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Real world gravity current flows rarely exist as a single discrete event, but are instead made up of multiple surges. This

paper examines the propagation of surges as pulses in gravity currents. Using theoretical shallow-water modeling, we

analyze the structure of pulsed flows created by the sequential release of two lock-boxes. The first release creates a

gravity current, while the second creates a pulse that eventually propagates to the head of the first current. Two param-

eters determine the flow structure: the densimetric Froude number at the head of the current, Fr, and a dimensionless

time between releases, tre. The shallow-water model enables the flow behavior to be mapped in (Fr, tre) space. Pulse

speed depends on three critical characteristic curves: two that derive from the first release and correspond to a wave-

like disturbance which reflects between the head of the current and the back of the lock-box and a third that originates

from the second release and represents the region of the flow affected by the finite supply of source material. Pulses

have non-negative acceleration until they intersect the third characteristic, after which they decelerate. Variations in

pulse speed affect energy transfer and dissipation. Critically for lahars, landslides and avalanches pulsed flows may

change from erosional to depositional further affecting their dynamics. Gravity current hazard prediction models for

such surge-prone flows may under-predict risk if they neglect internal flow dynamics.

I. INTRODUCTION

Gravity currents are flows driven by pressure gradients re-

sulting from density differences. These may be the result

of temperature, suspended sediment or salinity differences.

Gravity currents form significant geophysical flows in atmo-

spheric, terrestrial and subaqueous environments. Examples

include, landslides, avalanches, turbidity currents, pyroclas-

tic flows and lahars1. Pulses are a common feature in grav-

ity currents and may result from flow instabilities, variable

supply of dense material2, combining of flows from different

sources, flow splitting and recombining3, or flow interactions

with topography4. For example, failure mechanisms for land-

slides and similar events are varied5 and can result in pulsed

flows: an initial failure of an embankment or dam can cre-

ate a steep main scarp as the supporting material slides away,

which, in turn, can lead to a further ‘retrogressive’ failure. The

process may repeat creating a significantly larger event com-

prised of many smaller pulses. Surges and pulses internal to

gravity currents can have a significant impact on the hazards

associated and flow properties when compared to a single re-

lease of the same volume. This is particularly significant for

compositional gravity currents where the variations in veloc-

ity affect the deposition or erosion that can occur6.

A pyroclastic flow generated by the 1997 eruption of

the Soufriére hills volcano contain three distinct major flow

surges over its 25 minute duration7. Deposits from the first

two major surges partially filled the main drainage channel

which the pyroclastic flow flowed along. This caused the third

a)scpaa@leeds.ac.uk

to overspill and travel into a region considered to be at low

risk. The release dynamics of these gravity currents and po-

tential evolution downstream in multiple surges impacts the

dynamics of the flow. The deposits left by previous surges,

and information they contain, can be destroyed by subsequent

surges making flow dynamics difficult to identify. Further,

run-out length, inundation zones and hazards are affected by

the internal dynamics.

Turbidity currents sub-marine gravity currents in which

the density difference is caused by suspended sediment and

have significant economic impact; they can travel with head

speeds as high as 19ms−18 and cause significant damage to

sea floor equipment, including pipelines, oil rig moorings9,

and seafloor telecommunication cables10,11. Turbidity cur-

rents are a key mechanism of sediment distribution from shal-

low to deep marine environments through the oceans and lead

to create of sedimentary rocks (turbidites) which are linked

to hydrocarbon reservoirs12. Deposits of seismically gener-

ated turbidity currents at the Cascadia margin, Washington

USA record multiple currents that combined downstream at

as many as seven confluences13. The separation time between

the flows can be negligible or of the order a few hours. Fur-

ther, experimental modeling has demonstrated that the signa-

ture of individual turbidity currents can be destroyed after the

different events interact14.

Gravity currents have been extensively studied by theoreti-

cal and experimental approaches, often based around the ide-

alized lock-release or lock-exchange problem, where dense

fluid is released by the rapid removal of a gate, providing

a well-controlled initial condition. This method provides a

suitable means to create repeatable, spatially and temporally

varying, fixed-volume currents that allow meaningful compar-

ison to theoretical models15–19. Recently, surge effects have
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been studied in the laboratory for turbulent saline flows using

multiple lock-releases, in which a series of lock-boxes posi-

tioned behind the first were released at set times after the ini-

tial release14,20,21. The second current intruded into the first

release and propagated towards the head of the current.

Dimensional arguments and simple integral models are able

to predict the position of the head xN as a function of the initial

conditions by assuming a dominant balance between buoy-

ancy and either inertial or viscous forces17,22,23. By exploiting

the large length L and shallow depth h of these flows, a first or-

der asymptotic approximation in the aspect ratio δ = h/L fol-

lowed by depth-averaging produces the hyperbolic shallow-

water equations24. After an initial transience the flows gen-

erally enter a self-similar phase where the flow structure is

independent of time and length scales. These similarity so-

lutions capture some of the horizontal features of the flow.

However, similarity solutions do not always exist. For exam-

ple, in the axisymmetric spreading of a compositional gravity

current, the tail of the current is self-similar but the head is

time-dependent25.

The neglected vertical gradients in the shallow water model

become significant at the head of the flow where turbulent

drag and three-dimensional flow structures dissipate momen-

tum. To capture this dissipation, shallow-water models are

supplemented with an imposed dimensionless flow velocity

at the head via a densimetric Froude number condition26.

