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Flutes and tool marks are commonly observed sedimentary structures on the bases of sandstones in 

deep-water successions. These sole structures are universally used as palaeocurrent indicators but, in 

sharp contrast to most sedimentary structures, they are not used in palaeohydraulic reconstructions or to 

aid prediction of the spatial distribution of sediments. Since Kuenen’s famous 1953 paper, flutes and tool 

marks in deep-water systems have been linked to turbidity currents, as reflected in the standard Bouma 

sequence taught to generations of geologists. Yet, these structures present a series of unaddressed 

enigmas. Detailed field studies in the 1960s and early 1970s observed that flutes are typically associated 

with thicker, more proximal beds, whilst tools are generally prevalent in thinner, more distal, beds. 

Additionally, flutes and tool marks are rarely observed on the same surfaces, and flutes are seen to 

change downstream from larger wider parabolic to smaller narrower spindle shaped forms. No model has 

been proposed that explains these field-based observations. This contribution undertakes a radical re-

examination of the formative flow conditions of flutes and tool marks, and demonstrates that they are the 

products of a wide range of sediment gravity flows, from turbulent flows, through transitional clay-rich 

flows, to debris flows. Flutes are not solely the product of turbulent flows, but can continue to form in 

transitional flows. Grooves are shown to be formed by debris flows, slumps and slides, not turbidity 

currents, and in many cases the debris flows are linked to the debritic component of hybrid flows. 

Discontinuous tool marks, including skim (bounce) marks, prod marks and skip marks, are shown to be 

formed by transitional mud-rich flows. Consequently, the observed spatial distribution of flutes and tool 

marks can be explained by a progressive increase in flow cohesivity downstream. This model of flutes and 

tool marks dovetails with models of hybrid flows that predict such a longitudinal increase in flow 

cohesivity. However, some deposits show grooves preferentially associated with Bouma TA beds, and 

these are likely formed by flows transforming from higher to lower cohesion, and are present in basins 

where hybrid beds are absent or rare. The recognition that sole structures may have no genetic link to the 

later overlying turbidity current deposits, and can be formed by a wide range of flow types, indicates that 

the existing pictorial description of the Bouma sequence is incorrect. A modified Bouma sequence is 

proposed here that addresses these points. In utilizing the advances in fluid dynamics since Kuenen’s 

pioneering research, this study demonstrates that it is possible to use flutes and tool marks to interpret 

flow type at the point of formation, the nature of flow transformations, and the mechanics of the basal 

layer. These advances suggest that it is then possible to predict the nature of deposit type down-dip. This 

new understanding, in combination with further testing in outcrop of the proposed relationships between 

sole marks and palaeohydraulics, opens up a wealth of possibilities for improving the understanding of 

deep-water clastic environments, with implications for developing more complete facies models, A
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assessing subaqueous geohazards and the resilience of seafloor infrastructure, and advancing our 

understanding of deep-water sediments as archives of palaeoenvironmental change.

Keywords

Bouma sequence, debris flow, flutes, hybrid bed, sediment density flow, sole structures, substrate, tool 

marks, tools, transitional flow, turbidity current, turbidite.

Running title

Flutes and tool marks in deep-water environments

INTRODUCTION

The bases of sandstone beds in deep-water sedimentary successions are commonly ornamented with sole 

structures of inorganic origin that record the infilling of erosional bedforms generated in the underlying 

fine-grained substrate. Two categories of sole structures can be identified: scour marks such as flutes 

formed by turbulent scour; and tool marks formed by objects (tools) within the flow (Dżułyński & Sanders, 

1962a; Collinson et al., 2006), which are subdivided further into continuous marks (for example, grooves 

and chevron marks) and discontinuous marks (for example, prod, bounce, skip and roll marks) (Dżułyński 

& Sanders, 1962a). The use of sole structures as indicators of palaeocurrent direction is long-established 

(e.g. Hall, 1843), and every geoscience student is trained in their recognition and their value for 

palaeogeographic reconstruction. However, their wider utility for the interpretation of palaeohydraulic 

conditions and flow–substrate interactions is limited. This is in stark contrast to aggradational bedforms, 

such as ripples, dunes, upper-stage plane beds and antidunes, which have been used extensively to 

provide information concerning processes during deposition in addition to palaeocurrent information (e.g. 

Harms, 1969; Allen, 1984; Cartigny et al., 2014; Baas et al., 2016a). In large part, the focus on 

palaeocurrent information from tool marks and flutes reflects the lack of understanding of their formative 

conditions.

