
Computer Methods and Programs in Biomedicine 191 (2020) 105397 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

Towards an early 3D-diagnosis of craniofacial asymmetry by 

computing the accurate midplane: A PCA-based method 

Javier Ortún-Terrazas a , ∗, Michael J. Fagan 

b , Jose Cegoñino 

a , Edson Illipronti-Filho 

c , 
Amaya Pérez del Palomar a 

a Group of Biomaterials, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain 
b Medical and Biological Engineering, School of Engineering and Computer Science, University of Hull, Hull, United Kingdom 

c School of Dentistry, Department of Orthodontics and Pediatric Dentistry, University of São Paulo, São Paulo, Brazil 

a r t i c l e i n f o 

Article history: 

Received 29 October 2019 

Revised 11 January 2020 

Accepted 13 February 2020 

Keywords: 

Sagittal midplane 

Morphological analysis 

Principal component analysis 

Facial asymmetry 

Unilateral crossbite 

Children 

a b s t r a c t 

Background and objective: Craniofacial asymmetry is a common growth disorder often caused by unilat- 

eral chewing. Although an early orthodontic treatment would avoid surgical procedures later in life, the 

uncertainty of defining the accurate sagittal midplane potentially leads to misdiagnosis and therefore 

inaccurate orthodontic treatment plans. This novel study aims to 3D-diagnose craniofacial complex mal- 

formations in children with unilateral crossbite (UXB) considering a midplane which compensates the 

asymmetric morphology. 

Methods: The sagittal midplane of 20 children, fifteen of whom exhibited UXB, was computed by a PCA- 

based method which compensates the asymmetry mirroring the 3D models obtained from cone-beam 

computed tomography data. Once determined, one side of the data was mirrored using the computed 

midplane to visualize the malformations on the hard and soft tissues by 3D-computing the distances 

between both halves. Additionally, 31 skull’s landmarks were manually placed in each model to study 

the principal variation modes and the significant differences in the group of subjects with and without 

UXB through PCA and Mann-Whitney U test analyses respectively. 

Results: Morphological 3D-analysis showed pronounced deformities and aesthetic implications for pa- 

tients with severe asymmetry (jaw deviation > 0.8 mm) in whole craniofacial system, while initial signs 

of asymmetry were found indistinctly in the mandible or maxilla. We detected significant ( p < 0.05) mal- 

formations for example in mandibular ramus length (0.0086), maxillary palate width (0.0481) and condy- 

lar head width (0.0408). Craniofacial malformations increased the landmarks’ variability in the group of 

patients with UXB over the control group requiring 8 variation modes more to define 99% of the sample’ 

variability. 

Conclusions: Our findings demonstrated the viability of early diagnosis of craniofacial asymmetry through 

computing the accurate sagittal midplane which compensates the individual’s asymmetrical morphology. 

Furthermore, this study provides important computational insights into the determination of craniofa- 

cial deformities which are caused by UXB, following some empirical findings of previous clinical studies. 

Hence, this computational approach can be useful for the development of new software in craniofacial 

surgery or for its use in biomedical research and clinical practice. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Everyone has some degree of facial asymmetry [1] , however,

evere asymmetrical growth may cause not only aesthetic but
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lso functional problems [2] which are hardly treated in adult-

ood, such as temporomandibular joint (TMJ) disorders [2] , chep-

alea [3] , malocclusion [4] , loss of periodontal support and even

oss of teeth [5] . According to Claude Bernard’s principle, the de-

elopment of craniofacial complex is mainly experienced during

rowth and is conditioned by the paratypic stimulus [6] primar-

ly produced during breathing and chewing [7,8] . Hence, some oral

isorders, as mouth breathing syndrome (MBS) [9] or unilateral

rossbite (UXB) [10] , would be related to the narrowing of the
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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maxilla or the lateral shift of the mandible towards the crossbite

side. 

Biomechanically, these disorders result in an imbalanced cran-

iofacial complex and therefore, in a potential factor of the asym-

metrical growth [11] . Early treatments, such as simple selective

grinding or maxilla expander [12] , would correct the mechanical

imbalance and avoid abnormal irreversible developments and sur-

gical treatments later in life [11,13,14] . Unfortunately, early asym-

metry is usually misdiagnosed due to the difficulty of identify-

ing an accurate symmetrical reference which is a key step for

pre-treatment evaluation, treatment planning and post-treatment

evaluation [15,16] . In 2D-imaging methods, commonly 2D frontal

photographs or 2D cephalometric images, the facial midline is

estimated through the glabella and other craniofacial landmarks

[17] which are generally affected by craniofacial malformations,

image’s magnifying errors or an inadequate subject posture, among

other defects [18,19] . Against these limitations, the progress in

imaging acquisition and computer methods has increase the use of

3D imaging techniques [18] , such as Computed Tomography (CT),

Cone-Beam CT (CBCT) or Magnetic Resonance Imaging (MRI). In

this context, CBCT is the most recommended method for an early

diagnosis due to its relatively low radiation levels and time re-

quired in comparison with the other approaches [20] . Nevertheless,

the determination of the appropriate sagittal midplane is still com-

plicated [15,16,21] and the conventional approaches used, such as

landmark-based, voxel-based or morphometric midplane approach

[21,22] , do not compensate the asymmetrical morphology. Among

them, the landmark-based method is the most used because it re-

quires just 3 landmarks to define the sagittal midplane [23] . These

landmarks are often defined by nasion, crista galli landmarks and

cranial base features such as basion [24–26] which are apparently

less affected by the facial asymmetry than mandibular ones. Never-

theless, the influence of the facial asymmetry in cranial structures

is still unclear and there is no consensus on which landmarks pro-

duce more reproducible results [23,27] . 

Some recent studies [15,16] have proposed robust and easily ap-

plicable algorithms, based on Principal Component Analysis (PCA)

to determine the accurate plane of symmetry in theoretical cases.

In Pinheiro et al. study [16] , for instance, the inherent asymmetry

of a skull was compensated by mirroring the 3D model through

a sagittal midplane defined by PCA. In addition, new approaches

[28–30] have been developed to study the asymmetry in superfi-

cial soft tissues without a known reference plane for each patient.

In Cho et al. study [30] , this is achieved through the registration

and transformation of a template model with known left and right

point correspondences to each scan. Notwithstanding recent ad-

vances in 3D imaging and midplane identification methods, these

protocols are rarely used in clinical practise and have not been

used to diagnose facial asymmetry in real asymmetric patients

yet. 

The known relationships between malocclusions, as UXB, and

asymmetrical malformations are mainly based on statistical 2D

studies which used midplanes defined by the inaccurate landmark-

based method. The craniofacial malformations are generally anal-

yse [31,32] based on limited number of landmarks through PCA

or statistical point distribution models (PDM) [33] . With the ad-

vance of 3D imaging techniques, new parametric [34–36] and non-

parametric techniques [37,38] have emerged to study the entire

shape variability through statistical shape models (SSMs). SSMs de-

scribe the shape of a model through the transformation of a tem-

plate pattern according to its variation modes [39] . Nevertheless,

despite the potential of those methods, parametric SSMs require a

priori knowledge of the characteristic landmarks which define the

shape [38] and non-parametric SSMs require a sufficient number

of models to characterize adequately the transformation function

[38,40] . 
Despite the unclear and uncertain relationships, some insights

re generally accepted (shown in Fig 1 ) such as the increase of

he mandibular thickness and the condyle of the cross side (XS)

41] . Moreover, there have been reports of an increase in the tem-

oral fossa inclination [42] , a reduction of the maxillary width

5,43,44] or the elevation of the ocular orbit and the half cra-

ium [45–48] on the same side. On the other hand, several stud-

es [41,49] agree than the mandibular ramus is longer in the non-

ross side (NXS). Contrariwise, some studies did not find a strong

orrelation between UXB and facial asymmetry and some authors

50,51] even did not find significant differences between the shape

f both mandibular halves. 

This computational study aims to 3D-diagnose the craniofa-

ial complex malformations that appear in 20 children through 3D

ephalometric and midplane identification novel methods. To that

nd, firstly, the sagittal midplane of 3D models reconstructed from

BCT images was computed compensating the asymmetrical mor-

hology through the mirroring technique and identifying the mid-

lane by PCA. Based on the individual’s midplane computed, the

ariation, differentiation and correlation of several bilateral mea-

urements were statistically analysed by PCA, Mann–Whitney U

est and Pearson’s correlation coefficient, respectively. Deformities

n hard and soft tissues were also evaluated by computing the 3D

istances between the surfaces of NXS and XS mirrored. 

