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Abstract—This paper proposes a hierarchical structure-based
fault estimation and fault-tolerant control design with bi-
directional interactions for nonlinear multi-agent systems with
actuator faults. The hierarchical structure consists of distributed
multi-agent system hierarchy, undirected topology hierarchy,
decentralized fault estimation hierarchy and distributed fault-
tolerant control hierarchy. The states and faults of the system
are estimated simultaneously by merging the unknown input
observer in a decentralized fashion. The distributed constant
gain-based and node-based fault-tolerant control schemes are
developed to guarantee the asymptotic stability and H-infinity
performance of multi-agent systems, respectively, based on the
estimated information in the fault estimation hierarchy and the
relative output information from neighbors. Two simulation cases
validate the efficiency of the proposed hierarchical structure
control algorithm.

Index Terms—Hierarchical structure control, fault estimation,
fault-tolerant control, nonlinear multi-agent systems, actuator
faults.

I. INTRODUCTION

MULTI-AGENT systems (MASs) are attracting consid-
erable attention in various control fields because of

their potential applications in the formation of unmanned
aerial vehicles[1], multi-robot coordination[2] and optimal
scheduling in wireless networks[3], [4]. MASs are complex
large-scale systems composed of a large number of dis-
tributed, autonomous or semi-autonomous agents that are con-
nected by mechanical interconnections[5] or communication
networks[1], [2]. Existing control approaches for individual
agents are not suitable for MASs because of the inherent
interconnected characteristics among the agents. Thus, positive
effects can be obtained by specifying the concepts of MASs to
achieve the satisfactory local performance of each agent and
the global property of MASs.

However, faults may occur in one or more agents and
degrade the performance of the system or may even lead to
a catastrophic consequence in MASs, such as actuator and
sensor faults of individual agent[6], [7], mechanical hinge
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coupling faults and network communication faults[8]. There-
fore, MASs are required to perform safely and healthily, and
fault-tolerant control (FTC) is regarded as a fruitful approach
that can guarantee the stability and satisfactory properties of
MASs with unpredictable faults[9], [10]. A distributed adap-
tive observer-based fault estimation (FE) design was proposed
for leader-following linear MASs in the presence of additive
faults, modeling uncertainties and external disturbances[11].
The FTC system compensated uncertain dynamics, time-
varying faults and external disturbances simultaneously based
on a fault-tolerant consensus control design with robust adap-
tive strategy[12]. However, most studies focused on separated
FE and FTC designs[13], [14] and did not consider the bi-
directional interactions between the FE and FTC hierarchies
and the direct use of estimated fault signals from the FE
to compensate the effects of faults. Lan and Patton[6], [15]
proposed the integrated FE and FTC protocols for uncertain
Lipschitz nonlinear systems with disturbances and simultane-
ous actuator and sensor faults. The effects of mutual couplings
from the disturbances and nonlinearities between the FE and
FTC systems were handled simultaneously. Studies on the
integrated FE and FTC approach, especially in the application
of MASs, are limited, and few findings are attributed to the
hierarchical structure-based FE and FTC designs with bi-
directional interactions for nonlinear MASs.

Their approaches[6], [15] used the so-called integrated
FE/FTC design, which are known as decentralized control in
MASs under the known interconnection topology and cannot
be applied in distributed MASs with complex and strong
couplings that are significant in this current study. MASs have
three main FTC structures, namely, (i) centralized[16], (ii)
decentralized[17] and (iii) distributed[18]. First, each agent
can obtain state and fault information from all agents through
a centralized monitor. This centralized structure is expen-
sive to implement and only applicable to small-scale MASs.
Second, the decentralized FTC controller of each agent is
only developed based on its states and faults. This structure
does not need any neighboring information interactions and
leads to a simple FTC design. However, this structure is
not well-suited for MASs with strong constraints in coupling
characteristics[19]. Third, each agent has its own monitor that
is only equipped with information interactions from its coupled
agents in a distributed fashion. This structure is low cost and
easy to implement, resulting in a wide range of applications in
large-scale MASs[20], [21]. Therefore, it is the motivation of
devising the distributed FTC strategies based on the estimated
states and faults in the FE and the information exchange from
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the neighboring agents.
This paper addresses a hierarchical structure-based FE and

FTC design for a class of nonlinear MASs with actuator faults.
The so-called hierarchical structure consists of distributed
MASs hierarchy, undirected topology hierarchy, decentralized
FE hierarchy and distributed FTC hierarchy. The estimated
information in the decentralized FE hierarchy and the constant
gain-based and node-based designs in the distributed FTC
hierarchy are developed to guarantee the asymptotic stability
and H∞ performance of MASs. The major contributions of
this paper can be summarized as follows: (i) The unknown
input observers in the decentralized FE hierarchy are devel-
oped to estimate the faults and states without prior information
requirements of unknown nonlinear interactions and distur-
bances based on the previous works[6], [15]. (ii) This paper
considers the decentralized FE and distributed FTC protocols
in the hierarchical structure to overcome the limitation and
high cost of the coupling constraints in MASs compared with
the integrated FE/FTC designs[6]. Mutual effects with bi-
directional interactions between the FE and FTC hierarchies
are considered. (iii) In comparison with FTC designs based on
their own estimated information[6], [15] or the state informa-
tion of the neighbours[22], [23], the FTC strategies proposed
in this paper are implemented in a fully distributed fashion not
only based on the estimated information in the FE but also on
the output information of the neighbors instead of using any
of the global information of the communication topology.

The remainder of this paper is organized as follows. Section
II introduces the problem formulation including graph theory
and the distributed MASs hierarchy description. Section III
is devoted to the decentralized FE hierarchy design. The
distributed FTC hierarchy designs including the constant gain-
based and node-based schemes are presented in Section IV
to guarantee the robust stability of the hierarchical structure
system. Simulations in Section V validate the efficiency of the
proposed control design. Finally, conclusions follow in Section
VI. The symbol † denotes the pseudo inverse, ⊗ denotes the
kronecker product, He (X) = X + XT , and ? represents the
symmetric part of the specific matrix.

