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Abstract

This article provides an alternative to High-Dimensional Model Representation using a Copula 

approximation of an unknown functional form. We apply our methodology in the context of an 

extensive Monte Carlo study and to a sample of large US commercial banks. In the Monte Carlo 

experiment, the approximations errors of the Copula approach are small and behave randomly. In our 

empirical application, we find that the Copula Approximation performs much better, in terms of Bayes 

factors for model comparison, compared to High-Dimensional Model Representation, which, in turn, 

provides better results when compared with standard flexible functional forms, like the translog, the 

minflex Laurent, and the Generalized Leontief, or a Multilayer Perceptron. Moreover, the choice of 

approximation has significant implications for productivity and its components (returns to scale, 

technical inefficiency, technical change, and efficiency change). 
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1. Introduction 

Although many functional forms have been proposed in relation to estimating cost and production 

functions, there is no consensus as to what one should do in practice (Zhang and Berardi, 2001; 

Michaelides et al., 2010; 2015). To deal with this problem, many previous studies have used local 

approximations such as the translog (Christensen et al., 1971; Kumbhakar, 2011; and Kumbhakar, 

2013), the Generalized Leontief (Diewert, 1971; Barnett and Lee, 1987; and Genius et al., 2012) or the 

symmetric McFadden form (Diewert and Wales, 1987; Michaelides et al., 2010; 2015; and Tsionas and 

Izzeldin, 2018) and global approximations such as the neural cost function (NCF) (Michaelides et al., 

2010; 2015). 

Estimation of cost and production functions derived using stochastic frontier or envelopment 

methods is another common practice in the literature (see, for example Sun, Kumbhakar, and Tveterås, 

2015; Olesen and Petersen, 2016; among others). Stochastic frontier methods rely on the specification 

of the functional form of a cost function as well as on specification on distributional assumptions about 

the two-sided and one-sided error terms (noise and cost inefficiency, respectively). Conventional data 

envelopment analysis (DEA) models do not involve statistical errors and use a non-parametric 

approximation to the frontier.1 As statistical errors are ignored, DEA may be more sensitive to outliers 

and yields biased estimates of inefficiency. 

Tsionas (2003) combines stochastic frontier models with linear programming methods by using 

DEA measures as priors of efficiency in the stochastic frontier model to measure efficiency in US 

airlines. Tsionas and Mallick (2019) use latent dynamic stochastic productivity and perform Bayesian 

analysis using a Sequential Monte Carlo Particle-Filtering approach. They apply their proposed 

techniques in Indian non-financial firms.  

Moreover, following the High Dimensional Model Representation (HMDR) theory (also known as 

functional Analysis of variance ANOVA), Beccacece et al., (2015) evaluate the strength of interactions 

in a value function, without making any a priori assumptions on its functional form. Their result is that 

in general their experiment confirmed that the value functions have the desired properties of additivity 

and monotonicity.  

Feil et al. (2009) develop a method based on the HDMR theory for approximation of local volatility 

functions. They show that the HDMR model can produce more precise results than an alternative model 

using cubic splines. Tsionas and Izzeldin (2018) suggest an alternative to nonparametric segmented 

concave least squares. They use a differentiable approximation to an arbitrary functional form based on 

smoothly mixing Cobb-Douglas anchor functions over the data space. They use Bayesian techniques 

                                                 
1 DEA approaches that allow statistical errors include, inter alia: Simar, L., and Zelenyuk, (2006), Simar, and 

Wilson, (2007) and Tsionas (2020). 
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and Markov Chain Monte Carlo. The approximation properties of the new functional form are examined 

in a Monte Carlo study where the real functional form is a Symmetric Generalized McFadden.  

In this paper, we tackle the approximation problem in a different way, using copulas as 

approximations of cost functions. Copulas are prominent in modelling multivariate distributions, 

bivariate for the most part (see, for example, Genest and Mackay1986; Poon et al., 2004, and Hong et 

al., 2007, among others). However, their use as approximations of functions is less common and appears 

to be novel at least in the case of modelling cost functions if not in the case of approximating functional 

forms in general. For the Copula Approximation we provide a novel multivariate mixture-of-normals 

formulation; a mixture-of-normals has never been used in copulas contrary to other copulas (see Joe, 

1997; Cherubini et al., 2004; Nelsen; 2006; Karlis, and Meligkotsidou, 2006; Patton, 2012; Fan and 

Patton, 2014; Kakouris and Rustem, 2014; Dellaportas and Tsionas, 2019).2  

From the point of view of global approximation, Gallant (1981) shows the correspondence (in 

Sobolev metric) between an efficient quadratic (projection) estimation method, SURE (Seemingly 

Unrelated Regressions Estimation) in its specific context, and the mathematical algorithm for 

calculating the multivariate Fourier approximation coefficients. This finding is not much diffused in the 

literature for computational economics and possibly the major difficulty of the mathematical method is 

yet less diffused in the banking field (for an extensive use see Maggi and Guida, 2011). Nonetheless, 

Gallant's result clearly disenables the translog and similar approximations, and casts doubts on the 

Diewert and Wales (1987) results to find the true function (their paper is on the empirical application 

of the theoretical properties of the cost function without the warranty of finding the true function).3 

In an extensive Monte Carlo experiment, we find that the Copula Approximation performs better 

compared to an HDMR and Multi-Layer Perceptrons (MLP). It also performs best in our empirical 

application to large US banks using as metric of comparison the Bayes factor.  

As already discussed, there is a massive empirical literature on estimating cost and production 

functions for many industries with quite interesting findings. However, the literature with applications 

in the banking sector is even more extensive (see for example, Lovell, 1995; Lozano Vivas, 1997; 

Sathye, 2003; Bos, et al., 2009; Galán et al., 2015; Tzeremes, 2015; and Dong, et al, 2016).4  

 We compare the performance of the new Copula Approximation approach relative to alternative 

methods in the literature such as the HDMR, the translog, the minflex Laurent, the Generalized Leontief 

(GL), and a Multilayer Perceptron (see section 4). The Copula Approximation performs much better in 

Bayes factor terms when employed in a substantive application to large US commercial banks.  

                                                 
2 Common parametric copulas are the Gaussian or Normal copula, the Student’s t-copula, the Frank copula, the 

Gumbel copula, and the Clayton copula (for properties of parametric copulas see Joe, 1997; and Nelsen; 2006).  
3 We wish to thank an anonymous reviewer for making these points and in helping us to motivate the paper in 

the proper way. 
4 For other studies in banking, efficiency see Koutsomanoli-Filippaki and Mamatzakis, 2009; Ray and Das, 2010; 

Tecles, and Tabak, 2010; Wanke, et.al., 2015; Badunenko, and Kumbhakar, 2017 and Torri et.al., 2018). 
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We find that the HDMR and commonly used functional forms deliver different results compared to 

our method. Moreover, based on predictive Bayes factors that are computed over left-out sub-samples 

of the data, we find that our data strongly support the Copula Approximation providing more 

corroboration for our Monte Carlo experiments. 