. Material and methods 

.1. 3D database 

CBCT images were obtained from 20 paediatric subjects, fifteen

f whom exhibited UXB, (see Table A of the supplementary mate-

ial) with mixed dentition, which included 9 males (mean age 7.9

ears) and 11 females (mean age 8.2 years). According UXB diagno-

is, the subjects were classified into 2 groups: a UXB group ( n = 15)

nd a control (non-cross bite) group ( n = 5). The scans of the UXB

atients were performed as a part of treatment planning and were

lassified into 3 categories (minor, moderate and marked) accord-

ng to the degree of asymmetry by an expert on the diagnosis of

acial asymmetry. The control group subjects were scanned for pre-

entive reasons as part of a routine medical examination. The in-

ormation from the medical images was used exclusively for scien-

ific purposes and was approved by the Research Ethics Committee

f the University of São Paulo – USP, School of Dentistry (numbers

00/06 and 16/2008). 

All images were obtained with an i-CAT TM CBCT imaging sys-

em (Imaging Sciences International, Hatfield, PA, USA) with a field

f view (FOV) of 13 cm × 17 cm, an acquisition time of 5–26 s and

ulse exposure. The images were output in a 14-bit grey scale and

6,384 shades of grey. The focal point was at 0.5 m with a 0.3 mm

oxel, an effective dose of 36.74 uSv and cylindrical reconstruc-

ion. The data was digitalized by tomography sensors through re-

onstruction algorithms and converted to the Digital Imaging and

ommunication in Medicine (DICOM) format. The cylindrical re-

onstruction of the dataset consisted of 210 images with an in-

erscan distance of 0.50 mm. More details about the scan protocol

ppear in a previous study [52] . 

DICOM images were initially filtered by a gradient filter to im-

rove edge definition due to the unmineralized condition of the

ones ( Fig. 2 a). Then, images were segmented by Mimics (Mim-

cs, v.19.; Materialise, Leuven, Belgium) commercial software using

hreshold levels of 1688 [53] and 226 [54] Hounsfield unit (HU) for

ental and osseous regions respectively. The incomplete 3D sur-

aces ( Fig. 2 b) were computed through an automated interpola-

ion of the masks. In addition, the cavities of the dental follicles

nd periodontal ligaments ( Fig. 2 c and d) were defined through

 Boolean subtraction operation with a 0.2 mm [55.56] clearance
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Fig. 1. Panoramic scheme of the morphological changes of the craniofacial complex in a patient with facial asymmetry. 

Fig. 2. (a) Small differences between the teeth and the cortical bone; (b) figure showing incomplete regions after automated bone segmentation; (c) approximation of dental 

follicles and periodontal ligaments as spheres and thin layers around each tooth; (d) detail of the inferior teeth, their periodontal ligaments and the unerupted teeth; (e) left 

side: model before smoothing operation, right: model after smoothing operation; and (f) model of a patient with UXB in the left side (i: frontal, ii: temporal, iii: zygomatic, 

iv: maxilla and v: mandible). 
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round each tooth. The result of the segmentation process is a 3D

odel composed of the skull, the mandible, the teeth and the su-

erficial soft tissue of the face ( Fig 2 f). Analytically, each model

s a set of N points P N = { p i | 1 , . . . , N } , where each point i is de-

ned by a vector p i = ( x i ,y i ,z i ) 
T in the Cartesian reference system �

efined by three unitary and orthogonal vectors �= { i, j, k }. The

rigin of the reference system was set according to the factory

efault settings of the i-CAT TM CBCT imaging system. The noise

f this point cloud was removed, and the surface was smoothed

 Fig. 2 e). 

For further statistical analyses, thirty-one anthropometric refer-

nce points ( Table 1 ) were placed on the hard tissues of 3D mod-

ls ( Fig 3 ). The soft tissue malformations will not be statistically

tudied due to the high variance in paediatric patients. The coor-

inates (x,y,z) of each landmark were reassessed three times by

 radiologist expert in the diagnosis of facial asymmetries with a

onth gap between each assessment. The reliability of this proce-

ure was determined by an Intra-Class Correlation Coefficient (ICC)

f 0.91, which was considered enough for the study’s scope. From

hese landmarks, 13 bilateral and 4 global measurements ( Table 2 )

ere defined to study statistically the asymmetry. The distance be-

ween two landmarks was calculated by the distance formula in
D coordinate system, while the angle between two vectors was

omputed by the scalar product of both vectors. 

.2. Size normalization 

To reduce the effect of size variations which are inevitable dur-

ng childhood, the P N of the entire volume of each model was uni-

ormly scaled according to the size normalization of the minimum-

olume bounding box of the mandible of each patient. The entire

olume was not considered to compute the linear transformation

atrix T since different cranial portions were scanned for each

atabase. Besides, the minimum-volume oriented bounding boxes

pproach allows to determine the link among the vertices of the

oxes from different patients with different meshes and thus per-

orm the subsequent Generalized Procrustes Analysis (GPA) [57] .

hen, a normalization method was developed to equalize the vol-

me of each mandible’s set of points, V S , with the volume of a ref-

rence set of points, U R ( Fig 4 a). The reference set was composed

y the points of the mandible of third subject (shown in Table A)

ecause he had similar age as the mean age of all subjects and

as apparently not affected by the asymmetry. To that end, the

inimum-volume oriented bounding boxes ( Fig 4 b) which contain



4 J. Ortún-Terrazas, M.J. Fagan and J. Cegoñino et al. / Computer Methods and Programs in Biomedicine 191 (2020) 105397 

Table 1 

Definitions of landmarks. 

Name Abbr. Description 

Landmarks on sagittal midplane 

Glabella G Most prominent point in the median sagittal plane between the supraorbital ridges 

Menton Me Most inferior point in symphysis 

Pharyngeal tubercle PhT Point on the lower surface of the basioccipital region. 

Bilateral landmarks (right and left) 

Condyle lateral CoL Most lateral point of condyle head 

Condyle superior CoS Most superior point of condyle head 

Gonion Go Point between mandibular plane and ramus 

Infraorbitale InfOr Deepest point on infraorbital margin 

Jugale Ju Intersection between the margin of the frontal and temporal processes with the zygomatic bone 

Last molar Mo Most buccal point of the junction between the last molar and the mandible. 

Last molar buccal MoB Most buccal point of the junction between the last superior molar and the maxilla. 

Last molar inferior MoI Perpendicular projection of the point on the inferior edge of the jaw. 

Last molar lingual MoL Most labial point of the junction between the last superior molar and the maxilla. 

Porion Po Highest point on roof of external auditory meatus 

Ramus anterior RaA Most posterior point of the intermediate section of the ramus 

Ramus posterior RaP Most anterior point of the intermediate section of the ramus 

Zygion Zy Most lateral point of the zygomatic arch 

Zygomatic anterior ZyA Most anterior point of the intersection between the zygomatic root and the squama of the temporal bone 

Table 2 

Statistical variables. 

Name Abbr. Description 

Global measurements 

Coronal angle CoAng Vertical projection of the angle defined between M plane and sagittal midplane. 

Frontal angle FrAng Frontal projection of the angle defined between M plane and sagittal midplane. 

Mandible deviation ManDev Horizontal distance on the FH plane between sagittal midplane and the centre of mass of V S + V ∗S . 
Menton deviation MeS Shortest distance between Me and the sagittal midplane 

Bilateral measurements (right and left) 

Body length Go-Me Distance between Go and Me 

Body width MoI-Mo Distance between MoI and Mo 

Condylar head height CoH Distance of CoS and CoL projections on the S plane 

Condylar head width CoW Distance of CoS and CoL projections on the FH plane 

Gonial angle GoAng Angle defined between Go-Me and Go-CoS 

Laterality of the gonion GoS Shortest distance between Go and the S plane 

Laterality of the zygomatic arch ZyS Shortest distance between Zy and the S plane 