II. PROBLEM FORMULATION

A. Graph theory

An undirected graph G is a pair (ν, ς), where ν =
{ν1, · · · , νN} is a nonempty finite set of nodes and ς ⊆ ν× ν
is a set of edges. The edge (νi, νj) is denoted as a pair of
distinct nodes (i, j). A graph is said to be undirected with the
property (νi, νj) ∈ ς that signifies (νj , νi) for any νi, νj ∈ ν.
Node j is called a neighbor of node i if (νi, νj) ∈ ς . The set
of neighbors of node i is denoted as Ni = {j | (νi, νj) ∈ ς}.
The adjacency matrix A = [aij ]N×N is a constant matrix
represented as the graph topology. aij is the weight coefficient
of the edge (νi, νj) and aii = 0, aij = 1 if (νi, νj) ∈ ς ,
otherwise aij = 0. The Laplacian matrix L = [lij ]N×N is
defined as lij =

∑
i6=j aij and lij = −aij , i 6= j. If there is a

path between two arbitrary nodes, the undirected graph is said
to be connected.

B. Distributed MASs hierarchy

Consider a group of N agents with nonlinearities and
actuator faults. The i-th (i = 1, 2, · · · , N) agent is described
as

ẋi = Axi +Bui + Ffi + ξi (x, t)

yi = Cxi (1)

where xi ∈ Rn, ui ∈ Rm, yi ∈ Rp are the system state, input
and output vectors, respectively. fi ∈ Rq denotes the actuator
fault and ξi(x, t) ∈ Rn denotes the nonlinear interaction term
with x = [xT1 , · · · , xTN ]T , which might be viewed as me-
chanical interconnections in the distributed MASs hierarchy.
A,B, F and C are known constant matrices with compatible
dimensions.

Assumption 2.1: (1) The pairs (A,B) and (A,C) are con-
trollable and observable, respectively. (2) The matching con-
dition for the actuator fault fi is satisfied with rank(B,F ) =
rank(B) = m. The actuator fault fi belongs to L2 [0,∞)
and is continuously smooth with bounded first-order time
derivative.

Assumption 2.2: The nonlinear interaction term ξi(x, t)
in the distributed MASs hierarchy satisfies with the matrix
inequality ξTi (x, t)ξi(x, t) ≤ αix

TETi Eix, where Ei is a
known constant matrix and αi is a positive scalar as the upper
bound for the corresponding interaction.

Remark 2.1: Assumption 2.1 provides the controllable and
observable conditions for the described control systems and
guarantees the actuator fault fi to be constrained in a given
compensation range by the designed input ui. The interaction
term ξi(x, t) in Assumption 2.2 might be described as the
specific hinge mechanism connection between the rigid and
flexible parts of multiple spacecrafts and the transmission links
of smart grids[5]. Furthermore, define ξ(x, t) = [ξT1 , · · · , ξTN ]T

as the interaction term of overall MASs, then it follows that
the augmented interaction term ξT (x, t)ξ(x, t) ≤ xTETEx
with E = [

√
α1E

T
1 , · · · ,

√
αNE

T
N ]T .

Definition 2.1[24]: Let γ > 0 and ε > 0 be given constants,
the closed-loop system can achieve a H∞ performance index
no larger than γ, i.e. ‖Gzd‖ < γ if the following form holds:∫ ∞

0

zT (t) z (t) dt ≤ γ2

∫ ∞
0

d (t)
T
d (t) dt+ ε (2)

Lemma 2.1[25]: There exists a zero eigenvalue for the
Laplacian matrix L with 1N as a corresponding right eigen-
vector and all nonzero eigenvalues have positive real parts
in the undirected graph G. Assume that λi denotes the i-th
eigenvalue of L, thus, 0 = λ1 < λ2 ≤ · · · ≤ λN . Furthermore,
if 1TNX = 0, then XTLX ≥ λ2X

TX .
Figure 1 outlines a general diagram of the hierarchical

structure-based FE and FTC design with bi-directional in-
teractions for nonlinear MASs. The structure comprises (i)
distributed MASs hierarchy, (ii) undirected topology hierar-
chy, (iii) decentralized FE hierarchy and (iv) distributed FTC
hierarchy. First, the mechanical interconnection ξi(x, t) in the
i-th agent shows the distributed fashion in the existing MASs
hierarchy. Second, the undirected topology G can be described
with the Laplacian matrix L in the applications of flight and
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Fig. 1. Hierarchical structure-based design with bi-directional interactions
between the FE and FTC hierarchy.

multi-robot formation[1], [2], which implies that agents are
connected to one another through communication networks.
Third, each observer in the decentralized FE hierarchy[6] is
designed independently to reconstruct the shape of the fault.
Fourth, compared with the decentralized FTC design[15], the
distributed FTC design is constructed to not only directly use
the fault estimation information in the FE process but also the
output information from the neighboring agents to compensate
the effects of faults. In comparison with the FTC design based
on fault detection and identification (FDI) approaches[9], [26],
the FE design is introduced in the distributed FTC system by
estimating the fault instead of the threshold setting and fault
isolation in the FDI procedure, which can significantly take
full advantage of the fault information in the FTC system.

III. DECENTRALIZED FAULT ESTIMATION HIERARCHY

Augment the i-th dynamic model (1) with d̄i = ḟi into

˙̄xi = Āx̄i + B̄ui + ξ̄i (x, t) + D̄d̄i

yi = C̄x̄i (3)

where

Ā =

[
A F

0q×n 0q×q

]
, B̄ =

[
B

0q×m

]
, D̄ =

[
0n×q
Iq

]
C̄ = [C 0p×q] , x̄i =

[
xTi , f

T
i

]T
, ξ̄i (x, t) =

[
ξTi , 0

T
q×1

]T
The designed observer in the decentralized FE hierarchy

only requires the information from the corresponding agent
rather than its neighboring observer. Then, the state x̄i of the
i-th augmented system is estimated by the i-th unknown input
observer[6], [15] expressed as

żi = Mzi +Gui + Jyi, ˆ̄xi = zi +Hyi (4)

where zi ∈ Rn+q is the state of the i-th unknown input
observer. ˆ̄xi = [x̂Ti , f̂

T
i ]T is the estimate of the augmented

state x̄i. x̂i ∈ Rn and f̂i ∈ Rq are the estimates of the system
state xi and actuator fault fi, respectively. Matrices M,G, J
and H are of appropriate dimensions to be devised.

Define the estimation error as ei = x̄i − ˆ̄xi = [eTxi e
T
fi]

T

with exi = xi − x̂i and efi = fi − f̂i. Then, we can obtain
the following form with the definition of Γ = In+q −HC̄.