 

2. The HDMR approximation 

Suppose 𝒙 ∈ 𝒳 ⊆ ℜ𝑛 represents a vector of the logs of input prices and outputs. An arbitrary cost 

function can be approximated using an HDMR (see Alis and Rabitz, 1999, Li et al., 2002):  

 

 𝑓(𝒙) ≃ 𝑓0 + ∑𝑓𝑖

𝑛

𝑖=1

(𝑥𝑖) + ∑ 𝑓𝑖𝑗
1≤𝑖<𝑗≤𝑛

(𝑥𝑖, 𝑥𝑗) + ⋯  

 + ∑ 𝑓𝑖1,𝑖2…𝑖
𝑘′

1≤𝑖1<⋯<𝑖𝑘′≤𝑛

(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖
𝑘′) + ⋯ (1) 

 …+ 𝑓1,2,…𝑛(𝑥1, 𝑥2, … , 𝑥𝑛),  

where the first order component function 𝑓𝑖(𝑥𝑖) gives the independent contribution to 𝑓(𝒙) by the ith 

input variable acting, and 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) gives the pair correlated contribution to 𝑓(𝒙)  by the input 

variables 𝑥𝑖 and 𝑥𝑗. Here, we use orthonormal polynomials {𝜑𝑘(𝑥), 𝑘 = 1,2,… } in the domain [0, 

1], in order to reduce the sampling effort, such that:5  

 

∫𝜑𝑘

1

0

(𝑥)𝑑𝑥 = 0,

∫𝜑𝑘
2(𝑥)

1

0

𝑑𝑥 = 1,

∫𝜑𝑘

1

0

(𝑥)𝜑𝑘′(𝑥)𝑑𝑥 = 0, 𝑘 ≠ 𝑘′ = 1,2,… ,

 (2) 

i.e., they have a zero mean, unit norm and are mutually orthogonal. The polynomials can be constructed 

directly from their definition and the first three are given by:  

 

𝜑1(𝑥) = √3(2𝑥 − 1),

𝜑2(𝑥) = 6√5 (𝑥2 − 𝑥 +
1

6
) ,

𝜑3(𝑥) = 20√7(𝑥3 −
3

2
𝑥2 +

3

5
𝑥 −

1

20
),

…

 (3) 

Given the set of orthonormal polynomials, we have the following approximation:  

                                                 
5 Other suitable functions are spline functions, or simple polynomial functions (see for example, Li, et al., 2002). 
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𝑓𝑖(𝑥𝑖) = ∑ 𝛼𝑘
𝑖

∞

𝑘=1

𝜑𝑘(𝑥𝑖),

𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗) = ∑ ∑𝛽𝑘𝑙
𝑖𝑗

∞

𝑙=1

∞

𝑘=1

𝜑𝑘(𝑥𝑖)𝜑𝑙(𝑥𝑗), …

 (4) 

In most cases, to achieve a desired accuracy using 𝜑1(𝑥), 𝜑2(𝑥) and 𝜑3(𝑥) (that is, 𝑘, 𝑙 ≤ 𝑠 =

3) is sufficient. In this case, (1) becomes:  

 𝑓(𝒙) ≃ 𝑓0 + ∑ ∑ 𝛼𝑘
𝑖

𝑠𝑖

𝑘=1

𝑛

𝑖=1

𝜑𝑘(𝑥𝑖) + ∑ ∑ ∑𝛽𝑘𝑙
𝑖𝑗

𝑠𝑗

𝑙=1

𝑠𝑖
′

𝑘=11≤𝑖<𝑗≤𝑛

𝜑𝑘(𝑥𝑖)𝜑𝑙(𝑥𝑗), (5) 

where 𝜶 = {𝜶𝒌
𝒊 } and 𝜷 = {𝜷𝒌𝒍

𝒊𝒋
} are sets of coefficients. Notice that as the sum ∑ (. )𝟏≤𝒊<𝒋≤𝒏  applies 

only to i<j, implicitly there are symmetry restrictions imposed among the 𝜷𝒌𝒍
𝒊𝒋

. 

min
{𝛼𝑘

𝑖 }
: ∫ [𝑓𝑖(𝑥𝑖) − ∑ 𝛼𝑘

𝑖

𝑠𝑖

𝑘=1

𝜑𝑘(𝑥𝑖) +]

2
1

0

𝑑𝑥𝑖 + 𝜆𝑖 ∫[𝜕2 (∑ 𝛼𝑘
𝑖

𝑠𝑖

𝑘=1

𝜑𝑘(𝑥𝑖))/𝜕𝑥𝑖
2]2

1

0

𝑑𝑥𝑖 

 

      

(6) 

 min
{𝛽𝑘𝑙

𝑖𝑗
}
: ∫ ∫ [𝑓𝑖𝑗(𝑥𝑖𝑗) − ∑ ∑𝛽𝑘𝑙

𝑖𝑗

𝑠

𝑙=1

𝑠

𝑘=1

𝜑𝑘(𝑥𝑖)𝜑𝑙(𝑥𝑗)]

2
1

0

1

0

𝑑𝑥𝑖𝑑𝑥𝑗 + 

(7) 

 +𝜆𝑖𝑗 ∑ ∫∫[𝜕2 (∑ ∑𝛽𝑘𝑙
𝑖𝑗

𝑠

𝑙=1

𝑠

𝑘=1

𝜑𝑘(𝑥𝑖)𝜑𝑙(𝑥𝑗)) 𝜕𝑥𝑠𝜕𝑥𝑡⁄ ]

21

0

1

0𝑠,𝑡∈{𝑖,𝑗}

𝑑𝑥𝑖𝑑𝑥𝑗 , 

where 𝜆𝑖 and 𝜆𝑖𝑗 are smoothing coefficients. The optimization problems can be solved explicitly. 

For (6) and the case 𝑠 = 3 we have a linear system of the form:  

 [

1 0 0
0 1 + 720𝜆𝑖 0

0 0 1 + 8400𝜆𝑖

] ⋅ [

𝛼1
𝑖

𝛼2
𝑖

𝛼3
𝑖

] = 𝒃, (8) 

where 𝒃 =

[
 
 
 
 ∫ 𝑓𝑖

1

0
(𝑥𝑖)𝜑1(𝑥𝑖)𝑑𝑥𝑖

∫ 𝑓𝑖
1

0
(𝑥𝑖)𝜑2(𝑥𝑖)𝑑𝑥𝑖

∫ 𝑓𝑖
1

0
(𝑥𝑖)𝜑3(𝑥𝑖)𝑑𝑥𝑖]

 
 
 
 

= [

∫ 𝑓
𝒳

(𝒙)𝜑1(𝑥𝑖)𝑑𝒙

∫ 𝑓
𝒳

(𝒙)𝜑2(𝑥𝑖)𝑑𝒙

∫ 𝑓
𝒳

(𝒙)𝜑3(𝑥𝑖)𝑑𝒙

].  

Similarly, for (7) we have a linear system of the form 𝑨𝛽 = 𝒃, where 𝑨 and 𝒃 are 6 × 6 and 

6 × 1 respectively and are given in equations (31)-(34) of Li, et al., (2002). The elements of 𝑨 are 

simple to evaluate and the elements of 𝑏  require the evaluation of 

∫ ∫ 𝑓𝑖𝑗
1

0

1

0
(𝑥𝑖 , 𝑥𝑗)𝜑𝑝(𝑥𝑖)𝜑𝑞(𝑥𝑗)𝑑𝑥𝑖𝑑𝑥𝑗, 𝑝, 𝑞 ∈ {1,… , 𝑠}  which is equal to 

∫ 𝑓
𝒳

(𝒙)𝜑𝑝(𝑥𝑖)𝜑𝑞(𝑥𝑗)𝑑𝒙 𝑝, 𝑞 ∈ {1,… , 𝑠}.  
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For our purposes, we use the following extended approximation, which consists of a standard 

quadratic form plus an HDMR representation:  

 