Nonetheless, many important observations have been made concerning the distribution and association 

of flutes and tool marks. Exceptions exist, but flutes are typically associated with proximal locations, and 

tool marks with distal locations (e.g. Hsu, 1959; Craig & Walton, 1962; Walker, 1967; Lovell, 1969; Ricci 

Lucchi, 1969b; Slacza & Unrug, 1976; Remacha & Fernández, 2003; Remacha et al., 2005; Collinson et al., 

2006; Collinson & Mountney, 2019). Bed bases with both types are rare (e.g. Crowell, 1955; Wood & 

Smith, 1958; Sanders, 1965; Collinson et al., 2006), but where present commonly show cross-cutting A
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relationships (Kuenen, 1957; Dżułyński & Sanders, 1962a; Enos, 1969a; Ricci Lucchi, 1969a; Draganits et 

al., 2008; Pyles & Jennette, 2009). Furthermore, although the Bouma sequence depicts flutes and grooves 

on the base of the TA division, both types are also found under TB and TC beds (e.g. Bouma, 1962; Pett & 

Walker, 1971; Crimes, 1973; Table 1). These field observations are supported across systems of different 

ages and tectonic settings, but have proven enigmatic. As such, no process explanations or synoptic 

models have been presented to explain why flutes and tool marks exhibit these general spatial and 

temporal variations, or why there are exceptions. A better understanding of the relationship between 

erosional bedforms and their overlying deposits has profound implications for our general understanding 

of deep-water systems. In particular, the use of deep-marine sedimentary successions as archives of 

palaeoenvironmental change, for reducing uncertainty in geohazard assessment, and for determining the 

resilience of seafloor infrastructure, requires improved understanding of the interactions between flows 

and substrate conditions, and the formation of erosional bedforms. The most accessible resource for 

these investigations is the sole structures preserved on the base of deep-water sandstones.

This paper aims to examine the formative mechanisms of flutes and the different types of tool marks. To 

achieve this aim, the authors utilize recent advances in the understanding of transitional flow processes 

between fully turbulent and laminar flow, and new data on seafloor substrates, to address the following 

objectives: (i) to discuss flow rheology at the time of sole structure formation, and the likely downdip 

deposit type; (ii) to use data from modern seafloor substrates to infer likely depths of erosion, nature of 

the ancient substrate and amount of substrate entrainment; (iii) to reassess the modern depiction of the 

Bouma sequence, which presents a genetic link between the basal erosive surface and the overlying 

deposit; (iv) to use the dimensions of grooves to infer flow properties and interpret objects that 

generated the tools; and (v) to discuss the location under a flow where flutes and tool marks form, which 

is widely accepted as being under the density current head. This wide range of objectives is integrated 

into a new synoptic process-orientated model that explains the distribution and association of scour 

marks and tool marks, which can be employed to transform the information that can be gained from 

detailed investigations of these sedimentary structures in all modern and ancient deep-water successions.

BACKGROUND

Classification of sole marks

Sole marks (Kuenen, 1957) are features identified on the base of beds (typically sandstones), formed by 

infilling of topography that was eroded into an underlying fine-grained substrate, generally cohesive mud. 

Sole marks can include organic forms such as burrows (Kuenen, 1957), but here the discussion is A
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restricted to inorganic structures. They are typically subdivided into two categories: scour marks formed 

by turbulent scour; and tool marks formed by objects (tools) within the flow (Dżułyński & Sanders, 1962a; 

Collinson et al., 2006). Scour marks include obstacle scours, longitudinal scours, mud ripples and gutter 

casts (e.g. Dżułyński & Walton, 1965; Allen, 1984; Collinson et al., 2006), but for brevity this has been 

restricted to the most common structure – flutes (Enos, 1969a). Tool marks are further subdivided into 

continuous marks (grooves and chevron marks) and discontinuous marks (for example, prod, bounce, skip 

and roll marks) (Dżułyński & Sanders, 1962a). The term ‘continuous mark’ is not strictly true since grooves 

and chevrons do have terminations (e.g. Enos, 1969a). However, these structures are typically continuous 

on the scale of an individual outcrop. In contrast, discontinuous marks occur as individual or groups of 

structures centimetres to decimetres long (Dżułyński & Walton, 1965; Collinson et al., 2006).