ėi =
(
ΓĀ− JC̄

)
x̄i +

(
ΓB̄ −G

)
ui

+Γξ̄i (x, t) + ΓD̄d̄i −Mzi (5)

Unfortunately, it cannot be completely decoupled due to
the independent item Mzi. Furthermore, according to the
definition of J = J1 + J2, it follows that the estimation error
is described as

ėi =
(
ΓĀ− J1C̄

)
ei +

(
ΓĀ− J1C̄ −M

)
zi + Γξ̄i (x, t)

+
((

ΓĀ− J1C̄
)
H − J2

)
yi +

(
ΓB̄ −G

)
ui + ΓD̄d̄i (6)

Then, the matrices M,G, J1, J2 and H are designed in the
following forms in order to decouple the estimation error ei
and additional items zi, yi and ui.

ΓĀ− J1C̄ = M,M is Hurwitz (7)(
ΓĀ− J1C̄

)
H = J2 (8)

ΓB̄ = G (9)

Hence, the i-th estimation error dynamics are derived as

ėi =
(
ΓĀ− J1C̄

)
ei + Γξ̄i (x, t) + ΓD̄d̄i (10)

and the designed matrices M,G and J2 in the unknown input
observer can be obtained with the derived matrices J1 and H .
Furthermore, define e = [eT1 , · · · , eTN ]T , d̄ = [d̄T1 , · · · , d̄TN ]T

and ξ̄(x, t) = [ξ̄T1 (x, t), · · · , ξ̄TN (x, t)]T , and it follows that

ė =
(
IN ⊗

(
ΓĀ− J1C̄

))
e+ (IN ⊗ Γ) ξ̄ (x, t)

+
(
IN ⊗ ΓD̄

)
d̄ (11)

Hence, the objective of obtaining unknown input observers
is to design H and J1 such that the estimation error dynamics
(11) are robustly asymptotically stable.

Remark 3.1: The i-th estimation error dynamics can be
completely decoupled when the terms Γξ̄i(x, t) = 0 and
ΓD̄d̄i = 0 are satisfied. The required condition of the Hurwitz
matrix M guarantees that (11) is robustly asymptotically
stable. However, it is shown from (10) and (11) that the
performance of FE is influenced by the nonlinearity ξi(x, t)
and the fault modeling error ḟi in Figure 1.

Remark 3.2: The proposed unknown input observer (4) has
two major advantages. On the one hand, the prior information
of the unknown nonlinear interactions ξ̄(x, t) and disturbances
d̄ does not need to be obtained. This positive effect is evident
compared with the assumptions of the bounded disturbances
and nonlinearities[27], [28]. On the other hand, the distur-
bances in the estimation error dynamics can be decoupled
with the rank requirement of rank(C̄D̄) = rank(D̄)[29], i.e.,
(In+q − HC̄)D̄ = 0. Neither the bounded condition nor the
rank requirement of the disturbances in this paper is required
in the designed unknown input observer (4).

IV. DISTRIBUTED FAULT-TOLERANT CONTROL
HIERARCHY

In this section, the communication topology G is undi-
rected. Each agent in the undirected topology hierarchy can
receive the relative output information rather than the state
information of its neighboring agents. On the basis of the
estimated information in the unknown input observer (4) of
the augmented system (3) and the relative output information
of neighbors, two distributed FTC protocols are proposed,
namely, the constant gain-based and node-based FTC designs.
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A. Distributed constant gain-based FTC design

The distributed constant gain-based fault-tolerant controller
for agent i is designed as follows:

ui = −K ˆ̄xi + gKg

N∑
j=1

aij (yi − yj) (12)

where K = [Kx Kf ] denotes the augmented controller gain
with the state feedback gain Kx ∈ Rm×n and actuator fault
compensation gain Kf ∈ Rm×q . aij denotes the (i, j)-th
entry of the adjacency matrix A involved with the undirected
topology G. Kg ∈ Rm×p denotes the distributed constant gain
and g is a positive scalar.

Then, we can obtain the closed-loop system with the
actuator fault compensation gain Kf = B†F with B† =
(BTB)−1BT .

ẋi = (A−BKx)xi +BKei + ξi (x, t)

+gBKgC
∑N
j=1 aij (xi − xj) (13)

The objective of obtaining the distributed constant gain-
based fault-tolerant controller is to design Kx and Kg such
that the closed-loop system is robustly stable. Then, it follows
that the hierarchical structure-based FE/FTC model with the
distributed constant gain-based controller (12) is derived as

ẋ = (IN ⊗ (A−BKx) + gL ⊗BKgC)x
+ (IN ⊗BK) e+ ξ (x, t)

ė =
(
IN ⊗

(
ΓĀ− J1C̄

))
e+ (IN ⊗ Γ) ξ̄ (x, t)

+
(
IN ⊗ ΓD̄

)
d̄

zc = Cxcx+ Cece

(14)

where ξ(x, t) = [ξT1 , · · · , ξTN ]T ,L is the Laplacian matrix
corresponding to the undirected graph G, zc ∈ Rrc is the
measured output vector for verifying the hierarchical structure-
based FE/FTC system performance with matrices Cxc ∈
Rrc×nN and Cec ∈ Rrc×(n+q)N .

Notably, the estimation error dynamics e and nonlinear
interactions ξ(x, t) affect the closed-loop FTC system. It is
shown from (14) and Figure 1 that the disturbances and
nonlinear interactions influence FE performance. The non-
linearities and estimated errors in FE also influence FTC
performance. Hence, the issue of the coupling items both in FE
and FTC systems is challenging, which motivates the introduc-
tion of the hierarchical structure-based FE/FTC strategy. The
proposed hierarchical structure provides a distinct advantage of
the integrated consideration of FE and FTC simultaneously in
marked contrast to previous works in independent FE and FTC
strategies (i.e., the derivative and proportional observer for
estimation error dynamics with a discrete-time fault-tolerant
design[13] and the descriptor sliding mode approach based on
state estimations[14]).

Hence, the objective of the proposed hierarchical structure-
based FE/FTC design is to devise the state feedback gain
Kx, the distributed constant gain Kg , and the unknown input
observer gains H and J1 to guarantee the robust stability of
the hierarchical structure system (14).