The densimetric Froude number is a dimensionless veloc-

ity of the current Fr = u/
√

g′h, where g′ is the buoyancy

adjusted gravity, u is the streamwise velocity and h is the

flow depth, and is ratio between flow speed and infinitesi-

mal long surface waves on the gravity current27. The buoy-

ancy adjusted gravity expressed in terms of the current and

ambient densities, ρc and ρa, respectively, and gravitational

acceleration g is g′ = g(ρc − ρa)/ρc. Theoretical values of

the Froude number can be determined through application of

Bernoulli’s theorem and a momentum balance of far upstream

and far downstream of the head of the current in rectangu-

lar channels28,29 or by a vorticity balance without a dissi-

pation assumption30 for Boussinesq flows. These differing

approaches have been demonstrated to only differ by an as-

sumption about the dissipation and can be reconciled within

the same framework31. In addition, densimetric Froude num-

ber conditions have been calculated for a stratified ambient32

and non-rectangular cross-sections33. The densimetric Froude

number condition can also be determined experimentally to be

1.216. For non-Boussinesq flows, where the density difference

between the current and the ambient is large, the Froude num-

ber can be large and even tend to infinity. This corresponds to

zero depth at the front of the flow24.

Self-similar solutions of the lock-release problem provide

a valuable tool for numerical model validation and enable

development of these models to explore more complicated

scenarios. In the majority of applications, numerical in-

tegration is required to obtain solutions. Direct numeri-

cal simulation (DNS) of the Navier-Stokes equations has

also been conducted and demonstrates that depth-averaged

models are able to capture the principal physics of gravity

current dynamics with significantly reduced computational

time9. Shallow-water models can capture shocks (pulses)

which appear as discontinuities in the solution. In reality,

the viscosity of the flow smooths the discontinuity, but the

shocks are still able to accurately capture the velocity of such

disturbances34. Bonnecaze, Huppert, and Lister 34 employed

a Lax-Wendroff finite-difference scheme to numerically inte-

grate their shallow-water model that included sediment trans-

port for a lock-release problem. The scheme accurately cap-

tured internal shocks which occurred behind the head down-

stream from the lock.

Hogg 27 employed the method of characteristics to solve

the problem of a single-lock release flow. The shallow-water

equations yield two families of characteristic curves along

which the Riemann invariants α = u+
√

g′h and β = u−√
g′h

are conserved. Hogg 27 showed that the structure of the solu-

tion depended qualitatively on the densimetric Froude num-

ber, Fr. For Fr ≥ 2, characteristics leaving the back of the

head never reached the back of the lock-box and an internal

shock formed for Fr > 2. For Fr < 2, a structured solution ex-

ists in which the characteristic (x, t)-space is split into regions

where both, one or neither of the two characteristics variables

are constant. Hogg 27 analytically determined the boundary

between these regions and the solution when at least one of

the characteristic variables is constant. These models have

not been extended to the multiple release case.

The goal of this paper is to extend the lock-release prob-

lem for the shallow-water equations to a double-release case,

where a second equally sized lock-box is released subse-

quently. The second release will create a shock that will

propagate through towards the head current. A Lax-Wendroff

finite-difference scheme based on the implementation of Bon-

necaze, Huppert, and Lister 34 is employed to solve the gov-

erning shallow-water equations. The characteristics are then

computed from this solution afterwards, in order to describe

the form of the solution in (x, t) space. For a double-release

problem with identical lock-boxes, there is an additional pa-

rameter as well as the densimetric Froude number: the dimen-

sionless release time t∗re = tre
√

g′hlock/l, where tre is the gate

separation time, hlock is the lock depth and l is the lock length.

The work presented here explores the (Fr, tre) parameter space

for Fr < 2. Simulations of the single-release case are com-

pared to the analytical solution of Hogg 27 for validation. The

double-release simulations reveal a variety of distinct regions

in the (Fr, tre) parameter space with qualitatively different be-

havior in the shock velocity. For tre → ∞, the two releases

behave as two non-interacting events, whereas for tre ≤ 1 the

flow is effectively a single discrete event of twice the volume.

However, the two events interact, affecting pulse propagation,

for intermediate tre-values and a range of qualitatively differ-

ent solutions are obtained. Regions are separated by whether

or not they are affected by the amount of material in the sec-

ond lock-box and the path through the single release solution

structure. The velocity of the shock has implications for the

dynamics of the pulsed gravity currents flows discussed ear-

lier and the assessment of their hazards.

The paper is structured as follows: The shallow water

model is presented for both the single- and double-release

configurations in §II; Results from our numerical model and
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the parametric study are presented in §III; Implications are

discussed in section §IV; Finally, we conclude in §V.

II. THEORETICAL MODELING

Consider a constant volume gravity current propagating

over a fixed horizontal rigid surface in two spatial dimen-

sions (x,z), where x and z are the horizontal and vertical co-

ordinates, respectively, with the time from the first release de-

fined as t, Fig. 1. The current has density ρc and the deep

ambient has density ρa. Thus, the buoyancy-adjusted grav-

ity for the current may be expressed as g′ = (ρc − ρa)g/ρc,

where g = 9.81 ms−2. In the lock-gate configuration, the

flow quickly reaches a state where the height h(x, t) is much

smaller than the length of the current xN(t). Therefore, in

considering the horizontal momentum of the flow we can av-

erage over the depth and assume purely hydrostatic pressure.