Distribution and association of scour marks and tool marks

A number of key observations have been made concerning the distribution of scour and tool marks: (i) 

scour marks and tool marks are comparatively rarely observed on the same surfaces (e.g. Crowell, 1955; 

Wood & Smith, 1958; Sanders, 1965; Collinson et al., 2006; Dirnerová & Janočko, 2014), albeit with 

exceptions where juxtapositions of scour and tool marks dominate successions (Crimes, 1973; Table 1); (ii) 

where they are observed on the same surface, tool marks such as grooves can either pre-date (Kuenen, 

1957; Dżułyński & Sanders, 1962a; Enos, 1969a; Ricci Lucchi, 1969a; Draganits et al., 2008) or post-date 

scour marks such as flutes (Dżułyński & Sanders, 1962a; Ricci Lucchi, 1969a; Pyles & Jennette, 2009); (iii) 

scour marks are typically associated with thicker sands and tool marks with thinner sands (Ricci Lucchi, 

1969b; Tinterri & Muzzi Magalhaes, 2011; Collinson & Mountney, 2019), although other studies show only 

limited variation (e.g. Bouma, 1962, where grooves are on average in slightly thicker beds) or none at all 

(Enos, 1969a); (iv) scour marks are typically associated with proximal environments, and tool marks with 

more distal environments, thus implying a longitudinal variation in the nature of erosive structures (Hsu, 

1959; Craig & Walton, 1962; Dżułyński & Walton, 1965; Walker, 1967; Lovell, 1969; Slacza & Unrug, 1976; 

Remacha & Fernández, 2003; Remacha et al., 2005), although again exceptions do occur (Bouma, 1962; 

Crimes, 1973); and (v) flutes and tool marks, including grooves, whilst commonly depicted as occurring 

solely under the TA division of the Bouma sequence (e.g. Middleton & Hampton, 1976; Allen, 1985; 

Collinson et al., 2006; Leeder, 2011), are also associated with TB and TC units when these form the basal 

divisions in the Bouma sequence (e.g. Bouma, 1962; Pett & Walker, 1971; Crimes, 1973; Table 1). 

Observations (iii) and (iv) are partly linked since turbidites are well-known to thin with distance 

downstream, often with an approximately exponential or power-law distribution (e.g. Walker, 1967; de 

Rooij & Dalziel, 2001; Talling et al., 2007a,b; Kane et al., 2010). A
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Whilst these relationships are firmly embedded in the literature, it is interesting to note that in the 

quantitative data shown in Table 1 the relationship between Bouma divisions (and by inference 

downstream distance) and flutes and grooves is less clear. Grooves are more frequently observed in TA 

beds in Bouma (1962) and Crimes (1973) whilst flutes are more common in Pett & Walker (1971). Such 

variations suggest that measuring and aggregating Bouma divisions at a given location might be an 

imperfect surrogate for downstream position in a system, compared with observations from different 

longitudinal positions (e.g. Lovell, 1969; Slacza & Unrug, 1976; Remacha & Fernández, 2003). 

Alternatively, these data may indicate that in some cases there can be a longitudinal variation from tool 

marks in proximal locations to scour marks downstream. What is clear is that there is a need for more 

quantitative documentation of the distribution of sole mark types in different settings. In particular, it is 

desirable to couple such quantitative data on the distribution of different sole structures to modern 

interpretations of sediment gravity flow processes, deposits and sub-environments.

STRUCTURE AND RATIONALE

To address the formative mechanisms, and thus utility, of flutes and tool marks, first a brief review is 

included of the fluid dynamics of mud-poor to mud-rich flows, in particular concentrating on transitional 

flows, between truly turbulent, and fully cohesive, laminar, flows. As will be demonstrated, the different 

types of flutes and tool marks can be linked to these differing flow types, and thus an understanding of 

these processes is critical when linking sole structures to flow dynamics. Sole structures are also 

dependent on the nature of the substrate, and thus the properties of modern seafloor substrates are 

examined next, and their applicability to older sediments considered. Once this key background on flow 

types and substrate properties is discussed, each of the sole structures is considered in turn, starting with 

flutes, then grooves and chevrons, and finally discontinuous tool marks. Lastly, a new process-based 

model of flutes and tool marks is proposed, and the implications of this model for the Bouma sequence, 

hybrid event bed models and for a number of other long-held paradigms within the field are examined.

THE FLUID DYNAMICS OF MUD-POOR TO MUD-RICH FLOWS

Recent years have witnessed a step-change in our understanding of flows that are transitional in their 

behaviour between turbulent and laminar states, due to the addition of mud in suspension (Wang & 

Plate, 1996; Baas & Best, 2002, 2008, 2009; Baas et al., 2009, 2011, 2016a,b). As an increasing quantity of 

clay is added to a flow, the particles begin to form flocs and longer chains because of electrostatic 

bonding, and eventually gel, which may significantly influence the rheology of the flow. The nature of such A
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modification can be viewed as a competition between the factors that favour particle aggregation and 

gelling, notably clay concentration, clay type and water chemistry, and the forces of shear (as both mean 

shear and turbulence) that can break the bonds between clays. Thus, formation of such transitional flows 

is highly variable in both time and space as flows accelerate, decelerate, entrain and deposit sediment, 

and encounter changing water chemistries. 