Theorem 4.1. Given positive scalars γc, ε1c and ε2c, ma-
trices Cxc0 ∈ Rrc×n, Cecx ∈ Rrc×n and Cecf ∈ Rrc×q ,

the hierarchical structure-based FE/FTC system (14) with the
distributed constant gain-based controller (12) is stable with
H∞ performance ‖Gzc d̄‖ < γc, if there exist symmetric
positive definite matrices Qc0 ∈ Rn×n, Pc1 ∈ Rn×n and
Pc2 ∈ Rq×q , and matrices X1 ∈ Rm×n, X2 ∈ Rm×p, X3 ∈
Rn×p, X4 ∈ Rn×p, X5 ∈ Rq×p and X6 ∈ Rq×p such that

Ω̄c11 Ω̄c12 0 Ω̄c14 0 Ω̄c16

? Ω̄c22 Ω̄c23 0 Ω̄c25 Ω̄c26

? ? −γcIqN 0 0 0
? ? ? −ε2cInN 0 0
? ? ? ? Ω̄c55 0
? ? ? ? ? −Irc

 < 0 (15)

with

Ω̄c11 = IN ⊗He (Qc0A−BX1) + L ⊗He (gBX2C)

+ (ε1c + ε2c)E
TE, Ω̄c12 = IN ⊗

[
BX1 Qc0BKf

]
Ω̄c14 = IN ⊗Qc0, Ω̄c16 = IN ⊗ CTxc0, Ω̄c55 = −ε1cI(n+q)N

Ω̄c22 = IN ⊗
[

Ω̄c1 Ω̄c2
? Ω̄c3

]
, Ω̄c23 = IN ⊗

[
0
Pc2

]
Ω̄c25 = IN ⊗

[
Ω̄c4 0
−X5C Pc2

]
, Ω̄c26 = IN ⊗

[
CTecx
CTecf

]
Ω̄c1 = He(Pc1A−X3CA−X4C)

Ω̄c2 = Pc1F −X3CF −ATCTXT
5 − CTXT

6

Ω̄c3 = He(−X5CF ), Ω̄c4 = Pc1 −X3C

Then, the gains are obtained as Kx = Q̂−1
c0 X1,Kg =

Q̂−1
c0 X2, H1 = P−1

c1 X3, J11 = P−1
c1 X4, H2 = P−1

c2 X5, and
J12 = P−1

c2 X6 with Qc0B = BQ̂c0.
Proof: Consider a Lyapunov function Vec = eTPce with a

symmetric positive matrix Pc, and the time derivative of Vec
is obtained in the following form with a positive scalar ε1c.

V̇ec ≤ eT (He
(
Pc
(
IN ⊗

(
ΓĀ− J1C̄

)))
+ε−1

1c Pc (IN ⊗ Γ) (IN ⊗ Γ)TPc)e+ ε1cx
TETEx

+He(eTPc(IN ⊗ ΓD̄)d̄) (16)

Then, consider anther Lyapunov function Vxc = xTQcx
with a symmetric positive matrix Qc, and the time derivative
of Vxc is derived with a positive scalar ε2c as follows:

V̇xc ≤ xT (He (Qc (IN ⊗ (A−BKx) + gL ⊗BKgC))

+ε−1
2c QcQ

T
c + ε2cE

TE)x+ He
(
xTQc (IN ⊗BK) e

)
(17)

According to Definition 2.1, the sufficient condition for a
H∞ performance ‖Gzcd̄‖ < γc can be represented as∫∞

0

(
zTc zc − γcd̄T d̄+ V̇ec + V̇xc

)
− (Vec (∞)− Vec (0) + Vxc (∞)− Vxc (0)) < 0 (18)

Based on zero initial conditions, it follows that the sufficient
condition of achieving (18) is zTc zc−γcd̄T d̄+ V̇ec+ V̇xc < 0.
Hence, according to the definition of ζ = [xT eT d̄T ]T , it is
derived as

ζT

 Ωc11 Ω̄c5 0
? Ωc22 Pc

(
IN ⊗ ΓD̄

)
? ? −γcIqN

 ζ < 0 (19)
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where Ωc11 = He(Qc(IN ⊗ (A − BKx) + gL ⊗ BKgC)) +
ε−1

2c QcQ
T
c + (ε1c + ε2c)E

TE +CTxcCxc,Ωc22 = He(Pc(IN ⊗
(ΓĀ−J1C̄)))+ε−1

1c Pc(IN ⊗Γ)(IN ⊗Γ)TPc+CTecCec, Ω̄c5 =
Qc(IN ⊗BK) + CTxcCec.

Furthermore, denote Cxc = IN ⊗ Cxc0 and Cec =
IN ⊗ [Cecx Cecf ]. Denote Qc = IN ⊗ Qc0, Pc = IN ⊗
diag{Pc1, Pc2} with symmetric positive definite matrices
Qc0, Pc1 and Pc2. Define H = [HT

1 HT
2 ]T and J1 =

[JT11 JT12]T with matrices H1 ∈ Rn×p, H2 ∈ Rq×p, J11 ∈
Rn×p and J12 ∈ Rq×p.

Since the graph G is undirected, the matrix L is symmetric.
According to the condition Qc0B = BQ̂c0 and Kx =
Q̂−1
c0 X1,Kg = Q̂−1

c0 X2, H1 = P−1
c1 X3, J11 = P−1

c1 X4, H2 =
P−1
c2 X5, and J12 = P−1

c2 X6, the Schur lemma is used here
to transfer the inequality (19) into the LMI formulation (15).
This completes the proof.

Remark 4.1: Note that the inequality (15) needs to be
solved with the equality constraint Qc0B = BQ̂c0 by the LMI
toolbox. The equality constraint needs to be transferred into
the following optimization problem.

Minimize η subject to LMI formulation (15) with[
ηI Qc0B −BQ̂c0
? ηI

]
> 0 (20)

Remark 4.2: In comparison with the separate FE and
FTC functions without considering the effect of system and
estimation uncertainties in [13], [14], the distributed constant
gain-based FTC design is proposed in Theorem 4.1 with
the consideration of the resulting bi-directional robustness
interactions between the FE and FTC systems by a single-step
LMI formulation with equality constraint techniques.

Remark 4.3: The major difference of this paper with other
works[6], [15] lies in the collection of data of the distributed
information from the neighboring agents. Figure 1 shows
that the closed-loop FTC system avoids the limitation of
the only existing simple and known coupling interactions in
the decentralized structure because of the distributed fashion
and the collected output information from the neighbours[15].
Moreover, the only distributed item gKg

∑N
j=1 aij (yi − yj)

without the estimated state item K ˆ̄xi in (12) cannot achieve
the acceptable performances of FE and FTC due to the mutual
influences introduced by the nonlinearities and disturbances
in their procedures[11], [30]. Although the increase of the
dimension adds to the complexity of the calculation of LMI,
the difference of the topological structure also affects the
feasible solution of the LMI directly. The dimension of the
formulation of LMI should not be reduced with the individ-
ual agent because the existence of the topological structure
plays a role in representing the global LMI problem, i.e.,
He (Qc (gL⊗BKgC)) in (17).

