen and Ewing, 1952; Hughes Clarke, 1988; Piper et al., 1999). Distance is from 
the initial earthquake epicentre, although coincident cable breaks occurred over a wider area. The initial part of this flow was confined by submarine fan-valleys, but was 
unconfined during its later stages, as it spread across a basin plain (Piper et al., 1999). Detailed data on the seafloor gradient over the entire length of the event are lacking, 
and are based on Stevenson et al. (2018) and Piper and Hundert (2002).
in 1929 (Heezen and Ewing, 1952; Piper et al., 1988). The turbid-
ity current resulted from extensive but thin (average 5 m) failures 
on the continental slope, with ∼185 km3 of sediment deposited on 
the Sohm Abyssal Plain (Piper and Aksu, 1987; Piper et al., 1988). 
These failures progressively entrained seawater and evolved into 
debris flows, and then turbidity currents (Piper et al., 1999). Flow 
was confined initially within multiple valleys for the first ∼500 
km of the pathway (Hughes Clarke et al., 1990), where it reached 
a transit velocity of 19 m/s on a gradient of ∼0.5◦ (Hughes Clarke, 
1988). This initial phase of the flow eroded the seabed, and may 
have ignited; although this is not demonstrated by flow veloci-
ties from cable breaks. Transit velocities then decreased to 6.2 m/s 
on gradients of ∼0.15 to 0.05◦ , as flow became poorly confined, 
and spread to become several hundred kilometres wide (Fig. 5c; 
Heezen and Ewing, 1952; Hughes Clarke, 1988; Hughes Clarke et 
al., 1990; Piper and Hundert, 2002). Its transit velocity continu-
ously decreased with distance during these later stages, showing 
how reduction in confinement can control flow behaviour, leading 
to dissipation.

4.4. Comparison of field data to previous theory of autosuspension and 
ignition

We now compare our new field observations to previous influ-
ential theory that predicts when a submarine turbidity current will 
autosuspend or ignite (Bagnold, 1962; Pantin, 1979; Parker, 1982; 
Parker et al., 1986). It is important to understand whether these 
unusually detailed field observations can provide a robust test of 
such theories.

4.4.1. Initial energy-balance theory
Initial work (Bagnold, 1962; Pantin, 1979; Parker, 1982) formu-

lated a theory for whether turbidity currents autosuspend or ignite 
that is based on energy losses and gains by the flow. It was as-
sumed that movement of sediment down-slope results in loss of 
potential energy, whilst energy is expended by processes that keep 
sediment grains aloft. When energy gains equal or exceed energy 
losses, the flow can carry all of the sediment it suspends. Then, 
if the flow can also erode loose sediment from the bed, it ignites 
(Fig. 1). However, if no erodible material is available, the flow auto-
suspends. Alternatively, if energy losses exceed energy gains, then 
some of the suspended sediment will settle out, and the flow will 
eventually dissipate.

Equation (1) and Fig. 6 result from this initial energy-balance 
theory (Bagnold, 1962; Pantin, 1979; Parker, 1982), as previously 
depicted by Sequeiros et al. (2009). Fig. 6 predicts the threshold 
frontal velocity (uh) for ignition, as a function of sediment settling 
velocity (ws) and seafloor gradient (β). The threshold constant for 
ignition to occur (ε), varies between different authors. Bagnold 
(1962) and Parker (1982) assume that potential energy gain must 
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Fig. 6. Comparison of field measurements in Monterey Canyon to past energy-
balance theory for autosuspension, following Sequeiros et al. (2009). It shows the 
threshold flow velocity predicted by three past theories, for a given grain-size and 
seabed gradient, above which flows carry all suspended sediment (i.e. autosuspend). 
If seabed sediment is available for erosion, the flow will also ignite. Blue lines show 
the different threshold constants (ε in Equation (1)) used by different authors, as-
suming a seabed gradient of 2◦ . Autosuspension occurs below the lines. Note that 
results for the threshold constant of Bagnold (1962) coincide with those of Parker 
(1982) for the case of Monterey Canyon. Grain-size distributions for three events 
(November 24th, September, 1st, and January 15th) in Monterey Canyon, based on 
sediment traps located 10 m above the bed. The grain-size distributions shown here 
are averages for each event in sediment traps from the upper canyon where flows 
are assumed to ignite (see Material and Methodology, Supplementary Fig. 5 for 
more information). The coloured boxes show the 10th percentile (D10) and 90th
percentile (D90) of the coarsest grain-size samples in traps from each event.