Further, the flows are assumed inviscid (with no basal drag),

entrainment is negligible, and the ambient is quiescent and

infinitely deep. These assumptions allow us to apply the sim-

plified depth-averaged shallow-water equations

∂h

∂ t
+

∂m

∂x
= 0, (1)

∂m

∂ t
+

∂

∂x

(

m2

h
+ g′

h2

2

)

= 0, (2)

35, where

m(x, t) =

∞
∫

0

v(x,z, t)dz and h(x, t) =
(
∫ ∞

0 v(x,z, t)dz)2

∫ ∞
0 v(x,z, t)2 dz

(3)

are respectively the depth-integrated momentum per unit

mass and the depth of the flow expressed in terms of the hor-

izontal velocity v(x,z, t)36. The shallow water equations are

first order approximations in terms of the aspect ratio between

the depth and length of the current δ and contain no source

terms, i.e. drag and entrainment. However, at the head of

the current x = xN(t) the dissipation is accounted for via a

densimetric Froude number condition29. Further, a dynamic

boundary condition is imposed at the head

dxN

dt
≡ ẋN =

m(xN , t)

h(xN , t)
=
√

g′h(xN , t)Fr, (4)

where Fr is a constant and subscript N denotes a value at the

head. Both lock-boxes are assumed to be of the same length l

and filled to a depth of hlock. Initially, no flux boundary con-

ditions are imposed at the back of both lock-boxes x = 0, l.
After the second gate is released at t = tre, the no flux condi-

tion at x = l is removed. From the momentum equation (2),

no flux is equivalent to ∂h/∂x = 0 and so

∂h

∂x
(x0, t) = 0 for

{

x0 = 0, l if t ≤ tre,

x0 = 0 if t > tre,
(5)

Similarly, the initial conditions, Fig. 1, are defined as

h(x,0) =

{

hlock if x ∈ [0,2l],

0 otherwise.
(6)

The mass and momentum conservation equations (1) & (2)

are non-denationalized using l as the horizontal length scale,

hlock as the depth scale,

√

g′h3
lock as the momentum scale and

l/
√

g′hlock as the convective time-scale :

∂h∗

∂ t∗
+

∂m∗

∂x∗
= 0, (7)

∂m∗

∂ t∗
+

∂

∂x∗

(

m∗2

h∗
+

h∗2

2

)

= 0, (8)

where ∗ denotes a dimensionless variable. Similarly, the di-

mensionless boundary conditions (5) and (4) are:

∂h∗

∂x∗
(x∗0, t

∗) = 0 for

{

x∗0 = 0,1 if 0 ≤ t∗ ≤ t∗re,
x∗0 = 0 if t∗ > t∗re,

(9)

dx∗N
dt∗

=
m∗

N

h∗N
= Fr

√

h∗N (10)

and initial conditions (6) become

h∗(x∗, t∗) =

{

1 if x∗ ∈ [0,2],

0 otherwise.
(11)

A. Analysis of characteristics: single release case

This section will discuss the behavior of the flow for t < tre,

which is equivalent to the single release solution of Hogg 27 .

From this point the ∗ are neglected from the dimensionless

variables for brevity, unless stated otherwise. The system

of equations (7-8) can be transformed into its characteristic

form24 by changing to characteristic variables

α = u+ 2c, β = u− 2c, (12)

where u = m∗/h∗ and c =
√

h∗ to obtain

dα

dt
= 0 on

dx

dt
= u+ c, (13)

dβ

dt
= 0 on

dx

dt
= u− c. (14)

Thus, α and β , the Riemann invariants, are constant along

characteristics curves with gradients in (x, t)-space of u+ c

and u− c, respectively. The gradients u± c are the eigenval-

ues of the system of equations (7) & (8) and, provided the flow

depth is non-zero, are real and distinct everywhere. Thus, the

system is hyperbolic and the method of characteristics may

be applied. The values of the characteristic variables can be

determined from boundary or initial conditions that the char-

acteristics pass through.
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FIG. 1: Configuration of the single (left) and double (right) lock-release problems. Initial conditions (- -) and current depth,

h(x, t), (–) displayed.

Initially, α = 2 and β = −2 on all positive and negative

characteristics that originate from 0 < x < 2, t = 0, see Fig.

2. Thus, with the imposed densimetric Froude number condi-

tion uN = FrcN, positive characteristics collide with the head

at a finite time provided Fr 6→ ∞ (in the limit Fr → ∞, the

head corresponds to the leading characteristic). While posi-

tive characteristics arrive at the head with α = 2, the velocity

and wave speed at the head are constant and take value

uN = FrcN and cN =
2

Fr+ 2
. (15)

Thus, negative characteristics emanating from the back of

head have constant

β = βm ≡ 2(Fr− 2)/(Fr+ 2)≥−2. (16)

An expansion fan of negative characteristics emanates from

(2,0) and connects the two regions where β is constant, see

Fig. 2b. These negative characteristics correspond to straight

lines through the origin and satisfy

x = 1+(4+ 6β )(2−β )−
3
2 t for β ∈ [−2,βm] . (17)

The negative characteristics with β = βm and β = −2, and

their subsequent reflections are denoted xfan(t) and xref(t), re-

spectively, and form the boundaries between uniform (U) and

simple (S) wave regions in which either β is constant or β
varies. The fastest backwards traveling negative characteris-

tic, xref(t), originates from the initial release at x = 2 and rep-

resents the furthest part of the lock that is affected by the initial

release. For clarity, the curves xref and xfan represent different

characteristics with different values of the conserved quan-

tities after each reflection. They alternate between positive

and negative characteristics between each branch. All positive

characteristics intersecting the first branch of xref arrive from

unperturbed fluid and so have α = 2, yielding dx/dt =−1 and

thus xref(1) = 1. For t > 1, the positive characteristics emanat-

ing from t > 1 have α < 2, because h < 1 and u = 0. The last

characteristic with α = 2 signifies the boundary of the region

of the flow that is affected by the finite length of the first lock-

box. For t > 1, xref defines the last characteristic with α = 2.

The curves xref and xfan collide at t = (2+Fr)3/2/
√

8. Beyond

this point, xfan enters a region of varying α and therefore has a

non-constant gradient. In contrast, xref enters a region of con-

stant β and thus has constant gradient until reaching the head.

Hogg 27 gives the xref characteristic between the back wall and

the head as

xref(t) =















2+ 2t− 3t
1
3 if t ∈

[

1, (2+Fr)
3
2√

8

]

,

2−
√

2(2+Fr)+ 2 Fr+1
Fr+2

t if t ∈
[

(2+Fr)
3
2√

8
, (2+Fr)

3
2√

2

]

.