Despite this complexity, experimental studies (Baas & Best, 2002; Baas et al., 2009, 2016a,b) have shown 

that, as clays are added to a flow through direct substrate entrainment or abrasion of muddy clasts, a 

series of predictable and consistent changes occur that modify the mean velocity profile and turbulence 

structure of the flow (Fig. 1). In a clearwater flow moving over a flat and smooth surface, the flow 

develops a canonical turbulent boundary layer, with a logarithmic profile of horizontal velocity, and 

turbulence generation occurring in the zone of shear adjacent to the bed (Fig. 1A). A small zone of flow 

near the bed, the viscous sublayer, is dominated by viscosity and is often less than ca 1 mm in thickness 

for clearwater flows (Raudkivi, 1997; Bridge, 2003), with its thickness lessening at higher shear velocities. 

As clay is added to a flow, the first stage of turbulence modulation is characterized by an enhancement of 

turbulence near the bed when compared to the clearwater case, which appears linked to a thickening of 

the viscous sublayer (Wang & Plate, 1996; Baas et al., 2009). Such sublayer thickening has also been 

shown in studies of drag reduction in the presence of fine-grained sediment (Gust, 1976; Gust & Walger, 

1976; Best & Leeder, 1993; Li & Gust, 2000) as well as in studies of polymer flows where such sublayer 

growth has been well-documented (Ptasinski et al., 2001, 2003). A significant feature of this expanding 

viscous sublayer is that a zone of shear is established on its upper surface along which large-scale vortices, 

in the form of Kelvin-Helmholtz instabilities, are shed (Baas & Best, 2002; Baas et al., 2009). This thus 

provides an additional source of turbulence compared to clearwater flows, and this regime has been 

termed a turbulence-enhanced transitional flow (TETF; Fig. 1B; Baas et al., 2009, 2016a). As more mud is 

added to the flow, near the bed the enhanced viscous sublayer and region of enhanced turbulence 

continue to grow, but in the outer flow, where fluid shear is less, the clays begin to form chains that 

eventually establish a region of undeforming flow, or plug flow, at the top of the flow. This lower 

transitional plug flow (LTPF; Fig. 1C) is characterized by turbulence enhancement near the bed but 

turbulence attenuation near the flow surface. At still greater mud concentrations, turbulence near the 

bed is unable to break the increasingly numerous and strong clay chains and hence turbulence near the 

bed begins to lessen, leading to a significant increase in the thickness of the viscous sublayer (Baas et al., 

2009) (Fig. 1D). At the same time, the region of undeforming plug flow extends down from the flow 

surface towards the bed. This regime, where turbulence attenuation occurs both near the bed and within A
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the outer flow, has been termed an upper transitional plug flow (UTPF; Fig. 1D). Lastly, as increasing clay 

concentration fosters longer chains, or perhaps gelling, the flow eventually adopts a profile where 

horizontal velocity is invariant throughout the flow depth, except for a thin zone of shear near the bed on 

which the flow rides. This quasi-laminar plug flow (QLPF; Fig. 1E) possesses minimal turbulence 

throughout the flow depth and a thin near-basal shear zone with minor residual turbulence, overlying a 

thickened viscous sublayer (Baas et al., 2009). If the shear strength of the QLPF flow is great enough, it 

may be able to transport particles within the body of the plug flow with minimal displacement or rotation. 

The transitional flow experiments described here obtained maximum volumetric clay concentrations of 

16.6% and 19.2% kaolinite (Baas et al., 2009, 2011, respectively) and 8.6% bentonite (Baas et al., 2016b), 

and thus the details of how flow structure develops at higher concentration remain unknown. The 

presence and importance of transitional flows in subaqueous density currents, and the presence of plug 

flow regions, has also been demonstrated recently in the laboratory experiments of Hermidas et al. 