Maxilla height JuFH Shortest distance between Ju and the FH plane 

Maxilla thickness MoL-MoB Distance between MoB and MoL 

Maxilla width MoLS Shortest distance between MoL and the S plane 

Ramus length Go-CoS Distance between Go and the CoS 

Ramus width RaA-RaP Distance between RaA and RaP 

Zygomatic arch height ZyAFH Shortest distance between ZyA and the FH plane 

Fig. 3. Landmarks and reference planes in (a) frontal and (b) lateral views of a skull. (Note: Landmarks definitions appear in Table 1 ). 
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V S and U R were computed through O’Rourke’s algorithm [58] . The

vertices of these boxes were then used to compute the transfor-

mation matrix T which transforms V S to a set of similar volumes

to U R through GPA [57] ( Fig 4 c). As a result of this procedure, the

set of points P N and of manual-marked landmarks of each subject

were scaled by the transformation matrix T. 
.3. Sagittal midplane 

For sagittal midplane determination, a computational algorithm

16] which uses interchangeably PCA and Iterative Closest Point

ICP) methods was implemented in the commercial software MAT-

AB (MATLAB 6.0 R12, The MathWorks Inc, Natick, Massachusetts,
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Fig. 4. Scheme of the process followed for the model normalization: (a) Non-scaled models of a specific patient (grey) and the reference subject (brown); (b) minimum- 

volume oriented bounding boxes of the mandible of each model and (c) linear transformation of the patient model through GPA. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Flowchart for the identification of the sagittal midplane: (a) the model is centred at the origin of coordinates using its centroid; (b) the initial eigenvectors and a 

preliminary sagittal plane is computed by PCA; (c) a mirrored model is created from the preliminary sagittal plane; (d) the position of the mirrored set of points is adjusted 

to the original ones by ICP; (e) both sets of points are merged and (f) the final sagittal midplane is computed by PCA. 
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0 0 0). This algorithm computes the sagittal midplane of a set of

oints C N which defines the mandible and skull of each patient,

ompensating for any asymmetric malformation. The PCA tech-

ique is widely used to find the eigenvectors e j that minimize

he sum of the projection of each point p i ∈ C N onto e i and the

quared distances between e j and p i . PCA requires firstly that the

ean point, o , of the bony structures C N is centred to the ori-

in of � which is the reference system from which the coordi-

ates of all points are defined ( Fig 5 a). Therefore, if C N is not cen-

red, all points of the model ( P N ) and landmarks must be moved

hrough the translation vector v t defined by the centroid of C N as

 t = ( 
∑ N 

i =1 x i , 

∑ N 
i =1 y i , 

∑ N 
i =1 z i ) . 
N N N 
As a result of PCA in C N , the first three eigenvectors ( e 1 , e 2 , e 3 )

epend on the portion of skull digitalized and the uniformity of

he database. In a uniform set of points of a whole skull, the first

rincipal direction tracks approximately the direction of the line

hat connects the chin with the parietal bone. Another frequent

rincipal direction is a vector that follows the direction which con-

ects the foramen magnum with the ethmoid bone. Both direc-

ions define the sagittal plane that is perpendicular to the unde-

ned principal direction. However, these principal directions are

orted according to the scanned sample. To select the eigenvector

hat is perpendicular to the sagittal plane e ⊥ ( Fig 5 b) within the

rincipal directions computed, the algorithm employs three hand-
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marked landmarks located on the mental protuberance (Me), on

the pharyngeal tubercle (PhT) and on the glabella (G), by the pro-

cedure explained in Section 2.1 . These landmarks define a plane π
which is normal to a vector t and apparently parallel to the sagit-

tal midplane searched. Then, the smallest scalar product of each

principal directions ( e 1 , e 2 , e 3 ) with t identifies the e ⊥ direction. This

direction is used to calculate the rotation matrix Q that aligns e ⊥ 
with the i orthogonal vectors of �. The new position of the points

is computed by the multiplication of the landmarks and the set of

points P N by the rotation matrix Q. 

To compensate for an individual’s asymmetrical morphology,

the mirror method was used, as it had already been used in other

computational approaches [16,22,59] . This method consists of cre-

ating a new set of points C ∗N symmetrical to C N with respect to

the sagittal midplane which was previously generated ( Fig 5 c).

Then, C ∗
N 

is aligned to C N by the Iterative Close Points algorithm

[60] that minimizes the square of the errors of two sets of points

( Fig 5 d). The set of points C N + C ∗N represents an idealized sym-

metrical shape with an equal distribution of points in both halves

( Fig 5 e). Hence, applying again PCA to the idealized set of points

C N + C ∗N , ( Fig 5 f) the eigenvector, e ⊥ , which is normal to the sagit-

tal plane searched, is obtained by compensating the morpholog-

ical variations caused by the asymmetry. Finally, the models and

their respective landmarks were rotated in that plane to align the

horizontal plane with the Frankfort Horizontal (FH) plane, which

was defined by the infraorbital and porion landmarks [61] , thereby

completing alignment of the models. 

Although earlier studies have evaluated mandible deviation by

the distance between the mental protuberance and the apparent

sagittal midplane, the menton location might not be representa-

tive of the mandible midplane, as discussed below. Therefore, the

algorithm explained previously was also applied only to the set

of points that define the mandible V S , to compute the mandible’

midplane, M . The angles between the sagittal midplane of the

mandible and of the whole skull were then measured through

their projection on to the frontal and coronal planes (global mea-

surements, Table 2 ). 

2.4. Statistical and morphological analyses 

The morphological variability in UXB and control groups was

analysed for each group by a PDM defined in an open-source code

[62] written in Python (Python 2.7.3, Python Software Foundation)

for morphometric analysis. The PDM is a statistical analysis which

identified holistically the variation of a group of shapes consider-

ing the covariation of each point with every other point. The co-

variance matrix results in a set of eigenvalues and eigenvectors

which define respectively the variation level and direction in which

the landmarks tend to vary as a group. Sorting the eigenvectors,

or modes of variation, in descending order of their eigenvalues,

the most representative modes of variation of the thirty landmarks

were obtained. 

PCA can then be applied by ordering the eigenvectors, and re-

taining only the modes with the highest values, which represent

the modes of variation that account for most of the variation seen

in the training shapes. Each PDM consist therefore of a mean

shape and principal variation modes whose variation is controlled

by their eigenvalues (i.e. ±3 SD). Statistically, the differences be-

tween the 17 bilateral measurements of both halves were tested

by a Mann-Whitney U test (significance level P ≤ 0.05). Pear-

son’s correlation coefficient, r , and its associated p -value were also

computed to establish the different associations that could be pre-

sented between the bilateral and global variables of both groups

and halves. All statistical analyses were performed using SPSS soft-

ware (SPSS software, v. 16.0; SPSS Inc., Chicago, IL). 
For 3D evaluation of asymmetric malformations, each 3D model

as divided according to the symmetrical midplane previously

efined and the left side (cross side in patients with UXB) was

irrored. The normal distance between both halves was then com-

uted in MATLAB and plotted in Paraview software (Paraview v5.6,

ational Technology & Engineering Solutions of Sandia, New Mex-

co) to 3D evaluate the morphological differences between both fa-

ial sides. 

. Results 

PDMs were generated within UXB and control group to define

 variability. According to PDMs description, over 95% of the total

andmarks’ variability in the control and UXB groups is described

y 5 and 11 principal variation modes, respectively ( Fig 6 a and b).

he accumulative vector of the first five modes of variation (at −3

D) in both groups is shown in Figs. 6 c and d. While the variation

f the landmarks’ position was lower in UXB than in the control

roup, it was also more asymmetric. Alternatively, the landmarks

ariability for the first five modes of variation is displayed in the

upplementary video. 

From the statistical analysis, significant differences in the bi-

ateral measurements of condylar head width (CoW), gonial an-

le (GoAng), ramus length (Go-CoS), maxilla height (JuFH), maxilla

idth (MoLS) and laterality of the zygomatic arch (ZyS) were found

etween the XS and NXS data for the UXB group of subjects ( Fig 7 ).

he distances measured in XS were greater for CoW and GoAng

easurements compared to NXS, and shorter in Go-CoS, MoLS and

yS. Moreover, the condyloid process width (CoH) and mandible

ody length (Go-Me) were shorter in XS, although they were not

ignificantly different. Distances of JuFH were significantly greater

n NXS than in XS which reflects a deeper position of the jugale

andmark (Ju) with respect to the FH plane. Meanwhile, no signifi-

ant differences were observed between the measurements of both

ides in the control group. 

From the comparison of the 2 groups (numerical results in Ta-

le B2 of the Supplementary material), the differences of the mea-

urements were computed as the difference between the values of

oth halves, NXS-XS and Right-Left for UXB and control groups

espectively. According to our findings, no significant differences

ere observed for the CoW and ZyS measurements in both groups

 Fig 8 ). Differences in the measurements of GoAng, Go-CoS, JuFH,

oLS, laterality of the gonion (GoS) and ramus width (RaA-RaP)

ere significantly greater in the UXB group than in the control

roup. Nevertheless, no significative difference was found between

he body width (MoI-Mo) of both groups. Interestingly, for those

ubjects with UXB, mandible deviation (ManDev) was more signi-

cative for UXB diagnoses than the conventional measurement of

enton deviation (MeS). 