at least equal or exceed energy losses (ε ≤ 1). In contrast, Pantin 
(1979) assumes that only a small fraction (ε ≤ 0.01) of potential 
energy gain will be available to keep sediment aloft, with most 
potential energy being dissipated in other ways.

ws cosβ

uh sinβ
≤ ε

⎧⎨
⎩

ε = 0.01 (Pantin, 1979)
ε = 1 (Parker, 1982)
ε = cosβ (Bagnold, 1962)

(1)

As we use the flow front velocity (uh), we only consider whether 
ignition or autosuspension occurs near the flow front. As noted 
by past authors (e.g. Bagnold, 1962; Pantin, 1979; Parker, 1982; 
Sequeiros et al., 2009), Equation (1) is a necessary condition for 
ignition, but it is not a sufficient condition for ignition; indeed it 
is rather conservative (Parker et al., 1986). Suitable sediment must 
also be available for erosion and incorporation into the flow. This 
might not be the case, for example, if the flow was moving over 
hard bedrock.

Measurements from Monterey Canyon can be combined with 
Equation (1) to compare observed and predicted flow velocities 
associated with ignition (Fig. 6). We use a seabed gradient of 2◦
(Fig. 1e) (Paull et al., 2018), and sediment traps on moorings for 
grainsize distributions for three separate turbidity currents. The 
sediment trap closest to the location of ignition in that flow is used 
(Fig. 1c), together with the coarsest subsample from each flow de-
posit in that trap. These traps were initially suspended 10 m above 
the bed, but they were sometimes dragged closer to the bed dur-
ing the first few minutes of flow (Paull et al., 2018). The method of 
Ferguson and Church (2004) is used to estimate settling velocities 
for individual grains, which assumes that flow is dilute. Settling ve-
locities could become hindered at higher sediment concentrations.
Fig. 6 shows transit (average frontal) velocities needed for igni-
tion for the grain sizes captured by traps in the Monterey Canyon 
flows, for different values of ε that have been proposed previously. 
There is reasonable agreement between our field observations with 
the approach of both Parker (1982), and Bagnold (1962). Where 
flows ignited in Monterey Canyon, grain sizes observed in sedi-
ment traps mainly lie within the field of ignition (Fig. 6). There is 
poorer agreement with Pantin (1979), suggesting that potential en-
ergy losses do not need to be 100 times greater than energy losses 
to keep sediment aloft, and thus for ignition to occur.

4.4.2. Subsequent more complex turbulence energy-balance theory
The simple energy-balance approach summarized by equation 

(1) (Bagnold, 1962; Pantin, 1979; Parker, 1982) sets out a neces-
sary condition for autosuspension or ignition. However, flows that 
fulfil equation (1) need not ignite, as other conditions are also 
important. For example, sediment exchange with the seabed will 
strongly influence flow density and thus velocity (Parker et al., 
1986; Traer et al., 2012), whilst entrainment of surrounding wa-
ter will cause momentum to be lost (Parker et al., 1986).