(18)

At times beyond this characteristic, complex (C) or simple (S)

wave regions exist, where both or one characteristic varies in

time, respectively. The lines xfan and xref are continually de-

fined through reflections as, respectively, the first or last char-

acteristic upon which either α or β are locally constant. For

Fr < 2 they reflect between the head and the rear lock-box

and divide the solution space into uniform (U), simple (S) and

complex (C) wave regions, Fig. 3. Constant negative char-

acteristics in regions U1, S2 and U2 have β = βm (16) and

thus, at the back of the first lock-box where, from the bound-

ary condition (9), u = 0 and hence α =−β = 2c =−βm, new

positive characteristics in the regions U2, S3 and U3 take the

value α =−βm.

The densimetric Froude number condition (10) implies neg-

ative characteristics have β = βm(Fr−2)/(Fr+2) when pos-

itive characteristics with the constant value α =−βm arrive at
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1 2

1

(a)

1 2

(b)

FIG. 2: Characteristic diagrams shortly after the first release for a densimetric Froude number Fr less than 1.For 1 < Fr < 2,

xref has positive gradient until intersecting xfan The head of the current xN (–) moves at constant speed until xref(·−) collides

with it. Positive (a) and negative (b) characteristics (· · · ) are displayed for a small range of starting values. The boundary

between the expansion fan and the constant region behind the head is xfan(· · ·−). Online version in color.

U1S1

C1

S2

1 2

1

(a)

U1S1

C1

U2 C2
S2

U3
C3

S3

C4
S4

U4

1 2

1

(b)

FIG. 3: Characteristic diagram highlighting the two curves xref(·−) and xfan(· · ·−) and how the solution is partitioned into

uniform (U), simple (S) and complex (C) regions shortly after the release (a) and at a later time (b). Online version in color.

the head. This holds in regions U3, S4 and U4. These bound-

ary conditions continually create regions in the flow where

the characteristics variables α or β are constant. The values

of α or β may be calculated in any region in which they are

constant27. For n ∈N regions U2n, S2n+1 and U2n+1 have

α = 2

[

2−Fr

2+Fr

]n

≡ 2λ n, (19)

because of the no flux boundary condition (9), while in regions

U2n+1, S2n+2 and U2n+2

β =−2

[

2−Fr

2+Fr

]n+1

=−2λ n+1 (20)

because of the densimetric Froude number condition (10). As

n → ∞, α → 0, and β → 0, and thus u → 0 and c → 0. When

Fr ∼ 0 , λ ∼ 1 and therefore the flows will interact for a large

number of reflections and hence longer release times. For

Fr ∼ 2 there is minimal interaction between the events. Crit-

ically, xref and xfan partition the single-release solution into

three distinct regions for any fixed t where the behavior of α
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and β are qualitatively different.

B. Extension to double release

From the structure described in section II A we can deter-

mine the nature of the solution when the second gate is re-

leased at t = tre. If tre ≤ 1 then trivially the solution behaves

identically to a single-release of lock-box length 2, because

the backwards traveling disturbance has insufficient time to

reach x = 1. For tre > 1, a shock is created where posi-

tive characteristics in x < 1, having α = 2, collide with pos-

itive characteristics from x ≥ 1 having α < 2. Depending

on the release time, tre, the shock is released into a region

of constant depth (uniform region) or varying depth and ve-

locity (complex region) and so the relative position of the

two curves, xref and xfan, determine the initial motion of the

shock. Imposing that mass and momentum fluxes are con-

served across the shock, the shock velocity ẋs can be obtained

from the Rankine-Hugoniot conditions of the shallow water

equations, because they are in a conservative form. In terms

of the characteristic variables ahead of and behind the shock,

α+,β+,α−,β−, respectively, the shock velocity ẋs is

ẋs =
1

2

(α++β+) (α+−β+)
2 − (α−+β−)(α−−β−)2

(α+−β+)2 − (α−−β−)2
,

(21)

from mass conservation (7) and

ẋs =
1

16

8(α+−β+)
2
(α++β+)

2 − 8(α−−β−)2
(α−+β−)2

+(α+−β+)
4 − (α−−β−)4

(α++β+)(α+−β+)2 − (α−+β−) (α−−β−)2
(22)

from momentum conservation (8). Initially α− = 2 as the

positive characteristics come from unperturbed fluid. Shocks

that propagate into a uniform region have both α+ and β+

constant and thus, by the Rankine-Hugoniot conditions (21) &

(22), both ẋs and β− are also constant. In simple and complex

regions, the shock will accelerate or decelerate and values of

β− will vary.

In uniform regions adjacent to x = 1, the boundary condi-

tion u(1) = 0 (9) implies that u(x) = 0 throughout the uni-

form region. Thus, and whilst α− = 2, the problem repli-

cates the wet dam break24 and the shock velocity can be calcu-

lated explicitly throughout the uniform region. The Rankine-

Hugoniot conditions (21) & (22) provide an implicit relation

for the constant shock velocity, ẋs, for uniform regions adja-

cent to the head. For a shock of positive velocity, ẋs, causality

implies that positive characteristics cannot be emitted by the

shock. Thus, the shock represents the furthest point in the do-

main that has been affected by the release of the second gate.

Similar to the line xref(t), an additional line xfin(t) is in-

troduced for the second release. The first branch tracks the

backwards propagating disturbance of the second release, i.e.

the fastest negative characteristic from (1, tre). On this char-

acteristic β = −2, and positive characteristics intersecting it

arrive from unperturbed fluid and therefore α = 2. Thus

dxfin

dt
=−c =−1 (23)

and so

xfin(t) = 1− (t − tre) for t ∈ [tre, tre + 1]. (24)

At t = tre + 1, the fluid at the back of the second lock starts

to be affected by the gate release and beyond this time α < 2

at x = 0. The last α = 2 characteristic leaves x = 0 at t =
tre + 1, which is denoted as the continuation of the line xfin.