The relationship between the 17 variables in XS, NXS and in

he control group are displayed in Fig 9 a and b (numerical data

ummarized in Tables C1-C3 of the Supplementary material). There

as a significant positive relationship between the CoW and CoH

easurements of the control group and in the NXS side of patients

ith UXB, but not on the XS. Moreover, a positive and significant

orrelation was found between Go-CoS and mandible body length

Go-ME) in the control group. On the other hand, the deviation in

andible position (ManDev) was closely related to the reduction

f MoLS in XS of the UXB group. 

Images a-d in Fig 10 show plots of the normal distance be-

ween the surfaces of NXS and XS mirrored through the sagittal

idplane in four subjects. The positive (red) areas show where

XS protrudes, while the negative (blue) areas indicate protrusion

f XS. The scatter plot in Fig 10 e illustrates the positive relation-

hip between the differences of the MoLS and ManDev measure-

ents of both halves in UXB and in the control groups. Using the
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Fig. 6. (a) Percentage and (b) accumulative percentage of landmarks variance described by the principal variation modes. Bottom figures: total vector of the five main modes 

of variation (at ±3 SD) in the c) control and d) UXB groups. 
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[

lassification of subjects according to the asymmetry severity (Ta-

le A1 of the supplementary material), Fig 10 e was divided into

 regions: minor, moderate and marked asymmetric patients. The

inor asymmetric category ( Fig 10 a) was composed of subjects

ith short mandible deviation ( < 0.3 mm) and small differences

n MoLS between both sides ( ±1.5 mm). The moderate asymmet-

ical subjects mainly presented 2 different malformations, either

n the maxilla ( Fig 10 b) or in the mandible ( Fig 10 c), which can

e differentiated through ManDev and MoLS values respectively.

n the first group, the maxilla portion of the XS was less open

nd slightly higher than those of the NXS, which was also appar-

nt in the cheeks of the superficial soft tissue. Meanwhile, half of

he mandible of NXS was more open and longer ( Fig 10 c) in the

ase of subjects with mandible malformation. Finally, subjects with

arked asymmetry show both maxilla and mandible deformities

ith a pronounced effect in the superficial soft tissue. 

. Discussion 

Although 2D diagnostic tools have been widely used to diag-

ose asymmetry, their usefulness and associate concepts are re-

ently being questioned because of the high variability, inconsis-

ency and errors during image capture or landmark identification.

o solve these limitations [63,64] , the use of 3D cephalometric

ethods, specially CBCT, has increased in the last decade. Never-
heless, the improvement of 3D methods has not demonstrated

et and some studies [65,66] ] have not even found significant

ifferences between 2D and 3D methods. Normal approaches to

efine the midplane, do not compensate the asymmetric shape

67,68] and often use landmarks from areas which could be af-

ected by the asymmetry [48,69] , such as the cranial base re-

ion, possibly leading to misdiagnosis and inaccurate orthodon-

ic treatments plans. Meanwhile, new methods [28–30] which do

ot require a specific sagittal midplane have recently been de-

eloped to study the asymmetry in soft tissues. As it was intro-

uced, these techniques transform a template model to each model

hrough known landmarks that define its shape. Nevertheless, de-

pite the great potential of these methods, they are hardly applica-

le in the study of the asymmetry in irregular craniofacial struc-

ures because of the unknowledge of the landmarks that define

heir shape. On the other hand, the use of ionising CT scans and

he continually changing state of paediatric bones makes 3D stud-

es difficult in early years. Due to the uncertainties in the sagit-

al midplane determination and in the development of 3D models

f children’s craniofacial complex, the relationship between mal-

cclusion and the asymmetric growth of the craniofacial complex

s still unclear [70] . This lack of knowledge has complicated the

arly identification of the asymmetry and therefore its early treat-

ent which is crucial to avoid irreversible abnormal developments

11,13,14] . 
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Fig. 7. Bar chart showing the mean ± SD values of the 13 bilateral variables measured in the control group (left) and in the UXB group (right). Significant difference at 

p < 0.05 ( ∗); p < 0.01 ( ∗∗). 
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Fig. 8. Bar chart showing the mean value of (a) the difference between the measurements of both sides and (b) global measurements in the UXB group (red bars) and in 

the control group (grey bars). Significant difference at p < 0.05 ( ∗); p < 0.01 ( ∗∗). (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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In this computational study, the early diagnosis of asymmetrical

evelopment in 20 paediatric subjects was 3D-evaluated through

BCT images reconstruction and the accurate identification of the

agittal midplane by a PCA-based method. Although this method

as recently demonstrated and validated in a theoretical case of an

nduced growth pattern of a single skull [16] , until now, it had not

een evaluated in real paediatric patients with facial asymmetry.

or the 3D-diagnosis, the surfaces of each halve of the craniofacial

omplex were compared. Moreover, the bilateral differences were

tatistically quantified computing the variability and significance of

ilateral landmarks in UXB and control groups by PDMs and Mann-

hitney test respectively. Although a non-parametric SSM could

escribe the variability of the entire model, the reduced sam-

le size would mischaracterize the transformation function leading

o inaccurate results. Alternatively, PDMs identified the principal

ariation modes of the landmarks in both groups and the associ-

ted variability characterized. Although other morphometrics stud-

es [31,71] , in other oral disorders or congenital syndromes, have

eported a relationship between the principal variation modes and

ome anatomical references, it was difficult to establish a clear re-

ationship from our results. The relatively small size of our sample
r the random differences in sample selection could have affected

he high dispersion level of the sample. Nevertheless, our results

emonstrated the higher variability and more asymmetrical varia-

ion of the landmarks in UXB group against in the control group.

n UXB group, especially remarkable was the vertical direction of

he landmarks in the infraorbital and maxilla regions of the XS,

hereas they varied horizontally in NXS following Trpkova et al.

72] findings. 

From 3D morphological analysis, our findings revealed that the

ead of the condyle was wider in XS, while the condyloid pro-

ess and the mandible body length were longer in NXS being in

greement with the findings of Veli et al. [41] . As a result, a size-

ble gonion angle was also found in the XS as reported by Nur

t al. [18] . These results provide support to the hypothesis that

andible malformations are caused due to shear and compression

ffects in NXS and XS mandible halves, respectively. These find-

ngs seem to support the idea that chin deviation can be used as

 tool for indicating facial asymmetry. In the current research, the

andibular deviation was evaluated by two variables, ManDev and

eS (shown in Table 2 ), which measured the distance from the

idplane of the mandible (M) or from the menton (Me) to the
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Fig. 9. Correlation matrices based on Pearson’s correlation coefficient (green, below the diagonal), r, and its associated probabilistic value p (purple, above the diagonal) of 

the variables studied in: (a) both halves of the group of subjects with unilateral crossbite; and (b) in the control group. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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sagittal midplane. Our results suggested that the ManDev vari-

able was more representative of the asymmetry than the MeS

one. This difference may be caused because the asymmetry at

early ages alters the whole shape of the mandible, but not nec-

essarily leads to a chin displacement. This observation agrees

with the conclusions of Fang et al. [73] who identified signifi-

cant mandibular body deviations in patients with significant fa-

cial asymmetry despite acceptable symmetry of the mandibular

contours. 

Our results also reveal a morphological asymmetry of the max-

illa, with the posterior maxillary region of XS being narrower than

of NXS. This finding differs from those of Kwon et al. [68] who

reported minor variations in the maxilla, but is broadly consis-

tent with other clinical studies [5,43,44] . Many authors [9,74] , in

fact, have related breathing problems (as MBS) with UXB and facial

asymmetry in accordance with Moss’ functional matrix hypothesis

[8] , which states that nasal breathing promotes proper growth and

development of the maxilla. 

These results demonstrate the interrelationship between

anomalies in the maxilla and its counterpart, the mandible, which

was previously stated by Enlow’s facial growth theory [75] and

later by Kim et al. [47] . Therefore, these concurrent malformations

emphasise the importance of a simultaneous assessment of max-

illa and mandible. The current study found 2 groupings in subjects

with moderate facial asymmetry ( Fig 10 b and c) that confirmed

this proposition. 
It is also interesting to note that malformations of the cranial

ase were detected in all UXB patients of this study ( Fig 10 b-

), with the largest effects observed in patients with severe facial

symmetry. Moreover, the differences in this region could be ob-

erved on the elevated portion of the jugale, the ocular orbit and

n the narrower zygomatic arch of XS. These findings seem to be

onsistent with Sepahdari et al. [48] who showed an increase in

ranial base and mandibular volumes on NXS. 