𝑓(𝒙) = 𝑎0 + 𝜸⊤𝒙 +
1

2
𝒙⊤Γ𝒙 +

∑𝑓𝑖

𝑛

𝑖=1

(𝑥𝑖) + ∑ 𝑓𝑖𝑗
1≤𝑖<𝑗≤𝑛

(𝑥𝑖, 𝑥𝑗),
 (9) 

where 𝜸 ∈ ℜ𝑛  and Γ ∈ ℜ𝑛×𝑛 . We include the quadratic form in the hope that the number of 

orthogonal polynomials will be reduced (a similar idea is put forward in Gallant, 1981 but in a  

different context). After approximating using orthonormal polynomials we have:  

 

𝑓(𝒙) = 𝑎0 + 𝜸⊤𝒙 +
1

2
𝒙⊤Γ𝒙 +

+∑ ∑ 𝛼𝑘
𝑖

𝑠

𝑘=1

𝑛

𝑖=1

𝜑𝑘(𝑥𝑖) + ∑ ∑ ∑𝛽𝑘𝑙
𝑖𝑗

𝑠

𝑙=1

𝑠

𝑘=11≤𝑖<𝑗≤𝑛

𝜑𝑘(𝑥𝑖)𝜑𝑙(𝑥𝑗).
 (10) 

   

3. A new approximation 

Suppose we transform all variables 𝒙 ∈ 𝒳 ⊆ ℜ𝑛 so that 𝒳 = [0,1]𝑛. Suppose also that for each 

variable it is reasonable to assume, as a first approximation, that 𝑓𝑖(𝑥𝑖) = (𝛼𝑖 + 1)𝑥𝑖
𝛼𝑖 , 𝑥𝑖 ∈ [0,1], 𝑖 =

1,… , 𝑛. Notice that ∫ 𝑓𝑖
1

0
(𝑥𝑖)𝑑𝑥𝑖 = 1 so that we may consider 𝑓𝑖(𝑥𝑖) as a density function. The 

corresponding distribution function is 𝐹𝑖(𝑥𝑖) = 𝑥𝑖
𝛼𝑖+1

 whose inverse is 𝑥𝑖 = 𝐹𝑖
1/(1+𝛼𝑖)  assuming 

𝛼𝑖 > −1 By Sklar’s theorem (see Sklar, 1959; Faugeras, 2013; and Durante et al., 2015) we can then 

express the density function as:  

 𝑓(𝒙) = ∏{(1 + 𝛼𝑖)𝑥𝑖
𝛼𝑖}

𝑛

𝑖=1

⋅ 𝑐(𝑼; 𝛽), (11) 

where 𝛽 ∈ ℬ ⊆ ℜ𝑑 is a parameter vector, 𝑐(𝑼; 𝛽) is a Copula function, and 𝑼 = [𝑈1, … , 𝑈𝑛]⊤, 

𝑈𝑖 = 𝑥𝑖
𝛼𝑖+1

. Therefore: 

 log 𝑓 (𝒙) = ∑log (1 + 𝛼𝑖)

𝑛

𝑖=1

+ ∑𝛼𝑖

𝑛

𝑖=1

log 𝑥𝑖 + log 𝑐 (𝑼; 𝛽). (12) 

To specify the Copula function, we use a multivariate mixture of normal distributions:  

 𝑐(𝑼; 𝛽) = 

(13) 

 = ∑ 𝑝𝑔

𝐺

𝑔=1

(2𝜋)−𝑑/2|Ω𝑔|−1/2 exp {−
1

2
(𝑼 − 𝝁𝑔)′Ω𝑔

−1(𝑼 − 𝝁𝑔)}, 
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where 𝑝𝑔 ≥ 0, ∑ 𝑝𝑔
𝐺
𝑔=1 = 1 are mixing probabilities and 𝜇𝒈, Ω𝑔  are a 𝑑 × 1 vector and a 𝑑 × 𝑑 

covariance matrix, respectively. Here, 𝑔 = 2, . . . , 𝐺 is the number of mixing components and it is to 

be selected along with the other Copula parameters which are denoted by 𝛽. We parametrize Ω1 in 

terms of each Cholesky factor. The remaining matrices are Ω𝑔 = ℎ𝑔1Ω1 + ℎ𝑔2𝑰, where ℎ𝑔1, ℎ𝑔2 are 

unknown positive constants (to be estimated). This parametrization reduces considerably the number of 

parameters as each Ω𝑔 has 
𝑑(𝑑+1)

2
 unknown elements.  

4. Functional forms 

In this section, we describe the most common flexible functional forms used in the literature to 

model cost functions (see Fuss and McFadden, 1978; Barnett and Lee, 1985; and Diewert and Wales, 

1987). We start with the translog cost function which takes the form:  

 

log 𝐶𝑇𝐿 (𝑊, 𝑌) = 𝛽𝑜 + ∑𝛽𝑤𝑗

𝐽

𝑗=1

log 𝑊𝑗 + ∑ 𝛽𝑦𝑘

𝑁

𝑘=1

log 𝑌𝑗 +

1

2
∑ ∑ 𝛽𝑤𝑤,𝑖𝑗

𝑗𝑖
log 𝑊𝑖 log 𝑊𝑗 +

1

2
∑ ∑ 𝛽𝑦𝑦,𝑖𝑗

𝑗𝑖
log 𝑌𝑖 log 𝑌𝑗 +

∑∑𝛽𝑤𝑦,𝑗𝑘

𝑘𝑗

log 𝑊𝑗 log 𝑌𝑘 .

 (14) 

where 𝑊 is a vector of input prices, 𝑌 is a vector of outputs, and 𝛽𝑖𝑗𝑠 are unknown parameters. 

Linear homogeneity in prices requires:  

 ∑𝛽𝑤𝑗

𝐽

𝑗=1

= 1, ∑𝛽𝑤𝑤,𝑖𝑗

𝑗

= 0 ∀𝑖,  ∑𝛽𝑤𝑦,𝑗𝑘

𝑘

= 0 ∀𝑗 (15) 

The Generalized Leontief due to Diewert (1971) for two outputs is given by: 

 

𝐶𝐺𝐿(𝑊, 𝑌) = 𝑌1 ∑𝛽1,𝑗𝑗

𝐾

𝑗=1

𝑊𝑗 + 𝑌1 ∑ ∑ 𝛽1,𝑘𝑗

𝑗≠𝑘

𝑊𝑘
1/2

𝑊𝑗
1/2

𝑘≠𝑗

+

𝑌2 ∑𝛽2,𝑗𝑗

𝐾

𝑗=1

𝑊𝑗 + 𝑌2 ∑ ∑𝛽2,𝑘𝑗

𝑗≠𝑘

𝑊𝑘
1/2

𝑊𝑗
1/2

𝑘≠𝑗

+

𝑌1
2 ∑𝛽1,𝑗

𝐾

𝑗=1

𝑊𝑗 + 𝑌2
2 ∑𝛽2,𝑗

𝐾

𝑗=1

𝑊𝑗 +

𝑌1𝑌2 ∑𝛽12,𝑗

𝐾

𝑗=1

𝑃𝑗 + ∑𝛼𝑗

𝐾

𝑗=1

𝑃𝑗.

 (16) 

See also Hall (1973). This specification permits flexibility in economies of scale while it also 

imposes no a priori restrictions on the elasticities among factor inputs; see also Li and Rosenman (2001). 