Parker et al. (1986) therefore subsequently developed a more 
advanced and complete theory. This theory initially comprised 
three layer-averaged equations based on budgets of fluid (water) 
mass, sediment mass and momentum within the flow (Parker et 
al., 1986). A fourth layer-averaged equation was then based on 
budgets of turbulent kinetic energy within the flow, including tur-
bulence production at the upper and lower flow boundary, dissipa-
tion of turbulence due to viscosity, and work done by turbulence 
against vertical density gradients (Parker et al., 1986). This ap-
proach led to a more complex criterion for ignition (equation 16 
of Parker et al. (1986)). This criterion involves layer-averaged sedi-
ment concentration, flow velocity and thickness, sediment settling 
velocity, bed shear velocity, and rates of sediment and water en-
trainment (Parker et al., 1986). This more advanced but complex 
criterion for ignition implicitly assumes that sediment is mainly 
supported by fluid turbulence. It would not apply to denser sed-
iment flows in which turbulence is strongly damped, and where 
other processes become important for sediment support, such as 
support via grain-to-grain collisions, or excess pore pressure.

4.5. Why past autosuspension and ignition theory is difficult to test

Although unprecedented in their detail, our field observations 
from Monterey Canyon provide a rather weak test of the ini-
tial simpler energy-balance theory (Bagnold, 1962; Pantin, 1979; 
Parker, 1982), and they are unable to test the more complex tur-
bulent energy-balance (Parker et al., 1986) theory, for three key 
reasons.

First, both types of theory involve a single sediment settling ve-
locity, and thus require that a representative grain size is chosen. 
However, turbidity currents in Monterey Canyon contain a wide 
range of grain sizes (Fig. 6), as is often the case for turbidity cur-
rents elsewhere. Thus, there is an issue of which representative 
grain size to choose from this wide distribution (Fig. 6). There 
are also major issues related to measurement of grain size in the 
field via sediment traps, as traps only sample grain size at a sin-
gle height, and traps may be less effective at capturing finer grains 
than coarser grains.

Second, in the case of theory based on turbulent kinetic energy 
budgets (Parker et al., 1986), we lack sufficiently precise mea-
surements of key parameters needed by this theory, most notably 
layer-averaged sediment concentrations, but also rates of sediment 
and water entrainment.

Finally, and most importantly, some key assumption that under-
pin past theories may not hold. For example, Parker’s later theory 
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Fig. 7. New travelling wave model. Travelling wave model for turbidity current behaviour in loose-sand submarine canyons, in which flows contain a fast and dense near-bed 
layer at their front, as proposed by Paull et al. (2018). Erosion at the front of this dense near-bed layer is balanced by sediment deposition from its rear, leading to uniform 
transit velocity and autosuspension. Sediment is shed backwards to form a trailing sediment cloud that is dilute and fully turbulent, which lengthens over time.
based on turbulent kinetic energy budgets assumes that flow is di-
lute, such that turbulence is always the main support mechanism 
(Parker et al., 1986). Field evidence suggests that some turbidity 
currents in Monterey Canyon are driven by dense near-bed lay-
ers with high (> 10% by volume) sediment concentrations (Fig. 6) 
(Paull et al., 2018). These dense layers are needed to explain the 
fast (≥ 4 m/s) movement of very heavy (up to 800 kg) objects for 
several kilometres (Paull et al., 2018). It is unlikely that entirely 
dilute flows could carry such heavy objects, at high velocities, 
for such distances; the heavy objects are instead entombed in a 
dense near-bed layer (Paull et al., 2018). Turbulence is damped 
strongly in such dense near-bed layers, and settling will be hin-
dered (Winterwerp, 2006). Other sediment support mechanisms 
become important, such as grain collisions or excess pore pressures 
that partly carry the sediment load. The more advanced ignition 
theory (Parker et al., 1986) would thus be unable to capture the 
behaviour of flows in Monterey Canyon with dense near-bed lay-
ers.

4.6. New travelling wave model

We now outline a new conceptual model for how initially fast 
moving turbidity currents operate in confined settings, underlain 
by loose sand, based on our field observations. Following Paull et 
al. (2018), this model includes dense near-bed layers that drive the 
flow, in which turbulence is not the main support mechanism. The 
model thus better fits detailed field observations from Monterey 
Canyon. A new model is needed because past theory for ignition 
and autosuspension (Parker et al., 1986) was not formulated to 
include dense near-bed layers. The new model differs from past 
work (e.g. Paull et al., 2018), as it explains how flows that initially 
ignite may then autosuspend, as they reach a uniform transit ve-
locity.