The deviations in mandible, maxilla and cranium could be also

bserved in the morphological analysis of superficial soft tissues

 Fig 10 a-d). These results confirmed the same deviations in hard

nd soft tissues previously reported by Nur et al. [18] and Ryck-

an et al. [67] , amongst others. Nevertheless, as it was afore-

entioned, soft tissue malformations were not statistically studied

ue to the high variance in paediatric patients. Our findings have

herefore quantified the differences in the mandible, maxilla and

kull on both sides of the face in patients with UXB and are in

greement with previous studies [5,43,44,76] and empirical theo-

ies [8,9,74,75] . 

.1. Limitations 

Despite the promising results of this work, some limitations

eed to be mentioned, such as its cross-sectional nature, i.e. differ-

nt individuals with different ages and sex, which may have led to

ixed results. Therefore, results should be interpreted with caution
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Fig. 10. Top: distance of the hard (left column) and soft (right column) tissues be- 

tween the NXS region and their counterparts on XS in subjects with: (a) minor 

asymmetry, (b) moderate asymmetry located on the maxilla, (c) moderate asymme- 

try located on the mandible and (d) marked asymmetry. (e) scatter plot of ManDev 

global measurement and the difference of MoLS of both halves. The 3 rectangular 

areas divide the graph according to a pre-clinical evaluation of the degree of sym- 

metry. The circles cluster the cases according to the obtained values of ManDev and 

MoLS. 
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ince they could reflect random differences due to sample selec-

ion. Moreover, it might not be possible to extrapolate the findings

o all patients, since the analysis has been carried with patients be-

ween 6 and 12 years old with no congenital disorders. Secondly,

he size of our sample size was limited and the gender distribution

n our sample was different in the control and UXB groups. Never-

heless, our sample size was based on the size of previous studies

20,52,77] which also evaluated the facial asymmetry in children

y CBCT images. On the other and, the craniofacial growth differ-

nces in both genders seem not to be statistically significant [77] at

ges before the puberty [ 78 , 79 ]. Additionally, the size differences

ue to gender or age variation had already been reduced after the

ize normalization procedure explained in Section 2.2 . Nonethe-

ess, we believe that a wider sample with equal gender distribu-

ion could result in more reliable and precise results. Future stud-

es with a wider database could even study the shape variability of

atients with facial asymmetry using SSMs. Finally, a more detailed

ist of anthropometric reference points could lead to new findings

or the early diagnosis of facial asymmetry. We considered that 31

andmarks were enough to describe the application of this method

n this computational framework. Notwithstanding this, we suggest

ddressing more points in further studies, especially clinical ones. 

. Conclusions 

The results of this study help to elucidate the accuracy of apply-

ng computational methods in the early diagnosis of facial asym-

etry providing a reliable and valuable 3D cephalometric work-

ow for the evaluation and quantification of asymmetrical devel-

pment and planning subsequent orthodontic and surgical treat-

ents. Within the limitations of this study, we summarize our

ndings by the following conclusions: 

1 The PCA-based algorithm identified accurately and objectively

the sagittal midplane in each subject, allowing the subsequent

3D-diagnosis workflow. 

2 This 3D-method allowed to statistically demonstrate some tra-

ditional theories about the asymmetric development of the

craniofacial complex in patients with UXB. 

3 Morphometric analysis demonstrated greater variability and 

asymmetry among the patients with UXB than in the control

group, requiring 8 variation modes more to define 99% of the

variability. 

4 The correlation analyses suggested that the degree of asym-

metry could be related both with the maxillary width and

mandibular deviation to the midplane identified. 

5 3D diagnosis also revealed alterations in the cranial base and

soft tissues which future studies should address. 

thical approval 

The study was approved by the Research Ethics Committee of

he University of São Paulo – USP, School of Dentistry (numbers

00/06 and 16/2008) and medical images was used exclusively for

cientific purposes. 

unding 

This work was supported by the Spanish Ministry of Economy

nd Competitiveness (project DPI 2016-79302-R ), the European So-

ial Funds and Regional Government of Aragon (grant 2016/20 ) and

bercaja- Cai Fundation(grant IT 4/18 ). 

eclaration of Competing Interest 

The authors have no conflicts of interest. 



12 J. Ortún-Terrazas, M.J. Fagan and J. Cegoñino et al. / Computer Methods and Programs in Biomedicine 191 (2020) 105397 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

The authors would like to thank Dr. Ángel Sampietro Fuentes

for his assistance in this research. 

Supplementary materials 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.cmpb.2020.105397 . 

References 

[1] C. Baek, J.Y. Paeng, J.S. Lee, J. Hong, Morphologic evaluation and classification
of facial asymmetry using 3-dimensional computed tomography, J. Oral Max-

illofac. Surg. 70 (2012) 1161–1169, doi: 10.1016/j.joms.2011.02.135 . 
[2] M. Inui, K. Fushima, S. Sato, Facial asymmetry in temporomandibular joint

disorders., J. Oral Rehabil. 26 (1999) 402–406, doi: 10.1111/j.1365-2842.2010.
02087.x . 

[3] R.P. Schokker, T.L. Hansson, B.J. Ansink, L.L. Habets, Craniomandibular asym-

metry in headache patients., J. Craniomandib. Disord. 4 (1990) 205–209 http:
//www.ncbi.nlm.nih.gov/pubmed/2098397 . 

[4] Y.-W. Cheong, L.-J. Lo, Facial asymmetry: etiology, evaluation, and
management, Chang Gung Med. J. 34 (2014) 341–351, doi: 10.1590/

0103-644020130 0 0 03 . 
[5] P. Ngan, Contemporary orthodontics, Am. J. Orthod. Dentofac. Orthop. 142

(2012) 425, doi: 10.1016/j.ajodo.2012.07.004 . 

[6] A. Nanci, Oral histology: development, structure, and function, J. Oral Maxillo-
fac. Surg. 48 (1990) 98–99, doi: 10.1016/0278- 2391(90)90217- P . 

[7] S.-J. Yoon, R.-F. Wang, H.J. Na, J.M. Palomo, Normal range of facial asymmetry
in spherical coordinates: a CBCT study, Imaging Sci. Dent. 43 (2013) 31, doi: 10.

5624/isd.2013.43.1.31 . 
[8] M.L. Moss, L. Salentijn, The primary role of functional matrices in facial

growth, Am. J. Orthod. 55 (1969) 566–577, doi: 10.1016/0 0 02-9416(69)90 034-7 .
[9] D. Harari, M. Redlich, S. Miri, T. Hamud, M. Gross, The effect of mouth breath-

ing versus nasal breathing on dentofacial and craniofacial development in

orthodontic patients, Laryngoscope 120 (2010) 2089–2093, doi: 10.1002/lary.
20991 . 

[10] N. Tsanidis, G.S. Antonarakis, S. Kiliaridis, Functional changes after early treat-
ment of unilateral posterior cross-bite associated with mandibular shift: a sys-

tematic review, J. Oral Rehabil. 43 (2016) 59–68, doi: 10.1111/joor.12335 . 
[11] J. Zou, M. Meng, C.S. Law, Y. Rao, X. Zhou, Common dental diseases in children

and malocclusion, Int. J. Oral Sci. 10 (2018) 7, doi: 10.1038/s41368- 018- 0012- 3 . 

[12] L. Kurol , J. Berglund , Longitudinal study and cost-benefit analysis of the effect
of early treatment of posterior cross-bites in the primary dentition, Eur. J. Or-

thod. 14 (1992) 173–179 . 
[13] P. Planas , Neuro-Occlusal Rehabilitation: NOR, Second ed., España, Amolca,

Barcelona, 2013 . 
[14] P. Prakash, B.H. Durgesh, Anterior Crossbite Correction in Early Mixed Denti-

tion Period Using Catlan’s Appliance: A Case Report, ISRN Dent 2011 (2011)

1–5, doi: 10.5402/2011/298931 . 
[15] L. Zhang, A. Razdan, G. Farin, J. Femiani, M. Bae, C. Lockwood, 3D face authen-

tication and recognition based on bilateral symmetry analysis, Vis. Comput. 22
(2006) 43–55, doi: 10.1007/s00371- 005- 0352- 9 . 

[16] M. Pinheiro, X. Ma, M.J. Fagan, G.T. McIntyre, P. Lin, G. Sivamurthy, P.A. Mossey,
A 3D cephalometric protocol for the accurate quantification of the cranio-

facial symmetry and facial growth, J. Biol. Eng. 13 (2019) 42, doi: 10.1186/

s13036- 019- 0171- 6 . 
[17] R. Nanda, M.J. Margolis, Treatment strategies for midline discrepancies, Semin.