It is also homogeneous of degree one in prices. The minflex (translog) Laurent expansion is:  
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 log 𝐶𝑀𝑇𝐿 = log 𝐶𝑇𝐿 (𝑊, 𝑌) − ∑ 𝛽𝑖𝑗𝑘

𝑖≠𝑗,𝑘>𝑗

𝑊𝑖
2(𝑊𝑗𝑊𝑘)

−1
, (17) 

where 𝛽𝑖𝑗 ≥ 0, (see Barnett and Lee, 1985; Barnett, et al., 1985; and Diewert and Wales, 1987). 

Similarly, one can define the minflex (Generalized Leontief) Laurent expansion as (see Barnett and 

Lee, 1985; Barnett, et al., 1985): 

 log 𝐶𝑀𝐺𝐿 = log 𝐶𝐺𝐿 (𝑊, 𝑌) − ∑ 𝛽𝑖𝑗𝑘

𝑖≠𝑗,𝑘>𝑗

𝑊𝑖
2(𝑊𝑗𝑊𝑘)

−1
. (18) 

   

Finally, we use the most common class of artificial neural networks known in the literature as 

Multilayer Perceptron (see Rosenblatt, 1962; Rumelhart et al., 1986; Desai et al., 1996; Decoste and 

Scholkopf, 2002; Hinton and Salakhutdinov, 2006; Ciresan, 2010; Kristjanpoller, and Minutolo, 2018) 

which is as follows. Suppose we have 𝐿 layers, 𝑁 units per layer, and 𝐾 variables. Then the MLP is 

characterized as:  

𝑆𝑗
(1)

= ∑ 𝑤𝑗𝑘
(1)

𝐾

𝑘=1

𝑥𝑘 , 𝑗 = 1, . . . , 𝑁, 

     (19) 

𝐴𝑗
(1)

= 𝜗𝑗
(1)

(𝑆𝑗
(1)

) ,    𝑗 = 1, . . , 𝑁, 

 

𝑆𝑗
(𝑙)

= ∑𝑤𝑗𝑖
(𝑙)

𝑁

𝑖=1

𝐴𝑖
(𝑙−1)

,   𝑗 = 1, . . . , 𝑁, 

     (20) 

𝐴𝑗
(𝑙)

= 𝜗𝑗
(𝑙)

(𝑆𝑗
(𝑙)

+ 𝑏𝑙), 𝑙 = 2, . . . , 𝐿 − 1, 

 

𝑆1
(𝐿)

= ∑𝑤1𝑖
(𝐿)

𝑁

𝑖=1

(𝑆1
(𝐿)

), 

     (21) 

𝐴1
(𝐿)

= 𝜓1
(𝐿)

(𝑆1
(𝐿)

), 

where 𝜗𝑗
(𝑙)

 is a sigmoid activation function for layer 𝑙 and unit 𝑗, 𝜓1
(𝑙)

 is a linear activation function, 

and 𝑤𝑗𝑖
(𝑙)

 is the weight from unit 𝑖 of the previous layer to unit 𝑗 in layer 𝑙. (19) refers to the first 

layer, (20) refers to the intermediate layers and (21) to the final layer. 

Finally, we should note that, as with other functional forms in production analysis, it is difficult to 

impose curvature restrictions globally. For example, curvature does not hold globally for (14), (16), 
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(17), and (18). For the curvature constraints, we know that one should avoid enforcing it at all points as 

flexibility is then compromised. For example, the translog reduces to the Cobb-Douglas which is, of 

course, not flexible. Imposing curvature at a few points it is difficult for all functional forms like for 

(14), (16), (17), and (18), and could be conducted as follows: First, select a number of points, say the 

means of the data. Second, compute the Hessian of the cost function with respect to prices. Third, check 

if the curvature conditions hold. If not, reject the particular draw in Bayesian Markov Chain Monte 

Carlo (MCMC) and take another draw until the constraint is satisfied. To the best of our knowledge, 

there is no other procedure that curvature can be imposed globally in flexible functional forms unless 

flexibility is to be compromised. For example, imposing all monotonicity and curvature conditions on 

a translog function yields the Cobb-Douglas. In our work, we enforce curvature at the means only. For 

the MLP, imposition of such constraints is very difficult and we leave it for future research. 

 

5. Data and empirical results 

5.1 Data 

 

Our sample includes quarterly data on all commercial banks insured by the Federal Deposit 

Insurance Corporation (FDIC) insured commercial banks from Call Reports available from the Federal 

Reserve Bank of Chicago, from 2001: Q1 to 2010: Q4. The data has been also used by Malikov et al. 

(2016). 

Commercial banks can be starkly different from one another as regards to the size, capitalization, 

regulatory environment, etc., indicating potential heterogeneity in production technologies across banks 

(see Mester, 1997; Bos, et al., 2009; Dong et al., 2016). To deal with heterogeneity, we focus on a 

sample of banks with total assets in excess of one billion US. dollars (in 2005 prices) in the first three 

years of observation, which is supposedly a homogeneous sample. We exclude internet banks, 

commercial banks dealing primarily with credit card activities and banks operating outside the 

continental US. We also exclude observations with negative values for assets, equity, outputs and input 

prices, since these are likely to have resulted because of erroneous data reporting. The remaining 

unbalanced panel contains 2,397 observations for 285 banks. All nominal stock variables are deflated 

to 2005 US. dollars using the Consumer Price Index (for all urban consumers).  

We use the “intermediation approach” of Sealey and Lindley (1977), to model the production 

technology of a bank. According to this method, a bank’s balance sheet expresses the main structure of 

its core business.6 Liabilities (core deposits and purchased funds) together with physical capital and 

labor are the inputs to the bank’s production process, whereas assets (loans and trading securities) are 

the outputs. We extend the basic framework of modeling banking technology by acknowledging that 

                                                 
6 See also Berger and Mester (1997) and Wanke et al., (2016). 
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the bank’s production of desirable outputs, such as earning loans, is usually followed by the 

simultaneous by-production of non-performing loans, which are treated as an undesirable output 

(formally, this is treated as an input following Malikov et al., 2016). We use five outputs, viz. y1 which 

is consumer loans, y2 is real estate loans, y3 is commercial and industrial loans, y4 is securities, and y5 

is off-balance-sheet income. These are the desirable outputs following Berger and Mester (1997, 2003) 

and Hughes and Mester (1998, 2013). Total non-performing loans (b) is the bank’s undesirable output. 

Our variables inputs are labor, x1, (the number of full-time equivalent employees), x2 (physical capital), 

x3 (purchased funds), x4 (interest-bearing transaction accounts), and x5 (non-transaction accounts). We 

further include financial (equity) capital (e) as an additional input. However, we follow Berger and 

Mester (1997, 2003) and Feng and Serletis (2009) in modeling e as a quasi-fixed input, due to 

unavailability of each price. Treating equity capital as an input to banking production technology is in 

line with the argument that banks may use it as a cushion against losses (see Hughes and Mester, 1993, 

1998). We divide total expenses on each input by the corresponding input quantity to determine prices 

of variable inputs (w1 through w5).  

We compare results obtained through the HDMR and MLP approximations with our novel Copula 

Approximation along with three well-known functional forms: translog, GL, and minflex Laurent. In 

all cases, we use Bayesian MCMC techniques to perform the computations, namely the Girolami and 

Calderhead (2011) MCMC Riemannian Manifold Hamiltonian technique, which uses first - and second-

order derivative information from the log posterior. The method is briefly described in the Technical 

Appendix. We may, of course, use sampling-theory based approaches to estimate the model. The 

advantage of the Bayesian method is that it provides access to exact, finite—sample densities and, 

additionally, it is not subject to the risk of being stuck in local optima as it operates, more or less, like 

a simulated annealing method. In all cases, we use 150,000 MCMC passes the first 50,000 of which are 

discarded to mitigate possible start up effects. We calibrate the MCMC algorithm so that its acceptance 

rate is 20-30% in the pre- and post-burn phases (through the constant 𝜀 described in the Appendix). 