We propose that during initial ignition, and the following near-
equilibrium (autosuspension) phase, a fast and dense near-bed 
layer exists at the flow front, which drives the overall event, sim-
ilar to Fig. 7 (Winterwerp, 2006). This dense near-bed layer near 
the flow front maintains an approximately uniform frontal veloc-
ity, as erosion of the bed near its front, is balanced by deposition 
at its rear (Fig. 7). Thus, although the dense layer is locally either 
erosive or depositional at a single location, erosion and deposition 
are balanced over the whole of the layer, such that the dense layer 
velocity is near-uniform. This leads to autosuspension (Fig. 7). We 
envisage that sediment concentrations in the dense layer (10-30%) 
are those attributed by Winterwerp et al. (1992) to hyperconcen-
trated flow, which is capable of forming the crescentic shaped bed-
forms seen along the floor of Monterey Canyon (Winterwerp et al., 
1992; Paull et al., 2018). It has been suggested that liquefied flows 
of sand could only travel for short distances (Lowe, 1976) on steep 
slopes (> 3◦) due to rapid dissipation of excess pore fluid pres-
sures and basal sedimentation. However, addition of small fractions 
of cohesive mud, as seen in Monterey Canyon (Maier et al., 2019), 
increase the time taken for excess pore pressure to dissipate by or-
ders of magnitude and hinders settling (Iverson et al., 2010), thus 
greatly increasing runout of partly-liquefied flow. Sediment from 
the dense layer is shed backwards into a dilute and fully turbulent 
sediment cloud. This trailing cloud increases in length (stretches) 
as the dense flow front runs ahead of the trailing body (Figs. 3 and 
6) (Azpiroz-Zabala et al., 2017).

We term this new model the ‘travelling wave model’, and it is 
broadly comparable to behaviour seen in laboratory experiments 
involving dense, dry granular avalanches (Supplementary Fig. 6) 
(Pouliquen and Forterre, 2002; Mangeney et al., 2007). A key fea-
ture of these experiments is that the dry avalanches that are fast 
enough can erode their underlying substrate, in their case loose 
sand. These dry granular avalanche experiments show two types of 
behaviour (Pouliquen and Forterre, 2002; Mangeney et al., 2007). 
Slower moving avalanches dissipate, as they fail to erode and en-
train their substrate. However, sufficiently fast moving dry granular 
avalanches erode, and form a travelling wave with near-uniform 
frontal transit velocities (Supplementary Fig. 6) (Pouliquen and 
Forterre, 2002; Mangeney et al., 2007; Edwards and Gray, 2015). 
Erosion of sand from near the front of the travelling wave is bal-
anced by deposition from its rear (Fig. 7). The avalanche thus 
contains a substantial fraction of locally eroded material. The tran-
sit velocity of this travelling wave is strongly determined by the 
thickness of the frontal avalanche, as in the dry granular exper-
iments (Pouliquen and Forterre, 2002; Mangeney et al., 2007). 
Frontal thickness determines the down-slope driving force near the 
front, at least for near-uniform gradients and flow densities. The 
flow thickness in turn depends on the depth of eroded material, 
and thus on rates of frontal erosion (Pouliquen and Forterre, 2002; 
Mangeney et al., 2007). Turbidity currents will differ in key re-
gards from these dry granular avalanches that occur on far steeper 
(> 30◦) gradients. For example, erosion of water-saturated canyon 
floor sediment, such as via abrupt loading and liquefaction, may 
allow turbidity currents to erode on much lower (< 2◦) gradi-
ents than dry granular avalanches. Settling velocities will be much 
greater in air, and turbidity currents can also comprise trailing 
dilute suspensions. However, we draw a first-order analogy with 
the ability of faster moving dry granular avalanches that exceed a 
threshold and erode their substrate, whilst depositing from their 
rear, and thus maintain dense flow with near-uniform transit ve-
locity.