B. Distributed node-based FTC design

The distributed node-based fault-tolerant controller for the
i-th agent is modified in the following form with the updated
coupling weigh di(t) corresponding with the i-th agent.

ui = −K ˆ̄xi + Ld
∑N
j=1 di (t) aij (yi − yj) (21)

ḋi (t) = −τi
∑N
j=1 y

T
i Ξdaij (yi − yj) (22)

where di(t) denotes the coupling weight for agent i and τi is a
positive scalar. Matrices Ld ∈ Rm×p and Ξd ∈ Rp×p are the
distributed feedback gains. The augmented controller gain K
is defined in the distributed constant gain-based FTC design.

According to the dynamic model (1) and the distributed
node-based fault-tolerant controller (21), it follows that the
closed-loop system is derived as

ẋi = (A−BKx)xi +BKei + ξi (x, t)

+BLdC
∑N
j=1 di (t) aij (xi − xj) (23)

The objective of obtaining the distributed node-based fault-
tolerant controller is to design Kx and Ld such that the closed-
loop system is robustly stable with the updated law (22). Then,
it follows that the hierarchical structure-based FE/FTC model
with the distributed node-based controller (21)-(22) is derived
as

ẋ = (IN ⊗ (A−BKx) + (∆d (t)L ⊗BLdC))x
+ (IN ⊗BK) e+ ξ (x, t)

ė =
(
IN ⊗

(
ΓĀ− J1C̄

))
e+ (IN ⊗ Γ) ξ̄ (x, t)

+
(
IN ⊗ ΓD̄

)
d̄

zd = Cxdx+ Cede

(24)

where ∆d(t) = diag(d1(t), . . . , dN (t)), zd ∈ Rrd is the
measured output vector with matrices Cxd ∈ Rrd×nN and
Ced ∈ Rrd×(n+q)N .

Coupling is observed between the estimation error dynamics
and closed-loop system, and the FE and FTC performances
are influenced by nonlinearities and disturbances. Hence, the
objective of the proposed hierarchical structure-based FE/FTC
design is to devise the state feedback gain Kx, the distributed
node-based gain Ld, and the unknown input observer gains
H and J1 to guarantee the robust stability of the hierarchical
structure system (24) in simultaneously handling the coupling
weights ∆d(t). Furthermore, the existing equality constraint
Qc0B = BQ̂c0 in Theorem 4.1 needs to be managed for
further flexibilities in achieving acceptable H∞ performance.

Here, we will give the following theorem in a single-step
LMI formulation without equality constraints, i.e. Qc0B =
BQ̂c0 in Theorem 4.1.

Theorem 4.2. Given positive scalars γd, ε1d, ε2d and α,
matrices Cxd0 ∈ Rrd×n, Cedx ∈ Rrd×n and Cedf ∈ Rrd×q ,
the hierarchical structure-based FE/FTC system (24) with the
distributed node-based controller (21) and the updated law
(22) is stable with H∞ performance ‖Gzd d̄‖ < γd, if there
exist symmetric positive definite matrices Qd0 ∈ Rn×n, Pd1 ∈
Rn×n and Pd2 ∈ Rq×q , and matrices Kx ∈ Rm×n, Ld ∈
Rm×p, X3 ∈ Rn×p, X4 ∈ Rn×p, X5 ∈ Rq×p and X6 ∈ Rq×p
such that

Ω̄d11 0 0 Ω̄d14 0 Ω̄d16

? Ω̄d22 Ω̄d23 0 Ω̄d25 Ω̄d26

? ? −γdIqN 0 0 0
? ? ? −ε2dInN 0 0
? ? ? ? −ε1dI(n+q)N 0
? ? ? ? ? −IrdN
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
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Ω̄d17 Ω̄d18 0 Ω̄d110

0 0 Ω̄d29 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−I2nN 0 0 0
? −InN 0 0
? ? −I(n+q)N 0
? ? ? −I2nN


< 0 (25)

with

Ω̄d22 = IN ⊗
[

Ω̄d1 Ω̄d2

? Ω̄d3

]
, Ω̄d23 = IN ⊗

[
0
Pd2

]
Ω̄d25 = IN ⊗

[
Ω̄d4 0
−X5C Pd2

]
, Ω̄d26 = IN ⊗

[
CTedx
CTedf

]
Ω̄d29 = IN ⊗

[
KT
x B

T 0
KT
f B

T 0

]
Ω̄d1 = He (Pd1A−X3CA−X4C)

Ω̄d2 = Pd1F −X3CF −ATCTXT
5 − CTXT

6

Ω̄d3 = He (−X5CF ) , Ω̄d4 = Pd1 −X3C

Ω̄d11 = IN ⊗He (Qd0A) + (ε1d + ε2d)E
TE

Ω̄d14 = Ω̄d18 = IN ⊗Qd0, Ω̄d16 = IN ⊗ CTxd0

Ω̄d17 = IN ⊗
[
Qd0 KT

x B
T
]

Ω̄d110 = diag (λ1, λ2, · · · , λN )⊗
[
Qd0 αCTLTdB

T
]

Then, the gains are obtained as H1 = P−1
d1 X3, J11 =

P−1
d1 X4, H2 = P−1

d2 X5, J12 = P−1
d2 X6, and Ξd =

CT
†
Qd0BLd.

Proof: Consider a Lyapunov function Ved = eTPde with a
symmetric positive matrix Pd, and the time derivative of Ved
is obtained with a positive scalar ε1d in the same process of
proof in Theorem 4.1.

V̇ed ≤ eT (He
(
Pd
(
IN ⊗

(
ΓĀ− J1C̄

)))
+ε−1

1d Pd (IN ⊗ Γ) (IN ⊗ Γ)
T
Pd)e

+ε1dx
TETEx+ He

(
eTPd

(
IN ⊗ ΓD̄

)
d̄
)

(26)

Furthermore, a Lyapunov function Vxd is formed with a
positive matrix Qd = IN ⊗Qd0 and Qd0 ∈ Rn×n.