We examined convergence thoroughly (starting from different initial conditions). The results are not 

reported here in the interest of brevity but they are available on request. 

In HDMR, MLP and Copula Approximation we determine the various constants involved (number 

of terms for HDMR, L and N for MLP, and G for Copula Approximation) using Bayes factors resulting 

from computation of marginal likelihood of each model. We find L=4, N=5, and G=3. To get a sense 

of the number of parameters involved, the translog and similar functional forms, with five outputs, four 

relative input prices, one bad output and a time trend, has 75 parameters. The copula approach has 244 

parameters if all elements of 𝛺𝑔, 𝑔 = 1,… , 𝐺 are unrestricted and 116 when the covariance matrices 

are restricted as in the discussion following (13). 

Below we define the measures of interest. In what follows, t represents a time trend. The cost 

function 𝐶(𝑊, 𝑌, 𝑡) is defined as follows: 
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𝐶(𝑊, 𝑌, 𝑡) = min:
𝑋∈𝑅++

𝐾
𝑊′𝑋, 𝑠. 𝑡.  𝐹(𝑋, 𝑌, 𝑡) ≤ 1, 

for some transformation function, 𝐹(𝑋, 𝑌, 𝑡), which represents the feasibility of plans (𝑋, 𝑌), i.e. 

inputs and outputs. In turn, we define returns to scale (RTS) as: 𝑅𝑇𝑆−1 ≡ ∑
𝜕𝑙𝑛𝐶(𝑊,𝑌)

𝜕𝑙𝑛𝑌𝑚

𝑀
𝑚=1 ; viz. the 

reciprocal of the output cost elasticity, technical change (TC) as: 𝑇𝐶 ≡
𝜕 ln(𝐶,𝑊,𝑡)

𝜕𝑡
; cost efficiency (𝑟𝑖𝑡) 

as: 𝑟𝑖𝑡 ≡ 𝑒−𝑢𝑖𝑡  and efficiency change (EC) as: 𝐸𝐶 =
𝑟𝑖𝑡−𝑟𝑖,𝑡−1

𝑟𝑖,𝑡−1
; 𝑢𝑖𝑡  is cost inefficiency which we 

estimate from cost function residuals (say 𝑉𝑖𝑡) as follows: 𝑢𝑖𝑡 = 𝑉𝑖𝑡 − min
𝑖,𝑡

𝑉𝑖𝑡. 

5.2 Discussion of Results 

 
This section presents the empirical results. As we have discussed, different approaches have been 

suggested in the literature in order to estimate productivity growth and its components (returns to scale, 

cost inefficiency, technical change, and efficiency change), however, there is no consensus as to what 

one should do in practice. We use an HDMR, a translog, a minflex Laurent, a GL cost function and 

MLP as benchmarks to compare our results with the Copula approximation. Comparisons with these 

models will help us understand the unknown functional form. 

5.2.1. Components of productivity growth 

We distinguish between different components, namely input elasticities for each of the input prices 

(w1 through w5), returns to scale (Figure 1a), cost inefficiency (Figure 1b), technical change (Figure 1c) 

and efficiency change (Figure 1d). Figures 1a–1d report the sampling distributions of these four bank-

specific aspects of our model and in Table 1 appear their summary statistics.  

In Figure 1a we present the sampling distributions of posterior mean returns to scale from the 

Copula model and the four benchmarks. In the Copula (HDMR) model, returns to scale average near 

0.95 (unity) and extend from about 0.9 (0.95) to 1(1.05), as we see in Table 1, which is a reasonable 

estimate. The Copula and the HDMR models show higher returns to scale estimates from the other three 

traditional production functions. The other four models produce very different estimates from the 

Copula and the HDMR models but very similar among them. All of them average around 0.82 and 

extend from 0.65 to 0.90 for (minflex). The Copula method delivers higher returns to scale, as shown 

in Figure 1a. The benchmark methods underestimate returns to scale compared to Copula, with only 

exception the HDMR approach. From Figure 1a and Table1, it is clear that the sampling distribution of 

returns to scale estimated using the Copula model has the lowest standard deviation (s.d.) and using the 

HDMR comes second, while the minflex has the highest s.d. 
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Table 1. 

Summary statistics of Bank-specific characteristics. 

 

 RTS 𝑢𝑖𝑡 TC EC PG=TC+ EC  

TL 0.8180 0.2418 0.0030 -0.0111 -0.0082 

 (0.0186) (0.0133) (0.0182) (0.0016) (0.0183) 

Minflex 0.8126 0.2853 -0.0243 -0.0105 -0.0348 

 (0.0236) (0.0627) (0.0192) (0.0026) (0.0201) 

GL 0.8174 0.2204 -0.0159 0.2204 -0.0257 

 (0.0165) (0.0435) (0.0277) (0.0019) (0.0282) 

HDMR 1.0072 0.1263 -0.0073 -0.0121 -0.0195 

 (0.0128) (0.0191) (0.0136) (0.0101) (0.0129) 

Copula 0.9439 0.1298 0.0114 0.0123 0.0237 

 (0.0163) (0.0551) (0.0104) (0.0051) (0.0102) 

Notes: The Table provides the summary statistics (posterior mean and posterior standard deviation) of bank-

specific characteristics, namely, returns to scale (RTS), cost inefficiency (𝑢𝑖𝑡), Technical change (TC), Efficiency 

change (EC) and productivity growth (PG), which is the sum of cost and efficiency change. The summary statistics 

have been calculated for five different models, Translog (TL), Minflex Laurent, Generalized Leontief (GL), High-

Dimensional Model Representation (HDMR) and Copula Approximation. Posterior standard errors of estimates 

are reported in parentheses. 

 

 
Sampling distributions of posterior mean cost inefficiencies are reported in Figure 1b. The sampling 

distribution from the Copula and GL are clearly bimodal. According to the Copula model (HDMR), 

cost inefficiency estimates average around 0.13 (0.13) (see Table 1) and extending from near zero to 

0.30 (0.20), see Figure 1(a). Sampling distributions of posterior mean cost inefficiencies for translog 

average around 0.25 and extend from 0.20 to 0.30. The sampling distribution of cost inefficiency 

estimated using the translog model has the lowest s.d. and using the HDMR comes second, while the 

minflex Laurent has the highest s.d. From Table 1, according to the Copula and HDMR models, cost 

inefficiency averages 13% while according to the traditional flexible functional forms cost inefficiency 

averages much higher, from 22% (for GL) to 29% (for minflex) which is quite common in many 

previous banking studies. This puts into question the highly popular view that banks are quite cost-

inefficient (25-30%). 

In Figure 1c, we present the sampling distributions of posterior mean technical change. The Copula 

and the HDMR methods give more or less similar results with the translog function for technical change, 

with estimates being concentrated around zero and extending from -5% to 5%. The other flexible 

functional forms are concentrated around negative values and extend from -10% to 10% with the GL 

having the highest s.d. The sampling distribution of technical change estimated using the Copula model 

has the lowest s.d. and the HDMR comes second (see Table 1). 