Orthod. 2 (1996) 84–89, doi: 10.1016/S1073- 8746(96)80046- 6 . 
[18] R.B. Nur, D.G. Çakan, T. Arun, Evaluation of facial hard and soft tissue asymme-

try using cone-beam computed tomography, Am. J. Orthod. Dentofac. Orthop.
149 (2016) 225–237, doi: 10.1016/j.ajodo.2015.07.038 . 

[19] P. Berssenbrügge, N.F. Berlin, G. Kebeck, C. Runte, S. Jung, J. Kleinheinz, D. Dirk-

sen, 2D and 3D analysis methods of facial asymmetry in comparison, J, Cranio-
Maxillofacial Surg 42 (2014) e327–e334, doi: 10.1016/j.jcms.2014.01.028 . 

[20] E. Huntjens, G. Kiss, C. Wouters, C. Carels, Condylar asymmetry in children
with juvenile idiopathic arthritis assessed by cone-beam computed tomogra-

phy, Eur. J. Orthod. 30 (2008) 545–551, doi: 10.1093/ejo/cjn056 . 
[21] J. Damstra, Z. Fourie, M. De Wit, Y. Ren, A three-dimensional comparison

of a morphometric and conventional cephalometric midsagittal planes for

craniofacial asymmetry, Clin. Oral Investig. 16 (2012) 285–294, doi: 10.1007/
s00784- 011- 0512- 4 . 

[22] S.M. Shin, Y.-M.Y.-I. Kim, N.-R. Kim, Y.-S. Choi, S.-B. Park, Y.-M.Y.-I. Kim, Statisti-
cal shape analysis-based determination of optimal midsagittal reference plane

for evaluation of facial asymmetry, Am. J. Orthod. Dentofac. Orthop. 150 (2016)
252–260, doi: 10.1016/j.ajodo.2016.01.017 . 

[23] A. Dobai, Z. Markella, T. Vízkelety, C. Fouquet, A. Rosta, J. Barabás, Landmark-
based midsagittal plane analysis in patients with facial symmetry and asym-

metry based on CBCT analysis tomography, J. Orofac. Orthop. / Fortschritte Der

Kieferorthopädie. 79 (2018) 371–379, doi: 10.10 07/s0 0 056- 018- 0151- 3 . 
[24] H.-J. Kim, B.C. Kim, J.-G. Kim, P. Zhengguo, S.H. Kang, S.-H. Lee, Construction

and validation of the midsagittal reference plane based on the skull base sym-
metry for three-dimensional cephalometric craniofacial analysis, J. Craniofac.

Surg. 25 (2014) 338–342, doi: 10.1097/SCS.0 0 0 0 0 0 0 0 0 0 0 0 0380 . 
[25] A. Katsumata, M. Fujishita, M. Maeda, Y. Ariji, E. Ariji, R.P. Langlais, 3D-CT eval-
uation of facial asymmetry, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. En-

dodontol. 99 (2005) 212–220, doi: 10.1016/j.tripleo.2004.06.072 . 
[26] T.-Y. Kim, J.-S. Baik, J.-Y. Park, H.-S. Chae, K.-H. Huh, S.-C. Choi, Determi-

nation of midsagittal plane for evaluation of facial asymmetry using three-
dimensional computed tomography, Imaging Sci. Dent. 41 (2011) 79, doi: 10.

5624/isd.2011.41.2.79 . 
[27] A. Gong, J. Li, Z. Wang, Y. Li, F. Hu, Q. Li, D. Miao, L. Wang, Cranial base char-

acteristics in anteroposterior malocclusions: a meta-analysis, Angle Orthod. 86

(2016) 66 8–6 80, doi: 10.2319/032315-186.1 . 
[28] A.B. Lipira, S. Gordon, T.A. Darvann, N.V. Hermann, A.E. Van Pelt, S.D. Naidoo,

D. Govier, A .A . Kane, Helmet versus active repositioning for plagiocephaly:
a three-dimensional analysis, Pediatrics 126 (2010) e936–e945, doi: 10.1542/

peds.2009-1249 . 
[29] S. Lanche , T.A. Darvann , H. Ólafsdóttir , N.V Hermann , A.E. Van Pelt , D. Govier ,

M.J. Tenenbaum , S. Naidoo , P. Larsen , S. Kreiborg , A statistical model of head

asymmetry in infants with deformational plagiocephaly, in: Scand. Conf. Image
Anal., Springer, 2007, pp. 898–907 . 

[30] M.-J. Cho, R.R. Hallac, J. Ramesh, J.R. Seaward, N.V. Hermann, T.A. Darvann,
A . Lipira, A .A . Kane, Quantifying normal craniofacial form and baseline cranio-

facial asymmetry in the pediatric population, Plast. Reconstr. Surg. 141 (2018)
380e–387e, doi: 10.1097/PRS.0 0 0 0 0 0 0 0 0 0 0 04114 . 

[31] S.C. Schaal, C. Ruff, B.I. Pluijmers, E. Pauws, C.W.N. Looman, M.J. Koudstaal,

D.J. Dunaway, Characterizing the skull base in craniofacial microsomia using
principal component analysis, Int. J. Oral Maxillofac. Surg. 46 (2017) 1656–

1663, doi: 10.1016/j.ijom.2017.07.008 . 
[32] B.D.P.J. Maas, B.I. Pluijmers, P.G.M. Knoops, C. Ruff, M.J. Koudstaal, D. Dunaway,

Using principal component analysis to describe the midfacial deformities in
patients with craniofacial microsomia, J. Cranio-Maxillofacial Surg. 46 (2018)

2032–2041, doi: 10.1016/j.jcms.2018.09.019 . 

[33] T.F. Cootes, C.J. TaylorM. Sonka, K.M. Hanson (Eds.), Statistical models of ap-
pearance for medical image analysis and computer vision, N. Engl. J. Med.

(2001) 236–248, doi: 10.1117/12.431093 . 
[34] W. Semper-Hogg, M.A. Fuessinger, S. Schwarz, E. Ellis, C.-P. Cornelius, F. Probst,

M.C. Metzger, S. Schlager, Virtual reconstruction of midface defects using sta-
tistical shape models, J. Cranio-Maxillofacial Surg 45 (2017) 461–466, doi: 10.

1016/j.jcms.2016.12.020 . 

[35] M.A. Fuessinger, S. Schwarz, C.-P. Cornelius, M.C. Metzger, E. Ellis, F. Probst,
W. Semper-Hogg, M. Gass, S. Schlager, Planning of skull reconstruction

based on a statistical shape model combined with geometric morphomet-
rics, Int. J. Comput. Assist. Radiol. Surg. 13 (2018) 519–529, doi: 10.1007/

s11548- 017- 1674- 6 . 
[36] P. Mitteroecker, P. Gunz, Advances in Geometric Morphometrics, Evol. Biol. 36

(2009) 235–247, doi: 10.1007/s11692- 009- 9055- x . 

[37] A. Dall’Asta, S. Schievano, J.L. Bruse, G. Paramasivam, C.T. Kaihura, D. Dunaway,
C.C. Lees, Quantitative analysis of fetal facial morphology using 3D ultrasound

and statistical shape modeling: a feasibility study, Am. J. Obstet. Gynecol. 217
(2017) 76.e1–76.e8, doi: 10.1016/j.ajog.2017.02.007 . 

[38] J.L. Bruse, K. McLeod, G. Biglino, H.N. Ntsinjana, C. Capelli, T.-Y. Hsia, M. Serme-
sant, X. Pennec, A.M. Taylor, S. Schievano, A statistical shape modelling frame-

work to extract 3D shape biomarkers from medical imaging data: assessing
arch morphology of repaired coarctation of the aorta, BMC Med. Imaging. 16

(2016) 40, doi: 10.1186/s12880- 016- 0142- z . 

[39] N. Sarkalkan, H. Weinans, A .A . Zadpoor, Statistical shape and appearance mod-
els of bones, Bone 60 (2014) 129–140, doi: 10.1016/j.bone.2013.12.006 . 

[40] S. Durrleman, X. Pennec, A. Trouvé, N. Ayache, Measuring brain variability via
sulcal lines registration: a diffeomorphic approach, in: Med. Image Comput.

Comput. Interv. – MICCAI 2007, Springer Berlin Heidelberg, Berlin, Heidelberg,
Heidelberg, n.d.: pp. 675–682. doi:10.1007/978-3-540-75757-3_82. 

[41] I. Veli, T. Uysal, T. Ozer, F.I. Ucar, M. Eruz, Mandibular asymmetry in unilateral

and bilateral posterior crossbite patients using cone-beam computed tomogra-
phy, Angle Orthod. 81 (2011) 966–974, doi: 10.2319/022011-122.1 . 