Vxd = xTQdx+

N∑
i=1

(di − α)
2

τi
(27)

The time derivative of Vxd associated with a positive scalar
ε2d is described as

V̇xd = xTHe (Qd (IN ⊗ (A−BKx)))x

+He
(
xTQd (IN ⊗BK) e

)
+ He

(
xTQdξ (x, t)

)
+2
∑N
i=1 x

T
i Qd0BLdC

∑N
j=1 di (t) aij (xi − xj)

−2
∑N
i=1 (di − α)

∑N
j=1 y

T
i Ξdaij (yi − yj) (28)

Since Qd0BLd = CTΞd is satisfied, it follows that

V̇xd ≤ xT (He (Qd (IN ⊗ (A−BKx) + αL ⊗BLdC))

+ε−1
2d QdQ

T
d + ε2dE

TE)x+ He
(
xTQd (IN ⊗BK) e

)
(29)

Overall, the distributed node-based FTC design is switched
to the constant gain-based FTC design. According to Def-
inition 2.1, the sufficient condition for a H∞ performance
‖Gzdd̄‖ < γd is zTd zd − γdd̄

T d̄ + V̇ed + V̇xd < 0. It also
follows that

ζT

 Ωd11 Ω̄d5 0
? Ωd22 Pd

(
IN ⊗ ΓD̄

)
? ? −γdIqN

 ζ < 0 (30)

where Ωd11 = He(Qd(IN ⊗ (A − BKx) + αL ⊗ BLdC)) +
ε−1

2d QdQ
T
d + (ε1d + ε2d)E

TE + CTxdCxd,Ωd22 = Pd(IN ⊗
(ΓĀ−J1C̄))+ε−1

1d Pd(IN ⊗Γ)(IN ⊗Γ)TPd+CTedCed, Ω̄d5 =
Qd(IN ⊗BK) + CTxdCed.

Furthermore, denote Cxd = IN ⊗ Cxd0 and Ced = IN ⊗
[Cedx Cedf ]. Denote Pd = IN⊗diag{Pd1, Pd2} with symmet-
ric positive definite matrices Pd1 ∈ Rn×n and Pd2 ∈ Rq×q .
The inequality (30) is quite similar to the inequality (19) in
the proof of Theorem 4.1. Note that the Young Inequality is
used in order to avoid the equality constraint Qd0B = BQ̂d0.
It follows that the former two items in the first row of the
matrix inequality (30) are described as

He

([
I

05×1

] [
−KT

x B
TQd0

05×1

]T)

≤
[
Qd0Qd0 +KT

x B
TBKx 0

0 05×5

]
He

([
I

05×1

] [
αCTLTdB

TQd0

05×1

]T)

≤
[
Qd0Qd0 + α2CTLTdB

TBLdC 01×5

05×1 05×5

]

He

[ I
05×1

] 0

[Qd0BKx Qd0BKf ]
T

04×1

T


≤


Qd0Qd0 0 01×4

0

[
KT
x B

TBKx KT
x B

TBKf

KT
f B

TBKx KT
f B

TBKf

]
01×4

04×1 04×1 04×4


According to the definitions H = [HT

1 HT
2 ]T and J1 =

[JT11 J
T
12]T with H1 = P−1

d1 X3, J11 = P−1
d1 X4, H2 = P−1

d2 X5,
and J12 = P−1

d2 X6, the Schur lemma is applied in transferring
the inequality (30) into the LMI formulation (25). This
completes the proof.

Remark 4.4: The existing nonlinear constraints in Theorem
4.1 are transformed into linear items by introducing equality
constraints. Although this method facilitates the solution of
the considered H∞ problem, the equality constraints with ad-
ditional conservativeness impose restrictions on the controlled
systems. Meanwhile, the distributed node-based FTC design in
Theorem 4.2 is proposed without equality constraint with the
application of the Young Inequality. Thus, solving the H∞
problem in a simple way with reduced design complexity
by decoupling the estimation error from the FTC system is
important and can be an interesting research direction.

Note that the undirected topology will play a role in the de-
scription of LMI formulations, that is, He (Qc (gL⊗BKgC))
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in (17) and He (Qd (αL⊗BLdC)) in (29). In order to avoid
the requirement of the global information in the undirected
graph, we will derive the following corollary.

Corollary 4.1. Given positive scalars γd, ε1d, ε2d and α,
matrices Cxd0 ∈ Rrd×n, Cedx ∈ Rrd×n and Cedf ∈ Rrd×q ,
the hierarchical structure-based FE/FTC system (24) with the
distributed node-based controller (21) and updated law (22)
is stable with H∞ performance ‖Gzd d̄‖ < γd, if there exist
symmetric positive definite matrices Qd0 ∈ Rn×n, Pd1 ∈
Rn×n and Pd2 ∈ Rq×q , and matrices Kx ∈ Rm×n, Ld ∈
Rm×p, X3 ∈ Rn×p, X4 ∈ Rn×p, X5 ∈ Rq×p and X6 ∈ Rq×p
such that

Ω̄d11 0 0 Ω̄d14 0
? Ω̄d22 Ω̄d23 0 Ω̄d25

? ? −γdIqN 0
? ? ? −ε2dInN 0
? ? ? ? −ε1dI(n+q)N

? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

Ω̄d16 Ω̄d17 Ω̄d18 0
Ω̄d26 0 0 Ω̄d29

0 0 0 0
0 0 0 0
0 0 0 0

−IrdN 0 0 0
? −I2nN 0 0
? ? −InN 0
? ? ? −I(n+q)N


< 0 (31)

with

Ω̄d22 = IN ⊗
[

Ω̄d6 Ω̄d7

? Ω̄d8

]
, Ω̄d23 = IN ⊗

[
0
Pd2

]
Ω̄d25 = IN ⊗

[
Pd1 −X3C 0
−X5C Pd2

]
Ω̄d26 = IN ⊗

[
CTedx
CTedf

]
, Ω̄d29 = IN ⊗

[
KT
x B

T 0
KT
f B

T 0

]
Ω̄d11 = IN ⊗He (Qd0A) + (ε1d + ε2d)E

TE

Ω̄d14 = Ω̄d18 = IN ⊗Qd0, Ω̄d16 = IN ⊗ CTxd0

Ω̄d17 = IN ⊗
[√

2Qd0 KT
x B

T αλ2C
TLTdB

T
]

Ω̄d6 = He (Pd1A−X3CA−X4C) , Ω̄d8 = He (−X5CF )

Ω̄d7 = Pd1F −X3CF −ATCTXT
5 − CTXT

6

Then, the gains are obtained as H1 = P−1
d1 X3, J11 =

P−1
d1 X4, H2 = P−1

d2 X5, J12 = P−1
d2 X6, and Ξd =

CT
†
Qd0BLd.