The second branch of the curve xfin defines the part of the

solution affected by the finite length of the second lock-box. If

this characteristic intersects the shock, then α− < 2 thereafter.

Both β− and the shock velocity ẋs are constant when the

shock propagates through a uniform region. Thus, for a shock

propagating in a uniform region, a region of constant β is cre-

ated, which in turn creates another region of constant α < 2

upon reaching the back of the lock-box. The structure of the

characteristic space is displayed for a shock released into a

uniform region, Fig. 4, and a complex region, Fig. 5 . For

shocks released into either uniform or complex regions neg-

ative characteristics will have gradients greater than −1 (14)

and another expansion fan of negative characteristics must ex-

ist at (1, tre). A shock released into a uniform region will ini-

tially travel at a constant speed. Further, the flow depth and

velocity will be constant either side of the shock. This will

hold until the shock intersects one of the three curves xref, xfan,

or xfin, with each possibility leading to a different structure be-

hind the shock. The example drawn in Fig. 4 has the shock

intersecting xref initially. For complex shocks, Fig. 5, the

shock speed accelerates from the outset, because the values of

α+ and β+ are decreasing. The shock may exhibit a region

of constant velocity, but only once it has intersected both xref

and xfan. The three curves xref, xfan and xfin bound critical

regions where characteristic variables α and β change from

either being constant or varying. The single release solution

space is partitioned by xref and xfan into regions with varying

or constant α and β . Therefore, their position relative to the

shock when it is released influences the initial shock velocity.

The dynamics of the shock change when it collides with xref

or xfan, which in turn affects the negative characteristics be-

hind it. Further, when xfin intersects the shock, an additional

change in dynamics occurs. The order in which these effects

occur creates a range of different shock velocities.

The shallow-water equations (7) & (8) coupled with bound-

ary (9) & (10) and initial (11) conditions are solved using the
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1
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FIG. 4: Schematic showing an example structure of the characteristic space for a shock released into the U2 region. Ahead of

the shock, the regions are bounded by the two lines xref(·−) and xfan(· · ·−), the head of the current xN (–) and the shock xs (- -).

At the point of release, an additional expansion fan is bounded between xfin(· · · ) and the slowest backwards traveling

characteristic from the second release (· ·−). Online version in color.

method of Bonnecaze, Huppert, and Lister 34 . For stability

the initial depth, hN , and velocity, uN , at the head were set to

slumping phase values;

uN =
2Fr

2+Fr
and hN =

(

2

Fr+ 2

)2

. (25)

Further, the shock initiates at (x, t) = (1, tre), where u = 0,

and thus the positive and negative characteristics ahead of the

shock takes values

α+ = 2
√

h(1, tre) and β+ =−2
√

h(1, tre). (26)

Together with α− = 2, the Rankine-Hugoniot conditions (21)

& (22) were used to determine the initial shock velocity and

depth, ẋs(tre), and these were imposed at the node coinciding

with the shock for the first time step after release.

The shallow water equations are remapped to the unit in-

terval using the change of variables (ζ ,τ) = x/xN(t), t). This

removes the moving boundary condition simplifying the ap-

plication of the Froude number condition. For full details

see appendix A of Bonnecaze, Huppert, and Lister 34 . The

transformed equations are solved using a Lax-Wendroff finite

different scheme. Numerical integration with a upwind finite-

difference scheme is used to determine the positive character-

istic that arrives at the head, ζ = 1, at the next time step and

provide, together with the Froude number condition, a second

equation for u and c at the head. This enabled us to determine

suitable values used as boundary conditions at the head for the

next time step. Model validation is performed by comparing

the numerical solution at t = 1 and the curve xref(t) with the

exact solution given by Hogg 27 . This was chosen, because

of the significance of the three lines xref(t), xfan(t) and xfin(t)
to assess the ability of the simulations to capture the distinct

regions where behavior changes. This validation is presented

in the Appendix
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FIG. 5: Schematic showing an example structure of the characteristic space for a shock released into a C3 region. Ahead of the

shock, the regions are bounded by the two lines xref(·−) and xfan(· · ·−), the head of the current xN (–) and the shock xs (- -). At

the point of release, an additional expansion fan is bounded between xfin(· · · ) and the slowest backwards traveling characteristic

from the second release (· ·−). Online version in color.

III. RESULTS AND DISCUSSION

In this section, the range of possible solutions from the

shallow-water model are classified in terms of qualitative dif-

ferences in the shock velocity throughout its motion towards

the head of the current. The generic structure of the (Fr, tre)
phase space is presented from a parametric study, and the so-

lution types are presented.

A. Shock Evolution

The numerical solutions are first distinguished by the re-

gion the shock is released within, C1, U2, C3 etc. If the shock

at xs(t) is released into a uniform region, the shock velocity

remains constant until it enters the simple wave region. If the

shock is released into a complex region, its velocity varies

from the outset. The characteristics that bound the region of

varying or constant α and β , xfan(t) and xref(t), are bounded

by the flow front and must collide with the shock before it

reaches the front. The intersection times, tfan and tref, i.e.

xfan(tfan) = xs(tfan) and xref(tref) = xs(tref), signify changes in

behavior in front of the shock.