[42] P. Pirttiniemi, T. Kantomaa, P. Lahtela, Relationship between craniofacial and
condyle path asymmetry in unilateral cross-bite patients, Eur. J. Orthod. 12

(1990) 408–413, doi: 10.1093/ejo/12.4.408 . 
[43] C.A. Wong, P.M. Sinclair, R.G. Keim, D.B. Kennedy, Arch dimension changes

from successful slow maxillary expansion of unilateral posterior crossbite, An-

gle Orthod 81 (2011) 616–623, doi: 10.2319/072210-429.1 . 
44] F. Ferro, P. Spinella, N. Lama, Transverse maxillary arch form and mandibu-

lar asymmetry in patients with posterior unilateral crossbite, Am. J. Orthod.
Dentofac. Orthop. 140 (2011) 828–838, doi: 10.1016/j.ajodo.2011.08.003 . 

[45] V. Katyal, Y. Pamula, C.N. Daynes, J. Martin, C.W. Dreyer, D. Kennedy,
W.J. Sampson, Craniofacial and upper airway morphology in pediatric sleep-

disordered breathing and changes in quality of life with rapid maxillary ex-

pansion, Am. J. Orthod. Dentofac. Orthop. 144 (2013) 860–871, doi: 10.1016/j.
ajodo.2013.08.015 . 

[46] H. Kapadia, P.R. Shetye, B.H. Grayson, J.G. McCarthy, Cephalometric assessment
of craniofacial morphology in patients with treacher Collins syndrome., J. Cran-

iofac. Surg. 24 (2013) 1141–1145, doi: 10.1097/SCS.0b013e3182860541 . 
[47] S.-J. Kim, K.-J. Lee, S.-H. Lee, H.-S. Baik, Morphologic relationship between

the cranial base and the mandible in patients with facial asymmetry and

mandibular prognathism, Am. J. Orthod. Dentofacial Orthop. 144 (2013) 330–
340, doi: 10.1016/j.ajodo.2013.03.024 . 

[48] A.R. Sepahdari, S. Mong, Skull base CT: normative values for size and symme-
try of the facial nerve canal, foramen ovale, pterygoid canal, and foramen ro-

tundum, Surg. Radiol. Anat. 35 (2013) 19–24, doi: 10.10 07/s0 0276- 012- 1001- 4 . 

https://doi.org/10.1016/j.cmpb.2020.105397
https://doi.org/10.1016/j.joms.2011.02.135
https://doi.org/10.1111/j.1365-2842.2010.02087.x
http://www.ncbi.nlm.nih.gov/pubmed/2098397
https://doi.org/10.1590/0103-6440201300003
https://doi.org/10.1016/j.ajodo.2012.07.004
https://doi.org/10.1016/0278-2391(90)90217-P
https://doi.org/10.5624/isd.2013.43.1.31
https://doi.org/10.1016/0002-9416(69)90034-7
https://doi.org/10.1002/lary.20991
https://doi.org/10.1111/joor.12335
https://doi.org/10.1038/s41368-018-0012-3
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0013
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0013
https://doi.org/10.5402/2011/298931
https://doi.org/10.1007/s00371-005-0352-9
https://doi.org/10.1186/s13036-019-0171-6
https://doi.org/10.1016/S1073-8746(96)80046-6
https://doi.org/10.1016/j.ajodo.2015.07.038
https://doi.org/10.1016/j.jcms.2014.01.028
https://doi.org/10.1093/ejo/cjn056
https://doi.org/10.1007/s00784-011-0512-4
https://doi.org/10.1016/j.ajodo.2016.01.017
https://doi.org/10.1007/s00056-018-0151-3
https://doi.org/10.1097/SCS.0000000000000380
https://doi.org/10.1016/j.tripleo.2004.06.072
https://doi.org/10.5624/isd.2011.41.2.79
https://doi.org/10.2319/032315-186.1
https://doi.org/10.1542/peds.2009-1249
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0029
https://doi.org/10.1097/PRS.0000000000004114
https://doi.org/10.1016/j.ijom.2017.07.008
https://doi.org/10.1016/j.jcms.2018.09.019
https://doi.org/10.1117/12.431093
https://doi.org/10.1016/j.jcms.2016.12.020
https://doi.org/10.1007/s11548-017-1674-6
https://doi.org/10.1007/s11692-009-9055-x
https://doi.org/10.1016/j.ajog.2017.02.007
https://doi.org/10.1186/s12880-016-0142-z
https://doi.org/10.1016/j.bone.2013.12.006
https://doi.org/10.2319/022011-122.1
https://doi.org/10.1093/ejo/12.4.408
https://doi.org/10.2319/072210-429.1
https://doi.org/10.1016/j.ajodo.2011.08.003
https://doi.org/10.1016/j.ajodo.2013.08.015
https://doi.org/10.1097/SCS.0b013e3182860541
https://doi.org/10.1016/j.ajodo.2013.03.024
https://doi.org/10.1007/s00276-012-1001-4


J. Ortún-Terrazas, M.J. Fagan and J. Cegoñino et al. / Computer Methods and Programs in Biomedicine 191 (2020) 105397 13 

[  

 

 

 

[  

 

 

 

[  

 

[  

 

[  

 

[  

 

 

 

[  

 

 

[  

[  

 

[  

 

 

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

 

 

 

[  

 

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[
 

 

 

 

 

[  

 

 

[  
49] S. Hara, M. Mitsugi, T. Kanno, A. Nomachi, T. Wajima, Y. Tatemoto, Three-
dimensional virtual operations can facilitate complicated surgical planning

for the treatment of patients with jaw deformities associated with facial
asymmetry: a case report, Int. J. Oral Sci. 5 (2013) 176–182, doi: 10.1038/ijos.

2013.48 . 
50] I. Saitoh, C. Yamada, H. Hayasaki, T. Maruyama, Y. Iwase, Y. Yamasaki, Is the

reverse cycle during chewing abnormal in children with primary dentition? J.
Oral Rehabil 37 (2010) 26–33, doi: 10.1111/j.1365-2842.20 09.020 06.x . 

[51] L. Sonnesen, M. Bakke, Bite force in children with unilateral crossbite before

and after orthodontic treatment. A prospective longitudinal study, Eur. J. Or-
thod. 29 (2007) 310–313, doi: 10.1093/ejo/cjl082 . 

52] E. Illipronti-Filho, S.M. de Fantini, I. Chilvarquer, Evaluation of mandibular
condyles in children with unilateral posterior crossbite, Braz. Oral Res. 29

(2015) 49, doi: 10.1590/1807-3107BOR-2015.vol29.0049 . 
53] Y. Wang, S. He, L. Yu, J. Li, S. Chen, Accuracy of volumetric measurement of

teeth in vivo based on cone beam computer tomography, Orthod. Craniofac.

Res. 14 (2011) 206–212, doi: 10.1111/j.1601-6343.2011.01525.x . 
54] H. Lin, P. Zhu, Y. Lin, S. Wan, X. Shu, Y. Xu, Y. Zheng, Mandibular asymmetry: A

three-dimensional quantification of bilateral condyles, Head Face Med 9 (2013)
1–7, doi: 10.1186/1746- 160x- 9- 42 . 

55] L. Keilig, M. Drolshagen, K.L. Tran, I. Hasan, S. Reimann, J. Deschner,
K.T. Brinkmann, R. Krause, M. Favino, C. Bourauel, In vivo measurements and

numerical analysis of the biomechanical characteristics of the human peri-

odontal ligament, Ann. Anat. - Anat. Anzeiger. 206 (2016) 80–88, doi: 10.1016/
j.aanat.2015.08.004 . 

56] B. Xu, Y. Wang, Q. Li, Modeling of damage driven fracture failure of fiber post-
restored teeth, J. Mech. Behav. Biomed. Mater. 49 (2015) 277–289, doi: 10.1016/

j.jmbbm.2015.05.006 . 
[57] J.C. Gower, Generalized procrustes analysis, Psychometrika 40 (1975) 33–51,

doi: 10.1007/BF02291478 . 

58] J. O’Rourke, Finding minimal enclosing boxes, Int. J. Comput. Inf. Sci. 14 (1985)
183–199, doi: 10.10 07/BF0 09910 05 . 

59] J. Damstra, B.C.M. Oosterkamp, J. Jansma, Y. Ren, Combined 3-dimensional and
mirror-image analysis for the diagnosis of asymmetry, Am. J. Orthod. Dentofac.