Proof: Since the undirected graph G is connected,
it follows from Lemma 2.1 that xT (L ⊗BLdC)x ≥
λ2x

T (IN ⊗BLdC)x, where λ2 is the smallest nonzero
eigenvalue of L. Therefore, it is derived as

V̇xd ≤ xT (He (Qd (IN ⊗ (A−BKx − αλ2BLdC)))

+ε−1
2d QdQ

T
d + ε2dE

TE)x+ He(xTQd(IN ⊗BK)e)(32)

According to the definitions H = [HT
1 HT

2 ]T and J1 =
[JT11 J

T
12]T with H1 = P−1

d1 X3, J11 = P−1
d1 X4, H2 = P−1

d2 X5,

 !"#$!%&#'()*+,")-!'$.$/-0
12(!$'/#'()#3435360)-!'$.$/-0

 '/'2#$.5!7'()89)-!'$.$/-0

iy
iu

 

s
iz

M

 
 
 

G

J

 
 

H  
ix

K 
 

! "
 

N

g ij i j

j

gK a y y
 

!"

 !"#$%"$&'%(")!*+,-%#+*

# $ # $
.

N

d i ij i j

j

L d t a y y
 

!"
#

 !"#$!%&#'()*+,)-!'$.$/-0

$ %1i i i i i

i i

x Ax Bu Ff x t

y Cx

 ! " # # #
$

"%

 

Fig. 2. The hierarchical structure-based FE and FTC algorithm.

and J12 = P−1
d2 X6, the Schur lemma is applied and the proof

of Corollary 4.1 is straightforward and thus is omitted here.
Remark 4.5: In comparison with the previous works where

the controllers are designed with the relative state information
of neighboring agents[23], [25], [30], the proposed distributed
protocols (12) and (21)-(22) rely on the relative output infor-
mation of neighbors. The controllers and updated laws based
on the output information can be constructed and improved by
each agent in a fully distributed pattern without utilizing any
global information of the communication topology.

Remark 4.6: (i) All the required parameters in the pro-
posed hierarchical structure-based FE and FTC design are
pre-determined off-line mainly by solving single-step LMIs
in Theorems 4.1 and 4.2. The algorithm implementation
procedure is relatively straightforward and easy to follow
(Figure 2). Thus, the proposed approach does not require on-
line computation with acceptable complexities and can be
applicable in practice. (ii) The hierarchical structure-based
FE/FTC design based on the H∞ approach using a single-step
LMI formulation has considerable design and computational
complexity, especially in the case of multiple unmanned aerial
vehicles[1] and large-scale systems[2]-[4].

V. SIMULATION RESULTS

In this section, two simulation cases of the hierarchical
structure FE and FTC design are put forward to validate the
effectiveness of the proposed control scheme, i.e., case 1 for 3
quadrotors with voltage faults under the undirected communi-
cation topology and case 2 for a 3-machine power system with
nonlinear interconnections and steam valve aperture faults.

 !
a

 !
a

 
x

 
x

 
x

 !
a

 !
a

 !
a

Fig. 3. (a) The topology of the three quadrotors and (b) the 3-machine power
system.
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A. Case 1 for 3 quadrotors

The linear model of the i-th quadrotor (i = 1, 2, 3) is given
by

Jψψ̈i = Kc (Vfi + Vbi) +Kn (Vri + Vli)

Jθ θ̈i = lKp (Vfi − Vbi)
Jφφ̈i = lKp (Vri − Vli) (33)

where ψi, θi and φi denote the yaw, pitch and roll angles, re-
spectively. Vfi, Vbi, Vri and Vli denote the voltages of the front,
behind, right and left motor, respectively. Jψ, Jθ and Jφ denote
the equivalent moments of inertia. l represents the distance
from the pivot to each motor and Kc,Kn and Kp are the pro-
peller constants. Define xi = [ψTi , θ

T
i , φ

T
i , ψ̇

T
i , θ̇

T
i , φ̇

T
i ]T , ui =

[V Tfi , V
T
bi , V

T
ri , V

T
li ]T and yi = [ψTi , θ

T
i , φ

T
i ]T . Hence, the

linear quadrotor model is characterized by the following
matrices[11] and the Laplacian matrix L is defined as shown
in Figure 3(a).

A =

[
03×3 I3
03×3 03×3

]
C =

[
I3 03×3

] ,L =

 2 −1 −1
−1 1 0
−1 0 1



B =


0 0 0 0
0 0 0 0
0 0 0 0

−0.0326 −0.0326 0.0326 0.0326
0.4235 −0.4235 0 0

0 0 0.42365 −0.4235


It follows from (1) that the quadrotor dynamics are modeled

without mechanical interconnections, which requires the in-
formation exchange among multiple quadrotors through com-
munication networks. To demonstrate the performance of the
proposed hierarchical structure-based FE and FTC algorithm
in Theorem 4.1, the quadrotor dynamic system is proposed
with the following voltage faults in the control inputs, i.e.
fi = [fTi1, f

T
i2, f

T
i3, f

T
i4]T , i = 1, 2, 3, and the fault distribution

matrix is satisfied with F = B.

f11 = f13 = f14 = f21 = f22 = f23

= f24 = f31 = f32 = f33 = 0

f12 =

{
|0.1sin (0.5t) |, t ≤ 8

0.05sat (0.1sin (0.5t)) , t > 8

f34 =

{
|0.2sin (0.5t) |, t ≤ 20

0.1sat (0.2sin (0.5t)) , t > 20

Simulation parameters are designed as γc = 0.1, g = ε1c =
ε2c = 1, Cxc0 = [1 0 1 1 0 1] , Cecx = [1 1 1 0 1 1] , Cecf =
[1.5 1.5 0 0.5], and we can derive the unknown input observer
and distributed constant gain-based FTC gains by solving
Theorem 4.1.

Kx =


0.0344 0.1587 0.0516
−0.5903 −0.1130 −0.5768
1.1491 −0.1178 1.3891
−0.5929 0.0720 −0.8636

−0.3533 3.4160 0.3700
−0.8790 −3.1430 0.0057
1.8240 −0.8156 3.0232
−0.5913 0.5423 −3.3977



 ! " # $ % & ' ( 
) *!

) * %

 

 * %

 *!