If the shock is released into a complex region, three dis-

tinct paths through (x, t)-space may occur: i) The shock first

intersects xfan and enters a simple wave region in which β is

constant. The shock then intersects xref after it has reflected

off the front, entering another complex region; ii) The shock

intersects xfan first, but intersects xref before it has reflected off

the head. Thus, the shock enters a uniform region until col-

liding with the head; iii) The shock intersects xref, entering a

simple region within which α is constant. It then intersects
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xfan, entering a uniform region. The three possibilities for C1

are displayed in Fig. 6a. A similar distinction is drawn for the

uniform cases, for example U2 in Fig. 6b: i) β varies within

the simple wave region before becoming constant again; ii) β
starts varying first followed by α; iii) α starts varying fol-

lowed by β . Further, if the shock is affected by the finite

length of the domain lock-box, i.e. xfin intersects with the

shock before it reaches the head of the flow, then this is equiv-

alent to α− < 2 beyond this point. The first time the shock

and xfin coincide is defined as tfin, such that xfin(tfin) = xs(tfin).
If the shock is affected by the finite length of the lock-box, the

case is labeled ‘F’, otherwise ‘N’. For example U2Fi is a shock

that is released into the U2 region of type i that is affected by

the finite length of the lock-box.

Numerical solutions for the U2N shocks are displayed in

Fig. 7. For case i, Fig. 7a&b, β varies upon entering the S3

region and the shock accelerates at approximately a constant

rate until entering U3, where it returns to a constant but higher

velocity until colliding with the head of the current. In con-

trast the shock velocity increases throughout in cases ii, Fig.

7c&d, and iii, Fig. 7e&f, as first one characteristic starts vary-

ing and then the other (β first for case ii and α first for case

iii). The shock velocity at tfin is largest for case iii, with case i

being the slowest.

For larger densimetric Froude numbers, the shock has fur-

ther to travel before reaching the front and therefore is more

likely to be affected by the finite length of the lock-box. The

U2F shocks are qualitatively similar to the U2N cases, Fig.

8, until xfin collides with the shock at t = tfin, after which the

velocity decreases and the maximum shock velocity occurs

before the head. Case U2Fi does not exist. i.e., the shock

can only be affected by the finite length of the lock-box if it

enters a region where α is varying. Further, our simulations

reveal that this case U4Fi does not exist. Shocks released

into complex regions immediately increase in velocity as both

α+ is decreasing and β+ is increasing. Example C3N cases

are presented in Fig. 9. As expected, the acceleration of the

shock decreases after tfan for case i, because β takes a con-

stant value until tref, after which β starts decreasing again and

the acceleration of the shock increases. For cases ii and iii,

the acceleration of the shock decreases when it enters the S3

region before becoming zero when entering U3 until reach-

ing the head of the current. For C3 and subsequent complex

and uniform cases, the shock may feel the affect of the finite

length of the lock-box before colliding with xref or xfan. The

acceleration of the shock still decreases after it is affected by

the finite length of the domain, but the range of possibilities

becomes more complex, Fig. 10.

B. Classification of Solutions

A large number of numerical simulations were run in the

range of values (Fr, tre) ∈ [0,2)× (1,21] and from the three

curves, xref,xfan&xfin, and the shock, xs, the corresponding

case was determined. For each Fr, the boundaries between re-

gions were chosen at tre values between the simulations of dif-

ferent cases. In an iterative process, further simulations were

(a)

(b)

FIG. 6: Schematic showing examples of the three

characteristic diagrams for the three distinct paths C1 (a) and

U2 (b) shocks, xs, (- -) can take through the single release

solution, i,ii and iii. The shock intercepts xref and xfan (· · ·−)
at tfan(H) and tref(�), respectively. The shock intercepts the

front, xN(−), at t = tcol(�). Uniform (Ui), Simple (Si) and

complex (Ci) regions are indexed by the order in which they

appear. Online version in color.
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FIG. 7: Example U2N cases for: U2Ni, (a) & (b) (Fr = 0.4 and tre = 4.2); U2Nii, (c) & (d) (Fr = 0.6 and tre = 5); and U2Niii,

(e) & (f) (Fr = 0.9 and tre = 5.8): (a), (c), (e) Characteristic diagram displaying the flow boundaries (–), xref and xfan (· · ·−), the

shock xs (- -) and xfin(·); (b), (d), (f) Shock velocity for t > tre. tfan(H), tref(�), tcol(�) and tfin(•) (a-f). The shock velocity is

only linear in Uniform regions, §III A. Online version in color.
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FIG. 8: Example U2F cases for: U2Fii, (c) & (d) (Fr = 0.9 and tre = 10); and U2Fiii, (e) & (f) (Fr = 1.1 and tre = 10): (a), (c)

Characteristic diagram displaying the flow boundaries (–), xref and xfan (· · ·−), the shock xs (- -) and xfin(·); (b), (d) Shock

velocity for t > tre. tfan(H), tref(�), tcol(�) and tfin(•) (a-d). Online version in color.

run at these parameter values in order to resolve the parameter

space accurately. The distinct regions of the parameter space

are presented in Fig. 12, with the i, ii, and iii distinctions only

shown for cases C1, U2 and C3. As Fr → 0, the boundaries

collapse onto odd integers and the regions of complex shocks

tend to zero. This is to be expected, as xref and xfan coincide

for Fr = 0, and, in fact, u= 0 everywhere so positive and neg-

ative characteristics have gradient 1 or -1, respectively. Cases

C1ii and C1iii are the only two possible cases where the shock

collides with xref with α = 2. Our simulations reveal that nei-

ther of these cases exist.

The classification of each case determines exactly which

three regions the shock travels through. the Rankine-Hugoniot

conditions (21) & (22) ensure that the shock velocity is con-

stant in uniform regions where the shock is not affected by the

finite length of the lock-box α− = −2. For shocks in simple

wave regions, one of α+ or β+ will take constant value given

in equation (19) or (20), respectively, while the other will vary

monotonically between two constant values dependent on Fr

(from the neighboring uniform regions). In a complex region,

the values of α+ and β+ both vary between the constant val-

ues given in equations (19) & (20).