The results regarding efficiency change are quite interesting (Figure 1d), as the HDMR and the 

Copula have the highest s.d., while all the flexible functional forms are concentrated around zero with 

a very low s.d., of which the lowest is for the translog. However, the translog and the GL are bimodal 



13 

 

revealing the possible presence of multiple groups in the data. All the benchmark models deliver an 

average efficiency change very close to zero, while the Copula method suggests that efficiency change 

was positive averaging 1.23% and ranging roughly from slightly below zero to almost 3%. 

Figure 1. 

Fig. 1. Sampling distributions of posterior mean Returns to scale ( Fig. 1 (a)), Cost inefficiency ( Fig. 1 (b)), 

Technical change ( Fig. 1 (c)) and Efficiency change ( Fig. 1 (d)) from the Copula model and the four benchmarks, 

translog, minflex Laurent, Generalized Leontief and HDMR. 

 
 

5.2.2. Productivity growth. 

Having discussed the components of productivity growth, now we discuss productivity growth per 

se. Figure 2, reports the sampling distribution of productivity growth which is the sum of technical and 

efficiency change, and Table 1 provides its posterior mean and posterior s.d. The estimated productivity 

growth from the Copula method proposed in this study is compared with the other four methods as 

benchmarks. 
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According to the Copula model, productivity growth estimates are concentrated around positive 

values with an average of 2% and extend from near zero to 5–6%. According, however, to the HDMR 

the minflex Laurent, and a generalized Leontief the estimates are concentrated around negative values 

with an average of around -3% (for minflex) to -2% (for HDMR), and extending from -12% to 15% for 

GL and from -6% to 4% for HDMR. Some of these findings for HDMR and traditional flexible 

functional forms are, clearly, unreasonable. While for the translog function, the productivity growth 

estimates are concentrated around zero and extend from -6% – 4%. From Figure 2 and Table 1, it is 

clear that the sampling distribution of productivity growth estimated using the Copula model has the 

lowest spread. Using the HDMR comes second, while the generalized Leontief has the highest s.d.  

So, in terms of estimating productivity growth, all flexible functional forms give more or less, 

similar results with the translog function perhaps with the exception of the GL. However, the Copula 

Approximation receives much greater support in the light of the data, even compared to HDMR. 

The Copula method delivers higher productivity growth as shown in the distribution plot, and the 

benchmark models underestimate productivity. According to HDMR, we obtain an average productivity 

growth of around -2%, whereas the Copula method suggests that productivity growth was positive and 

around 2%. We report cost-efficiency change distributions in Figure 4 . 

 

Figure 2. 

 

Fig. 2. Sampling distributions of posterior mean of productivity growth from the Copula model and the four 

benchmarks, translog, minflex Laurent, Generalized Leontief and HDMR.  
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5.2.3. Bayes model comparisons. 

To address the question of model comparison, we omit a random number 𝐵 of banks (viz. all their 

temporal observations, 𝐵 ranging from 1 to 20 with equal probability) and we re-estimate the model 

without these observations. We perform this exercise 10,000 times.  

We use the concept of Bayes factor which takes into account both model fit and model complexity.7 

We compute the predictive Bayes factor in favor of each of the four models (Copula, HDMR, GL and 

minflex Laurent) against the translog model, and plot the densities of Bayes factors in Figure 3. 

  

Figure 3. 

 

Fig. 3. Presents the densities of predictive Bayes factors in favor of each of the four models (Copula, HDMR, 

Generalized Leontief and minflex Laurent). 

 

Summary statistics for the predictive Bayes factors appear in Table 2. Clearly, all flexible functional 

forms are equivalent, more or less, to the translog, but the Copula Approximation receives much greater 

support in the light of the data. This result is quite important as it shows that the Copula Approximation 

performs better even compared to HDMR (the second best performing approximation) as its Bayes 

factor (relative to translog) has an average of 7.66 and ranges from 7.19 to 8.64 and indicates substantial 

evidence in favor of the Copula Approach. The Bayes factor for the parametric forms and HDMR ranges 

from 2.01, for HDMR, to 5.74, again for HDMR.8 

 

                                                 
7 The Bayes factor is defined as the ratio of the posterior probabilities of the null and alternative hypothesis, 

ranging from zero to infinity (see Assaf and Tsionas, 2018). 
8 A Bayes factor between 3 and 10 is interpreted as substantial evidence, while a A Bayes factor of 1 is interpreted 

as no evidence (see Assaf and Tsionas, 2018).  

 



16 

 

Table 2. 

Summary statistics of Predictive Bayes factors. 

 

Method Mean Median Minimum Maximum Std. Dev. 

Minflex  3.2836  3.2579  2.2449 4.9304 0.9466 

GL 3.0361 2.8258 2.0783 4.9037  1.0055 

HDMR 3.1663 2.7642 2.0149 5.7430 1.2890 

Copula 7.6661 7.5317 7.1964 8.6435 0.4685 

Notes: This Table provides the summary statistics of the Predictive Bayes Factors in favor of each of the four 

models for Minflex, Generalized Leontief (GL), High-Dimensional Model Representation (HDMR) and Copula 

Approximation, all of them against the translog model. 

 

 

Regarding timing, we provide evidence in Table 3. All computations were performed using Fortran 

77 (GNU compiler) with access to IMSL and NAG software libraries on an Intel i9-7900 CPU @ 3.30 

GHz with RAM 32 GB.  

Table 3. 

Timing statistics for various models. 

 

Model Timing (CPU in seconds) 

TL 

Minflex  

1.220 

1.351  

GL 1.366 

HDMR 2.215 

Copula 16.332 

Notes: This Table provides timing statistics for translog (TL), Minflex, Generalized Leontief (GL), High-

Dimensional Model Representation (HDMR) and Copula Approximation. 

 

Of course, copula approximations are more computationally demanding but they seem to be quite 

feasible in terms of implementation on modern desktop computers. The MLP approximation with its 

optimal settings for L and N was computationally far more demanding, taking over 2,000 seconds of 

central processing unit (CPU) time. 

To investigate the issue of correlations of cost inefficiency among alternative models, we save for 

each MCMC draw the rank correlation coefficient for any two pairs of simulated inefficiencies for the 

Copula, Minflex, GL, HDMR, and the translog. In turn, we average across all MCMC draws (after the 

burn-in phase) to obtain the posterior mean rank correlation coefficients, reported in Table 4. All 

posterior s.d.s of these measures were of the order 10−3. 
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Table 4. 

Rank correlation coefficients of 𝑢𝑖𝑡s. 

 

Method TL Minflex GL HDMR Copula 

TL 

Minflex                                                                              

1.000 

                                       

0.971 

1.000 

0.986 

0.944 

0.312 

0.413 

    0.313 

    0.317 

GL                          1.000 0.382 0.212 

HDMR    1.000 0.773 

Copula     1.000 

Notes: This Table provides rank correlations for the translog (TL), Minflex, Generalized Leontief (GL), High-

Dimensional Model Representation (HDMR), and the Copula Approximation. 

 

 
Evidently, rank correlations are quite high between translog, Minflex and GL but not so for these 

parametric models versus HDMR and copula approximation. HDMR and copula approximation have 

higher rank correlation which is 0.773. 

6. Monte Carlo experiment 

In this section, we set up a Monte Carlo experiment where the true functional form is either a 

translog, a GL, a minflex Laurent or a minflex GL-Laurent. 

(a) In the first step, we randomly select parameters for the functional forms.  

(b)Then, we fit a translog, HDMR, MLP and Copula Approximation. All the parameters like L, N, 

G, are selected based on marginal likelihood delivered by the Gorilami and Calderhead (2011) MCMC 

technique to perform the computations. 