Orthop. 140 (2011) 886–894, doi: 10.1016/j.ajodo.2010.03.032 . 
60] P.J. Besl, N.D. McKay, Method for registration of 3-D shapes, in: P.S. Schenker

(Ed.), Sens. Fusion IV Control Paradig. Data Struct., International Society for

Optics and Photonics, 1992, pp. 586–606, doi: 10.1117/12.57955 . 
[61] D. Lonic, A. Sundoro, H.-H. Lin, P.-J. Lin, L.-J. Lo, Selection of a horizontal

reference plane in 3D evaluation: identifying facial asymmetry and occlusal
cant in orthognathic surgery planning, Sci. Rep. 7 (2017) 2157, doi: 10.1038/

s41598- 017- 02250- w . 
62] J. Alabort-i-Medina, E. Antonakos, J. Booth, P. Snape, S. Zafeiriou, Menpo, in:

Proc. ACM Int. Conf. Multimed. - MM ’14, New York, New York, USA, ACM

Press, 2014, pp. 679–682, doi: 10.1145/264786 8.2654 890 . 
63] B.F. Gribel , M.N. Gribel , D.C. Frazão , J.A. McNamara Jr , F.R. Manzi , Accuracy and

reliability of craniometric measurements on lateral cephalometry and 3D mea-
surements on CBCT scans, Angle Orthod. 81 (2011) 26–35 . 

64] G. Akhil, K. Senthil Kumar, S. Raja, K. Janardhanan, Three-dimensional assess-
ment of facial asymmetry: a systematic review, J. Pharm. Bioallied Sci. 7 (2015)

433, doi: 10.4103/0975-7406.163491 . 
65] N. Zamora, J.M. Llamas, R. Cibrián, J.L. Gandia, V. Paredes, Cephalometric mea-
surements from 3D reconstructed images compared with conventional 2D im-

ages, Angle Orthod. 81 (2011) 856–864, doi: 10.2319/121210-717.1 . 
66] P. Pittayapat, M.M. Bornstein, T.S.N. Imada, W. Coucke, I. Lambrichts, R. Jacobs,

Accuracy of linear measurements using three imaging modalities: two lateral
cephalograms and one 3D model from CBCT data, Eur. J. Orthod. 37 (2015)

202–208, doi: 10.1093/ejo/cju036 . 
[67] M.S. Ryckman, S. Harrison, D. Oliver, C. Sander, A .A . Boryor, A .A . Hohmann,

F. Kilic, K.B. Kim, Soft-tissue changes after maxillomandibular advancement

surgery assessed with cone-beam computed tomography, Am. J. Orthod.
Dentofac. Orthop. 137 (2010) S86–S93, doi: 10.1016/j.ajodo.2009.03.041 . 

68] T.G. Kwon, H.S. Park, H.M. Ryoo, S.H. Lee, A comparison of craniofacial mor-
phology in patients with and without facial asymmetry - A three-dimensional

analysis with computed tomography, Int. J. Oral Maxillofac. Surg. 35 (2006)
43–48, doi: 10.1016/j.ijom.20 05.04.0 06 . 

69] P.M. Pirttiniemi, Associations of mandibular and facial asymmetries—A re-

view, Am. J. Orthod. Dentofac. Orthop. 106 (1994) 191–200, doi: 10.1016/
S0889- 5406(94)70038- 9 . 

[70] R.C. Solem, A. Ruellas, A. Miller, K. Kelly, J.L. Ricks-Oddie, L. Cevidanes, Con-
genital and acquired mandibular asymmetry: Mapping growth and remodel-

ing in 3 dimensions, Am. J. Orthod. Dentofacial Orthop. 150 (2016) 238–251,
doi: 10.1016/j.ajodo.2016.02.015 . 

[71] G. Laganà, V. Di Fazio, V. Paoloni, L. Franchi, P. Cozza, R. Lione, Geometric mor-

phometric analysis of the palatal morphology in growing subjects with skeletal
open bite, Eur. J. Orthod. 41 (2019) 258–263, doi: 10.1093/ejo/cjy055 . 

[72] B. Trpkova, N.G. Prasad, E.W.N. Lam, D. Raboud, K.E. Glover, P.W. Major, As-
sessment of facial asymmetries from posteroanterior cephalograms: valid-

ity of reference lines, Am. J. Orthod. Dentofac. Orthop. 123 (2003) 512–520,
doi: 10.1016/S0889- 5406(02)57034- 7 . 

[73] J.-J. Fang, Y.-H. Tu, T.-Y. Wong, J.-K. Liu, Y.-X. Zhang, I.-F. Leong, K.-C. Chen, Eval-

uation of mandibular contour in patients with significant facial asymmetry, Int.
J. Oral Maxillofac. Surg. 45 (2016) 922–931, doi: 10.1016/j.ijom.2016.02.008 . 

[74] C.E. Zambon, M.M. Ceccheti, E.R. Utumi, F.R. Pinna, G.G. Machado,
M.P.S.M. Peres, R.L. Voegels, Orthodontic measurements and nasal respi-

ratory function after surgically assisted rapid maxillary expansion: an acoustic
rhinometry and rhinomanometry study, Int. J. Oral Maxillofac. Surg. 41 (2012)

1120–1126, doi: 10.1016/j.ijom.2011.12.037 . 

75] D.H. Enlow , Facial growth, WB Saunders Company, 1990 . 
[76] M.Y. Leung, Y.Y. Leung, Three-dimensional evaluation of mandibular asymme-

try: a new classification and three-dimensional cephalometric analysis, Int. J.
Oral Maxillofac. Surg. 47 (2018) 1043–1051, doi: 10.1016/j.ijom.2018.03.021 . 

[77] L. Abad-Santamaría, A. López-de-Andrés, I. Jiménez-Trujillo, C. Ruíz,
M. Romero, Effect of unilateral posterior crossbite and unilateral cleft lip

and palate on vertical mandibular asymmetry, Ir. J. Med. Sci. 183 (2014)

357–362, doi: 10.1007/s11845- 013- 1020- 0 . 
78] H.S. Matthews, A.J. Penington, R. Hardiman, Y. Fan, J.G. Clement, N.M. Kil-

patrick, P.D. Claes, Modelling 3D craniofacial growth trajectories for popula-
tion comparison and classification illustrated using sex-differences, Sci. Rep. 8

(2018) 4771, doi: 10.1038/s41598- 018- 22752- 5 . 
79] S. Pirinen, Endocrine regulation of craniofacial growth, Acta Odontol. Scand. 53

(1995) 179–185, doi: 10.3109/0 0 0163595090 05969 . 

https://doi.org/10.1038/ijos.2013.48
https://doi.org/10.1111/j.1365-2842.2009.02006.x
https://doi.org/10.1093/ejo/cjl082
https://doi.org/10.1590/1807-3107BOR-2015.vol29.0049
https://doi.org/10.1111/j.1601-6343.2011.01525.x
https://doi.org/10.1186/1746-160x-9-42
https://doi.org/10.1016/j.aanat.2015.08.004
https://doi.org/10.1016/j.jmbbm.2015.05.006
https://doi.org/10.1007/BF02291478
https://doi.org/10.1007/BF00991005
https://doi.org/10.1016/j.ajodo.2010.03.032
https://doi.org/10.1117/12.57955
https://doi.org/10.1038/s41598-017-02250-w
https://doi.org/10.1145/2647868.2654890
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0062
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0062
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0062
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0062
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0062
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0062
https://doi.org/10.4103/0975-7406.163491
https://doi.org/10.2319/121210-717.1
https://doi.org/10.1093/ejo/cju036
https://doi.org/10.1016/j.ajodo.2009.03.041
https://doi.org/10.1016/j.ijom.2005.04.006
https://doi.org/10.1016/S0889-5406(94)70038-9
https://doi.org/10.1016/j.ajodo.2016.02.015
https://doi.org/10.1093/ejo/cjy055
https://doi.org/10.1016/S0889-5406(02)57034-7
https://doi.org/10.1016/j.ijom.2016.02.008
https://doi.org/10.1016/j.ijom.2011.12.037
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0074
http://refhub.elsevier.com/S0169-2607(19)31939-X/sbref0074
https://doi.org/10.1016/j.ijom.2018.03.021
https://doi.org/10.1007/s11845-013-1020-0
https://doi.org/10.1038/s41598-018-22752-5
https://doi.org/10.3109/00016359509005969

	Towards an early 3D-diagnosis of craniofacial asymmetry by computing the accurate midplane: A PCA-based method
	1 Introduction
	2 Material and methods
	2.1 3D database
	2.2 Size normalization
	2.3 Sagittal midplane
	2.4 Statistical and morphological analyses

	3 Results
	4 Discussion
	4.1 Limitations

	5 Conclusions
	Ethical approval
	Funding
	Declaration of Competing Interest
	Acknowledgements
	Supplementary materials
	References