Solving the Rankine-Hugoniot conditions (21) & (22) nu-

merically for a fixed α− = 2 and varying Fr, α+ and β+ en-

ables us to explore the regions of the flow where the shock

ẋs may accelerating or decelerating. Studying the regions up

to S7 and C6 revealed that the shock accelerates for all pos-

sible parameter values in regions of fixed α+ (S3, S5 and S7)

and for all values of α+ above a critical value of the densi-

metric Froude number Frc in regions of fixed β+ (S2, S4 and

S6). Similarly one variable was fixed and the other varied to

determine Frc-values for complex regions. This analysis re-
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FIG. 9: Example C3N cases for: C3Ni, (a) & (b) (Fr = 0.4 and tre = 10); C3Nii, (c) & (d) (Fr = 0.6 and tre = 11.4); and C3Niii,

(e) & (f) (Fr = 0.7 and tre = 11): (a), (c), (e) Characteristic diagram displaying the flow boundaries (–), xref and xfan (· · ·−), the

shock xs (- -) and xfin(·); (b), (d), (f) Shock velocity for t > tre. tfan(H), tref(�), tcol(�) and tfin(•) (a-f). Online version in color.
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FIG. 10: Example C3F cases for: C3Fi, (a) & (b) (Fr = 0.3 and tre = 20); C3Fii, (c) & (d) (Fr = 0.8 and tre = 22); and C3Fiii,

(e) & (f) (Fr = 0.9 and tre = 20): (a), (c), (e) Characteristic diagram displaying the flow boundaries (–), xref and xfan (· · ·−), the

shock xs (- -) and xfin(·); (b), (d), (f) Shock velocity for t > tre. tfan(H), tref(�), tcol(�) and tfin(•) (a-f). Online version in color.
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vealed that apart from case C3Ni in the C4 region and C3Niii

in the C3 region, all the Frc-values lie in the F region of the

parameter space and therefore, all shocks in the N region up

to case U6 have non-decreasing velocities, ẋs. Sampling the

C3Niii case did not reveal any decelerating shocks. Deceler-

ating shocks were found in C3Ni near the N-F boundary and

just before the shock reaches the head. However, these were

also observed for other cases near the N-F boundary. As the

numerical method is not exact, the maximum shock velocity

may arise just before the reflection of the backwards travel-

ing disturbance xfin reaches the shock, Fig. 10b,d&f. The

velocity maximum occurs just before tfin. This is believed to

be a numerical artifact from the dissipative nature of the Lax-

Wendroff scheme and that N shock do no necessarily deceler-

ate.

The velocity of the flow behind the shock

u− = (α−−β−)/2 is related to the velocity of the shock

through the Rankine-Hugoniot conditions (21) & (22). The

simulations reveal that the acceleration of the flow behind

the shock has the same sign as the shock acceleration, except

when the shock is propagating through S2n regions of the

flow, i.e. regions where β+ takes a constant value. In these

regions the acceleration has the opposite polarity. Critically,

this means that an increasing shock speed is equivalent to an

increasing fluid velocity behind the shock for all other regions

in the single release flow.

Depth h and velocity u = m/h are compared for cases U2Ni

and C3Ni in Fig. 11. The position of the curves xref(�) and

xfan(H) are displayed along the x-axis to highlight the bound-

aries between uniform, simple, and complex regions. After

the second release the position of the shock (�) and xref(•)
are also shown. Both cases are for the same Fr, so the ini-

tial dynamics are identical. After the second release, the flow

depth is deeper, but slower, behind the shock for the U2Na

case when compared with the C3Ni case. When the shock

reaches the head of the flow the expected constant depth and

velocity is observed for the U2Na case. Whereas for the C3Ni

case, the velocity increases to a maximum at the head of the

flow. This maximum is larger than the maximum velocity for

the U2Na case.

C. Momentum of the Head

Both the destructive potential, i.e. the amount of damage

it can cause, of the gravity current and its run-out length can

be affected by the fluid momentum at the head of the cur-

rent m(xN , t). In Fig. 13 we compare the momentum at the

time when the shock collides with the head at the same time,

m(xN , tcol), for four different Froude numbers Fr against pulse

separation times tre. Also shown on this plot is the corre-

sponding momentum for a single release of twice the size at

(x, t) = (xN , tcol). For a fixed Fr, the momentum is signifi-

cantly lower for a single release than the corresponding double

release. Although both cases contain the same amount of ma-

terial, the depth at the head of the flow starts decreasing later

for the single release and therefore the dissipation is larger.

Further, the dissipation is significantly larger at the head of

the flow than at the shock.

In contrast to the single release, where increasing the den-

simetric Froude number decreases the dissipation at the head,

plotted against separation time the momentum in the cor-

responding double release is lower for higher densimetric

Froude numbers. This is a consequence of the head moving

faster for higher Froude numbers. If instead the momentum at

t = tcol is plotted against the position of the head xN(tcol), Fig.

13b the expected trend is observed with higher Froude num-

bers being less dissipative. Critically, although the distinction

is less with larger Froude numbers Fr, a single release event

is more dissipative than a double release.

IV. IMPLICATIONS

We can now reflect on the implications of our model find-

ings on the geophysical events discussed in the introduc-

tion.For compositional flows, the particle size distribution is

the dominant control on when erosion and deposition rates are

in balance6. For dilute flows, this equilibrium point defines a

particle concentration above or below which the flow is ero-

sional or depositional, respectively. The models discussed in

Dorrell et al. 6 are increasing functions of the shear velocity

at the bed u∗, which can be empirically modeled as propor-

tion to, or related to a positive power of the depth-averaged

velocity u = m/h37–39. Thus, in regions where the flow speed

is increasing it is more net erosional and conversely for re-

gions where the flow speed is decreasing it is more net depo-

sitional. When the particle concentration is large, for example

lahars and landslides, the particles are in constant contact and

suspended by matrix strength rather than the fluid. Therefore

there is no simple relationship between erosion and deposition

rates and the acceleration of the flow for these flows. Instead

erosion and deposition are controlled by a stress balance at the

bed40.