(c) In the third step, we compute maximum signed absolute errors for each approximation and we 

select the specification with the least minimum absolute errors.  

(d) In the fourth step, we select another parameter set and go to step (b). The process is repeated 

10,000 times. 

We assume that we have two outputs and three input prices. Artificial data for these are produced 

from lognormal distributions with location parameter zero and scale parameter one, and they are equi-

correlated with common correlation coefficient 0.90. We keep generating data sets until they satisfy the 

monotonicity constraints and curvature restrictions imposed at the mean of data. We add normally 

distributed noise with zero mean and s.d. equal to 10% of the generated cost series. We abstract from 

cost inefficiency as our focus is on approximation of functional forms. 

Next, we present errors from the various approximations when we use a Copula, HDMR, translog 

or an MLP approximation. In all cases, we present the maximum signed absolute error as a function of 

y1 and y2 when the other variables are fixed at their median values. Errors produced by Copula approach, 

in Figure 5, are quite small (although much smaller for the HDMR and roughly the same compared to 

a translog form used to estimate from data generated by the translog). No specific pattern is visually 

evident in Figure 5, so all approximations perform well but the best approximation are the Copula.  
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Figure 4. 

 
 

Fig. 4. Sampling distributions of posterior mean of cost efficiency change from the Copula model and the four 

benchmarks, translog, minflex Laurent, Generalized Leontief and HDMR.   
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Figure 5. 

 

Fig. 5. Presents errors from the various approximations when we use a Copula, HDMR, translog or an MLP 

approximation and the data generating process is a tanslog. 

 

When we use the Generalised Leontief as the data generating process (see Figure 6), the Copula 

approach delivers small errors without a specific pattern although all the other approximations deliver 

higher errors that follow a pattern. The HDMR and translog approximations are good at the lowest 

values of outputs but become worse as their values increase. The MLP approach produces also errors 

that follow a quadratic pattern and they are larger than the Copula approach and these errors are higher 

in the center of the data. 
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Figure 6. 

 
 
Fig. 6. Presents errors from the various approximations when we use a Copula, HDMR, translog or an MLP 

approximation and the data generating process is a Generalised Leontief. 

 

 
When we use the minflex Laurent as the data generating process (see Figure 7), again, the Copula 

approach delivers the smallest errors without a pattern but this is not the case for the HDMR, translog 

or MLP approximations. It appears that, in this instance, the HDMR and the translog approximations 

perform better near the center of the data, and the MLP approximation performs well in the same part 

but the approximation at the extremes is not accurate. 
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Figure 7. 

 
Fig. 7. Presents errors from the various approximations when we use a Copula, HDMR, translog or an MLP 

approximation and the data generating process is a minflex Laurent. 
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Figure 8. 

 
Fig. 8. Presents errors from the various approximations when we use a Copula, HDMR, translog or an MLP 

approximation and the data generating process is a minflex GL-Laurent. 

 

 
Finally, we use the minflex GL-Laurent as the data generating process (see Figure 8), the good 

performance of the Copula approach is, again evident, although the HDMR, translog, and MLP have 

higher signed absolute errors with a non-random pattern (see Figure 8). In our view, this provides 

compelling evidence in favor of a Copula approximation and against HDMR or, perhaps surprisingly, 

even for the MLP approximation.  

In Figure 9, we show the distribution of the number of layers and the number of units/layer when 

we use the Copula Approximation in the case of GL. This is in the context of our Monte Carlo 

experiment. The modal value of the number of layers is 4 although in many cases we need as many as 

10. The number of units per layer is 5 to 8, on the average, although 8-14 units per layer are needed. 

Similar patterns are observed in all other flexible functional forms. They are not discussed here as they 
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are available on request. In Table 5 we report root-mean-squared errors (RMSE) for the different 

approximations used in Figures 5 – 8.  

Table 5. 

Root-mean-squared errors of approximations in Figures 5 - 8. 

 

Method Copula HDMR TL MLP 

TL  0.12 0.31 0.42 3.1 

GL 0.10 5.42 5.50 0.67 

Minflex TL 1.21 5.53 5.30 0.12 

Minflex L 0.10 5.41 5.22 0.33 

Notes: All numbers should be multiplied by 10−5. This Table provides mean absolute errors for each of the four 

models: Minflex, Generalized Leontief (GL), High-Dimensional Model Representation (HDMR) and Copula 

Approximation. The rows correspond to specifications in Figures 5 – 8. TL stands for translog and L for Laurent. 

 

It is necessary to stress the similarities with the Gallant results and provide a hint (besides the Monte 

Carlo experiment) towards the theoretical capacity of HDMR approaching the true function, which 

reasonably might be due to the orthonormality of the polynomials used.9 As our main model relies on 

the Copula approach, there are still similarities with the Gallant results in that as G increases in (12) 

and (13) any functional form can be approximated to an arbitrary degree of accuracy. This follows from 

the standard results of Hornik, Stinchcombe, and White (1989) who show that similar models are 

“capable of approximating any Borel measurable function from one finite-dimensional space to another 

to any desired degree of accuracy” (op. cit., p. 359) with a sufficiently large G. A theorem by 

Kolmogorov states that for any N-variate continuous function the unit cube can be written as the sum 

of 2𝑁 + 1 functions, where each function depends on a single variable. Although there does not exist, 

as of yet, a constructive approximation based on this idea, MLP, HDMR and the Copula approach rely 

on this concept. Gallant (1981) actually proves that a consumer’s indirect utility function must be of the 

Fourier form. The same result applies to cost or other functions see his first equation in p. 219. We 

believe that this idea has been underexplored in the literature and definitely deserves further 

investigation in terms of general functional approximations.  

 

 

 

                                                 
9 We are indebted to an anonymous reviewer for making this important comment. 
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Figure 9. 

Number of layers and number of units per layer in Monte Carlo experiment 

 

Fig. 9. Number of layers and number of units per layer in Monte Carlo experiment. 

Another important issue is to report parameter issues for the different true data generating processes 

(DGP) and their various approximations. As parameters themselves do not have a structural 

interpretation we report partial derivatives of the cost function with respect to input prices and outputs. 

As we mentioned before we have 3 input prices and two outputs. Of course, linear homoigeneity with 

respect to prices has to be imposed. The results are presented in Table 6 Panels A and B, for input prices 

and outputs respectively. 
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Table 6.  

 

Panel A: Features of the different approximations, input price elasticities 

Approximations →      

 TL HDMR  MLP  Copula  

DGP↓  𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑤1
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑤2
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑤1
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑤2
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑤1
  

𝜕ł𝑛𝐶

𝜕 𝑙𝑛 𝑤2
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑤1
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑤2
  

 

TL  

0.51  

(0.49)  

0.25  

(0.24)  

0.51  

(0.63)  

0.25  

(0.34)  

0.51  

(0.43)  

0.25  

(0.35)  

0.51  

(0.48)  

0.25  

(0.21)  

 

GL  

0.47  

(0.35)  

0.32  

(0.31)  

0.47  

(0.38)  

0.32  

(0.48)  

0.47  

(0.36)  

0.32  

(0.44)  

0.47  

(0.46)  

0.32  

(0.29)  

 

minflex L  

0.51  

(0.33)  

0.38  

(0.55)  

0.51  

(0.30)  

0.38  

(0.14)  

0.51  

(0.44)  

0.38  

(0.25)  

0.51  

(0.48)  

0.38  

(0.35)  

 

minflex TL  

0.38  

(0.27)  

0.45  

(0.31)  

0.38  

(0.22)  

0.45  

(0.39)  

0.38  

(0.24)  