This new travelling wave model also needs to account for cres-
cent shaped bedforms that are abundant along the floor of Mon-
terey Canyon (Paull et al., 2018), and many other sandy submarine 
canyons (Symons et al., 2016), which have been linked to insta-
bilities (termed cyclic steps) in supercritical flows (Hughes Clarke, 
2016). Bedforms in Monterey Canyon have amplitudes of 1 to 3 m, 
and wavelengths of 20 to 80 m (Paull et al., 2018). As discussed 
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Fig. 8. Summarising model for turbidity current behaviour in submarine canyons underlain by loose sand. Patterns of flow behaviour, based on frontal transit velocities that 
are simplified from Fig. 3a. Small increases in transit velocity at the first mooring are associated with major differences in subsequent flow velocities and runout distance, 
causing divergence in flow behaviour (purple, dark blue and light blue lines). However, flows can sometimes self-accelerate and ignite within the mid-canyon (green dotted 
line), due to changes in substrate strength and erodibility. There is a threshold initial transit velocity (red line) above which flows can autosuspend (purple line).
in more detail by Paull et al. (2018), tracking of extremely heavy 
(800 kg) objects showed that they experienced repeated vertical 
oscillations of 1-3 m, as they were carried down Monterey Canyon 
at velocities of ∼4 m/s. Bedforms were thus most likely continu-
ously present, and must have been at least partly formed by the 
dense travelling wave. This is consistent with field observations 
and laboratory experiments showing that cyclic steps and up-slope 
migrating bedforms can form beneath supercritical flows with very 
high (20-40% volume) sediment concentrations (Winterwerp et al., 
1990, 1992) as well as dilute supercritical flows (Kostic and Parker, 
2006; Covault et al., 2017).

Future work is now needed to test this new travelling wave 
model, such as via direct measurements of sediment concentration 
in turbidity currents, or by determining the importance of locally 
derived or far-travelled sediment in near-bed layers.

5. Conclusions

Here we analyse the most detailed measurements yet from 
within seafloor turbidity currents, showing how their transit and 
maximum measured internal velocities vary with distance.

Overall, we observed that small (< 0.5-1 m/s) increases in aver-
age transit velocities are associated with large differences in subse-
quent runout (Fig. 8). Fractional increases in initial velocities may 
lead to flows with near-uniform velocities associated with auto-
suspension, enabling much longer runout. Flows with only slightly 
lower initial velocities die out in upper or mid-canyon. Patterns of 
transit and internal velocities with distance thus diverge markedly 
(Fig. 8).

However, one flow in Monterey Canyon is an exception to this 
general pattern, as it self-accelerated mid-canyon (Fig. 8, dotted 
green line). It is also the only flow that occurred during less-
stormy summer months. Erosion of a weak surficial-mud layer 
with underlying fine sand, is likely to also favour self-acceleration. 
Turbidity current behaviour may therefore be highly sensitive to 
both initial transit velocities and substrate character.

Our observations show that initial self-acceleration (ignition) 
can be followed by a phase of near-uniform transit velocities (au-
tosuspension), at least for initially faster flow events (Fig. 8). Pre-
vious models have proposed that autosuspension may follow on 
from ignition, as erodible bed material runs out. But this is not 
the case in Monterey Canyon, as loose sand is available along the 
canyon floor. Instead, we propose that flows are driven by thin and 
dense, frontal, near-bed layers (which we call a travelling wave; 
Fig. 7). Faster moving travelling waves can reach an autosuspend-
ing state, as frontal erosion balances deposition from their rear, so 
that near-uniform frontal flow thicknesses and thus velocities are 
maintained. These dense travelling waves shed a slower moving di-
lute sediment cloud, which lengthens as the flow runs out. But this 
dilute cloud does not drive the flow, and changes in its sediment 
concentration are thus less important. This travelling wave model 
itself needs further testing, including via direct measurements of 
near-bed sediment concentrations, but it is consistent with move-
ment of very heavy objects at high velocity near the flow front 
(Paull et al., 2018).
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