The hazard assessments conducted for the Soufriére Hills

Volcano, Montserrat assume a continuous steady release of

material from the lava dome during the 1997 eruption cre-

ating a pyroclastic surge flow7. However, at the 1997 erup-

tion the dome failed retrogressively producing a continuous

release with three distinct peaks in volume flux identified as

distinct pulses. Sedimentation from pyroclastic surges can

create a complex flow structure with a dense, basal pyroclas-

tic flow component with high-particle concentration, which

is overlain by and an upper, less dense pyroclastic surge. In

the 1997 event, 1.4 km downstream from source the third py-

roclastic flow associated with the third pulse overspilled the

drainage channel and went on to hit the villages of Streatham

and Windy Hill. Despite the bend coinciding with a constric-

tion in the channel cross-sectional area these villages were not

considered at risk. However, the previous two pulses had left

significant deposits thus increasing the risk of surge detach-

ment and overspilling.

The pulsed nature of this flow affected its run-out and the

inundation zone of this flow when compared to the a contin-

uous release of the same size7. The shallow-water model dis-

cussed in this paper suggests that the separation time between
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FIG. 11: Depth h(−−·) and velocity u = m/h(· · ·) profiles at eight equally-spaced time steps until the shock reaches the head

of the current for the following cases: U2Ni (left) and C2Ni (right). Positions of the curves xref(�) and xref(H) are displayed on

the x-axis until they intersect the shock xs(�). The position of xfin(•) is also displayed on the x-axis.
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FIG. 12: Structure of the (Fr, tre) parameter space up to C3 shocks. Numerically determined boundaries between regions (–),

sub-regions (· · · ) and N/F (- -) are shown.

the pulses may have a crucial affect on whether the pulses

were erosional or depositional at a particular location. Pulses

that are close together (case N) are non-decelerating and may

entrain more material downstream increasing the depth of the

channel or increase the velocity/momentum of the flow. For

large separation times the pulses may transition from ero-

sional to depositional downstream filling in the channel and

making it more susceptible to future flows overspilling.

V. CONCLUSIONS

We have explored the affect of pulses on gravity current

propagation using an extension of the shallow-water model for

the single lock-release case studied by Hogg 27 . The range of

solutions are classified in terms of two parameters: the Froude

number at the head of the current, Fr, and a dimensionless

pulse separation time, tre. For tre ≤ 1 the problem is identi-

cal to a single release, whilst the limits tre → ∞ and tre → 1+
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FIG. 13: Computed momentum at the head of the flow when

the shock arrives, m(xN , tcol), for four Froude numbers

Fr = (0.5,0.75,1,1.25) in increments of 2 pulse separation

times tre (–) against: (a) pulse separation time tre; (b)

displacement of the head at the time of collision, tcol.

Momentum at the collision time, tcol, for a single release of

twice the size tre < 1 (· · · ) is also shown. Online version in

color.

correspond to two independent events and a single event of

twice the volume, respectively. For intermediate values of tre
the order the pulse intersects three curves xref, xfan and xfin,

qualitatively determine its propagation velocity. Critically, the

pulse has non-negative acceleration before it intersects xfin and

negative acceleration thereafter. For small values of tre and/or

small values of the Froude number, Fr, xfin does not intersect

the pulse before it reaches the front, Fig. 12.

Variations in pulse velocity affect the rate of energy dissipa-

tion, and thus of the energy transferred through to the head of

the current, which may enable the flow to transition from lam-

inar to turbulent behavior. For pulse-prone, Boussines com-

positional flows such as pyroclastic flows, the dynamics of

the flow depend on dynamics of the release and the changes

in flow velocity may have implications for hazard prediction

models, which sometimes neglect the release dynamics and

the subsequent pulses created.
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Appendix

Verification of the above scheme was conducted by compar-

ing simulations of a single lock-release problem to the solu-

tion presented in Hogg 27 . Depth and velocity profiles at t = 1

are compared for fixed ∆t and varying ∆x and vice versa, Fig.

14. The error of the variable E f is calculated via the ℓ1-norm

of the variable

E f =
ℓ1( fa − fn)

Nint

=
1

Nint

Nint

∑
k=1

| fa − fn|, (A.1)

where f = h or f = u ≡ m/h and Nint is the number of

nodes over the averaging interval. The numerical, subscript

n, and analytical, subscript a, solutions are interpolated onto

an equally spaced grid with Nint = 104. For fixed ∆x the error

quickly converges to the spatial error and therefore a numeri-

cal solution ∆t = 10−6 and ∆x = 0.005 is used instead of the

analytical solution for comparison. After t = 1, complex re-

gions start appearing in the characteristic space and a depth

and velocity profile across the length of the current cannot be

explicitly written down everywhere. However, the curve xref

has been expressed in closed form in equation (18) and this

expression is compared to a positive characteristic emanating

from (1,1) calculated from the numerical solution. An excel-

lent agreement between the analytical and numerical expres-

sion for xref is observed, Fig. 15. Although the Lax-Wendroff

finite-difference scheme is formally second order accurate, the

model verification suggests that it is first order accurate in

both time and space. This is to be expected as the analytic so-

lution of the dam break does not have a continuous derivative

everywhere. Although not displayed here, for lower resolu-

tions the contribution to the error is largest at x = 0 and x = 1.
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FIG. 14: (a) Depth and velocity profiles at t = 1 for a single

release problem (∆x = 0.0002, ∆t = 10−5, Fr = 1). (b) Error

in depth and velocity for fixed ∆t = 10−5 (left) and fixed

∆x = 0.005 (right). Straight lines drawn between the end

points have Eh ∼ ∆t0.85, Eu ∼ ∆t0.79, Eh ∼ ∆x1.04 and

Eu ∼ ∆x1.04.
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