0.45  

(0.32)  

0.38  

(0.37)  

0.45  

(0.44)  

Panel B: Features of the different approximations, output elasticities 

Approximations →      

 TL  HDMR  MLP  Copula  

DGP↓  𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑦1
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑦2
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑦1
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑦2
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑦1
  

𝜕ł𝑛𝐶

𝜕 𝑙𝑛 𝑦2
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑦1
  

𝜕 𝑙𝑛 𝐶

𝜕 𝑙𝑛 𝑦2
  

 

TL  

0.44  

(0.43)  

0.19  

(0.20)  

0.44  

(0.33)  

0.19  

(0.28)  

0.44  

(0.31)  

0.19  

(0.20)  

0.44  

(0.43)  

0.19  

(0.22)  

 

GL  

0.26  

(0.19)  

0.72  

(0.81)  

0.26  

(0.32)  

0.72  

(0.59)  

0.26  

(0.33)  

0.72  

(0.61)  

0.26  

(0.24)  

0.72  

(0.70)  

 

minflex L  

0.61  

(0.55)  

0.35  

(0.41)  

0.61  

(0.32)  

0.35  

(0.44)  

0.61  

(0.57)  

0.35  

(0.22)  

0.61  

(0.59)  

0.35  

(0.32)  

 

minflex TL  

0.25  

(0.14)  

0.87  

(0.79)  

0.25  

(0.19)  

0.87  

(0.74)  

0.25  

(0.44)  

0.87  

(0.52)  

0.25  

(0.22)  

0.87  

(0.81)  

Notes: True values are stated in the Table. Values from the approximations are reported in parentheses. TL stands 

for translog, GL for Generalized Leontief, and L for Laurent. 

 

 

Although MLP, Copula, and HDMR perform well in terms of function approximation (see Figures 

5 – 8) this is not the case for the derivatives or elasticities reported in Tables 6 and 6b. Only the Copula 

approximation seems capable of getting these elasticities right on the average. We believe that this 

matter should be investigated further, although it seems clear that the Copula approximation performs 
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best due to its flexibility despite the fact that it relies on multivariate mixtures of normal. Along with 

the results in Gallant (1981), we believe that more work is needed in these directions. 

7. Conclusions 

In this article, we considered High-Dimensional Model Representation (HDMR) as a way to 

analyze cost functions and we proposed a novel approximation of a cost function using Copulas. Using 

Copulas as approximations of functions appears to be novel at least in the case of modelling cost 

functions.  

In an extensive Monte Carlo experiment, we find that the Copula Approximation performs much 

better, in terms of Bayes factors for model comparison, compared to HDMR and Multi-Layer 

Perceptrons (MLP). For the Copula Approximation, we provide a novel multivariate mixture-of-

normals approximation. Given the good performance of the Copula Approximation in the Monte Carlo 

study, we undertake an empirical application to a sample of large US commercial banks, where the 

results are compared to those from a HDMR, an MLP, a translog, a minflex Laurent, and a Generalized 

Leontief (GL) function. The empirical application reveals that the HDMR and commonly used 

functional forms deliver different results compared to the Copula Approximation. Moreover, the latter 

receives significantly more support in the light of the data, based on predictive Bayes factors computed 

over left-out sub-samples of the data. 

APPENDIX. Markov Chain Monte Carlo  

The algorithm uses local information about both the gradient and the Hessian of the log-posterior 

conditional of 𝜽 at the existing draw. A Metropolis test is again used for accepting the candidate so 

generated but the Gibbs sampling (GC) algorithm moves considerably faster relative to our naive 

scheme previously described. The GC algorithm starts at the first-stage GMM estimator and the MCMC 

runs until convergence. It has been argued (see Kumbhakar and Tsionas, 2016; Assaf et.al., 2018) that 

the performance of the GC algorithm is vastly superior to the standard Metropolis-Hastings (MH) 

algorithm and autocorrelations are much smaller.  

Suppose 𝐿(𝜽) = log 𝑝 (𝜽|𝑿) is used to denote for simplicity the log posterior of 𝜽, and 𝑿 

denotes the data and {𝒰𝑖𝑡 , 𝑖 = 1, . . . , 𝑛, 𝑡 = 1, . . . , 𝑇} . The dimensionality of 𝜽  is 𝑑𝜃 . Moreover, 

define the estimated covariance matrix:  

 𝑮(𝜽) = est. cov
𝜕

𝜕𝜽
log 𝑝 (𝑿|𝜽), (A.1) 

which is the empirical counterpart of  

 𝑮𝑜(𝜽) = −𝔼𝑌|𝜽

𝜕2

𝜕𝜽𝜕𝜽′
log 𝑝 (𝑿|𝜽) (A.2) 

The Langevin diffusion is given by the following stochastic differential equation:  
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 𝑑𝜽(𝑡) =
1

2
�̃�𝜽𝐿{𝜽(𝑡)}𝑑𝑡 + 𝑑𝑩(𝑡) (A.3) 

where  

 �̃�𝜽𝐿{𝜽(𝑡)} = −𝑮−1{𝜽(𝑡)} ⋅▽𝜽 𝐿{𝜽(𝑡)} (A.4) 

is the so called “natural gradient” of the Riemann manifold generated by the log posterior. The elements 

of the Brownian motion are:  

 

𝑮−1{𝜽(𝑡)}𝑑𝑩𝑖(𝑡)

= |𝑮{𝜽(𝑡)}|−1/2 ∑
𝜕

𝜕𝜽
[𝜀𝐺−1{𝜽(𝑡)}𝑖𝑗|𝑮{𝜽(𝑡)}|1/2]𝑑𝑡

𝑑𝜃

𝑗=1

 
(A.5) 

+[√𝑮{𝜽(𝑡)}𝑑𝑩(𝑡)]
𝑖
 

The discrete form of the stochastic differential equation provides a proposal as follows:  

�̃�𝑖 = 𝜽𝑖
𝑜 +

𝜀2

2
{𝑮−1(𝜽𝑜)𝛻𝜽𝐿(𝜽𝑜)}𝑖 +

𝜀2

2
∑ {𝑮−1(𝜽𝑜)}𝑖𝑗

𝑑𝜃

𝑗=1
tr {𝑮−1(𝜽𝑜)

𝜕𝑮(𝒂𝑜)

𝜕𝜽𝑗
} 

−𝜀2 ∑ {𝑮−1(𝜽𝑜)
𝜕𝑮(𝜽𝑜)

𝜕𝜽𝑗
𝑮−1(𝜽𝑜)}

𝑖𝑗

+ {𝜀√𝑮−1(𝜽𝑜)𝝃𝑜}
𝑖

𝑑𝜃

𝑗=1
 

= 𝝁(𝜽𝑜, 𝜀)𝑖 + {𝜀√𝑮−1(𝜽𝑜)𝝃𝑜}
𝑖
 

where 𝜽𝑜  is the current draw and 𝜀  is selected during the burn-in phase so that 20-30% of all 

candidates are, eventually, accepted. The proposal density is:  

 𝑞(�̃�|𝜽𝑜) = 𝒩𝐾𝜃
(�̃�,  𝜀2𝑮−1(𝜽𝑜)) (A.6) 

and convergence to the invariant distribution is ensured by using the standard form Metropolis-Hastings 

probability:  

 min {1,
𝑝(�̃�| ⋅, 𝑿)𝑞(𝜽𝑜|�̃�)

𝑝(𝜽𝑜| ⋅, 𝑿)𝑞(�̃�|𝜽𝑜)
}. (A.7) 
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