 *!%

+,-

.
/
0+
1
2
3
,4

 !"#$%&"'#(%)*&#%+'#&!"#",&-.%&"'#(%)*&#-+#&!"#/"!-+'#.0&0$#0(#&!"#(-$,&#1)%'$0&0$

5

5

673581+395.10:3

67353-+;<1+395.10:3

 ! " # $ % & ' ( 
) *"

) *!

 

 *!

 *"

 *#

+,-

.
/
0+
1
2
3
,4

 !"#$%&"'#(%)*&#%+'#&!"#",&-.%&"'#(%)*&#-+#&!"#*"(&#.0&0$#0(#&!"#&!-$'#1)%'$0&0$

5

5

673581+395.10:3

67353-+;<1+395.10:3

Fig. 4. The rated faults and the estimated faults in the first and third
quadrotors.

Fig. 5. The yaw angles and yaw velocities in the three quadrotors.

Fig. 6. The pitch angles and pitch velocities in the three quadrotors.

Kg =


0.2917 −0.1152 0.2727
0.4990 0.1092 −0.4821
−0.6530 −0.0167 −0.8455
−0.1378 0.0227 0.0905


In the presence of the time-varying and additive voltage

faults in the input channels, the results in Figures 4-7 show
the effectiveness of the hierarchical structure-based FE and
distributed constant gain FTC designs. Figure 4 presents the
good tracking trajectories of the rated and estimated faults in
the behind motor of the first quadrotor and left motor of the
third quadrotor, respectively. In comparison with the previous
work[15], the proposed algorithm of Theorem 4.1 shows rapid
convergence of the angles ψ, θ, φ and the angular velocities
ψ̇, θ̇, φ̇, and guarantees the robust stability of the quadrotor
systems in Figures 5-7.
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Fig. 7. The roll angles and roll velocities in the three quadrotors.

B. Case 2 for a 3-machine power system
The state of the nonlinear model of the i-th machine

(i = 1, 2, 3) in the power system is described as xi =
[∆σi

T ,∆ωi
T ,∆PTmi,∆X

T
ei ]
T , where ∆σi denotes the devia-

tion of the rotor angle, ∆ωi denotes the relative speed, ∆Pmi
represents the deviation of the per unit mechanical power and
∆Xei represents the deviation of the per unit steam valve
aperture. Hence, the nonlinear power model is characterized
by the following matrices[15] and the Laplacian matrix L is
defined as shown in Figure 3(b).

A =


0 1 0 0
0 −0.2941 30.7999 0
0 0 −2.8571 2.8571
0 0.6366 0 −10

 , B =


0
0
0
10


C =

[
1 0 0 0
0 1 0 0

]
,L =

 2 −1 −1
−1 2 −1
−1 −1 2


The nonlinear interconnection ξi =

∑3
j=1 αijsin(∆σi −

∆σj) satisfies that ξT (x, t)ξ(x, t) ≤ xT (LTnLn ⊗ CTnCn)x.

Ln =

 0.6598 −0.3299 −0.3299
−0.2772 0.5544 −0.2772
−0.3299 −0.2772 0.6071

 , Cn =
[

1 01×3

]
It follows from (1) that the 3-machine power system is

modeled with nonlinear interconnections. To demonstrate the
performance of the proposed hierarchical structure-based FE
and FTC algorithm in Theorem 4.2 and Corollary 4.1, the
machine power dynamic system is proposed with the faults in
the steam valve control inputs and the fault distribution matrix
is satisfied with F = B.

f1 =

{
|0.1sin (0.5t) |, t ≤ 8

0.05sat (0.1sin (0.5t)) , t > 8
, f2 =

{
0.2, t ≤ 40
0.1, t > 40

f3 =

{
|0.2sin (0.5t) |, t ≤ 20

0.1sat (0.2sin (0.5t)) , t > 20

Simulation parameters are designed as γd = 0.1, α =
ε1d = ε2d = 1, Cxd0 = [0.01 0.1 0.15 1], Cedx =
[1 1 0.1 10], Cedf = [0.1], and we can derive the unknown
input observer and distributed node-based FTC gains by solv-
ing Theorem 4.2.

Kx =
[

0.2097 0.0856 1.9222 −0.6742
]

Ξd =

[
0.0474 0.9518
0.0456 0.9153

]
, Ld =

[
−0.0022 −0.0451

]

Fig. 8. The rated faults, the estimated faults[15] and the estimated faults
(hierarchical) in the three machines.

Fig. 9. The respective states[15] and states (hierarchical) in the first machine.

In the presence of the time-varying and additive faults both
in the first and third machines and the time-invariant and
additive faults in the second machine, the results in Figures
8-11 indicate the effectiveness of the hierarchical structure-
based FE and distributed node-based FTC designs. The curves
in Figure 8 simulated by both the approach[15] and proposed
hierarchical algorithm show the good tracking properties of the
rated and estimated faults in the 3-machine power system. The
respective deviations of the rotor angle ∆σ, the speed ∆ω, the
mechanical power ∆Pm, and the steam valve aperture ∆Xe

in the three machines in Figures 9-11 show the robust stability
of the 3-machine power system. Note that the first machine
fails at t = 8s, the second machine fails at t = 40s and the
third one suffers a failure at t = 20s. Compared with the
previous study[15], the proposed algorithm of Theorem 4.2
shows smaller amplitudes of the oscillations for several states
in the convergence process to an extent, as shown in Figures
9-11.

VI. CONCLUSIONS

In this paper, a hierarchical structure-based FE/FTC design
was developed for a class of nonlinear MASs with additive
actuator faults. The graph theory and distributed MASs hierar-
chy description were introduced, and unknown input observers
in the FE hierarchy were presented to track actuator faults.
Subsequently, two distributed FTC designs, namely, constant
gain-based and node-based FTC protocols, were proposed by
employing the estimated system states and actuator faults,



2325-5870 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2018.2860460, IEEE
Transactions on Control of Network Systems

10 JOURNAL OF LATEX CLASS FILES, VOL. , NO. , JULY 2018

Fig. 10. The respective states[15] and states (hierarchical) in the second
machine.

Fig. 11. The respective states[15] and states (hierarchical) in the third
machine.

respectively. Moreover, the optimization of H∞ in a single-
step LMI formulation was used to guarantee the asymptotic
stability and H∞ performance of MASs. Simulation results
of the quadrotors and the 3-machine power system verified
the effectiveness of the proposed hierarchical structure control
scheme. Current investigations focus on the extensions of
the proposed method to nonlinear MASs with disturbances,
uncertainties and simultaneous actuator/sensor faults.
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