(2018), who additionally noted the presence and importance of the free shear layer at the top of the 

current. Those experiments were run at slopes of 6.0 to 9.5, with measurement durations of ca 1 minute 

(40 to 100 s after the start of the experiments), and had maximum volumetric clay concentrations of 7% 

kaolinite (the clay formed 33% of the total sediment concentration, the rest consisting of sand, with or 

without silt). Estimates of the basal boundary layer, using viscosity values for the original mixtures 

measured ex situ by rheometer, predict laminar basal conditions for some flows (a plug flow, PF, in the 

classification of Hermidas et al., 2018). However, turbulence data demonstrate that there was 

considerable residual turbulence in the basal boundary layer (Hermidas et al., 2018, fig. 7), and that this 

turbulence is much higher than in the plug flow itself, thus consistent with the transitional plug flows of 

Baas et al. (2009), although insufficient turbulence data are provided to ascribe the flows of Hermidas et 

al. (2018) to a specific transitional flow category of Baas et al. (2009). Consequently, it is unclear from the 

work of Baas et al. (2009, 2011, 2016b) and Hermidas et al. (2018) whether flows with higher clay 

concentrations transform from a QLPF to a fully laminar plug flow (herein termed LPF) where there is no 

residual turbulence at the base of the flow, or whether flows retain a thickened viscous sublayer and an 

overlying plug, with an intervening shear layer.

This sequence of transitional flow regimes can be expected in a wide range of flows, but the precise 

conditions at which each flow stage is reached is a function of three principal factors: (i) the applied mean 

fluid shear that will act to break up the clay chains, such that greater clay concentrations are required to 

produce a given transitional flow regime at higher shear velocities (Baas & Best, 2002; Baas et al., 2009, A
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2016a); (ii) the type of clay, or clays, present, such that clays that attain a higher viscosity and yield 

strength at lower volumetric concentrations (such as bentonite) will require a lower clay concentration to 

produce a given transitional flow regime at the same shear velocity (Baas et al., 2016b); and (iii) the 

degree of turbulence generated from other sources, such as grain and form roughness. For instance, flow 

over a gravel surface will generate additional turbulence that will tend to break up any growing clay 

chains. As such, flows over a rough bed surface will require a higher clay concentration to generate a 

given transitional flow regime at the same shear velocity (Baas & Best, 2009). Form roughness, such as 

bedforms, or the topography on the top of debrites (e.g. Fonnesu et al., 2015), can also be expected to 

have the same effect. However, although the precise boundaries and phase space between these 

transitional flow regimes vary with applied fluid shear, additional sources of turbulence and clay type (and 

also water chemistry), these various transitional flows will eventually be generated. This has been 

demonstrated by experiments examining transitional flows moving over a fixed ripple bedform (Fig. 1F to 

J; Baas & Best, 2008) that show that TETFs produce enhanced turbulence, when compared to a turbulent 

flow, associated with the shear layer formed around the leeside separation zone. However, as more clay is 

added to the flow, turbulence becomes dampened both near the bed and in the outer flow, producing 

LTPF, and then UTPF (Fig. 1G to I). Baas & Best (2008) distinguished two phases of flow within the UTPF 

regime for flow over fixed ripples, which they termed turbulence-attenuated transitional flow (TATF) (Fig. 

1H and I). In the first of these phases, turbulence is attenuated within the separation zone, but the length 

of the separation zone is similar to that under TF and TETF regimes. As clay content increases, a 

subsequent phase is reached where the length of the separation zone shortens, alongside a further 

attenuation of turbulence (Fig. 1I). Eventually, with the addition of more clay, a QLPF forms where flow in 

the leeside is stagnant with little or no turbulence in the bedform lee (Fig. 1J). The corollary of these 

changing transitional flow regimes for decelerating flows of mud and sand was investigated by Baas et al. 

(2011), who demonstrated that ripples increased in height and wavelength under both TETF and LTPF (Fig. 

2). These flows possessed enhanced turbulence near the bed that was reasoned to augment turbulence 

generated from the leeside flow separation zone. The enhanced near-bed turbulence increased erosion at 

flow reattachment and provided a greater sediment flux downstream, thereby increasing ripple height 

and wavelength (Baas et al., 2011; Fig. 2). However, in these experiments, at clay concentrations in either 

the upper part of the LTPF regime or the lower part of the UTPF regime, turbulence at the bed decreased 

– in part as a result of the rapidly thickening viscous sublayer – and led to a decrease in ripple height and 

wavelength (Fig. 2). As clay concentrations increased further in the LTPF and UTPF regimes, turbulence 

and bed sediment flux declined, leading to smaller bedforms and eventually a flat sediment bed. A
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Although the experiments of Baas et al. (2011) concerned aggradational bedforms, in the context of sole 

structure development they provide important insights into the patterns of turbulence and bed shear 

stress that may be expected over erosive bedforms generated in a mud bed. For instance, if a negative 

defect is formed in a mud bed, it can be speculated that bed erosion generated by flow separation over 

this defect is first enhanced within a TETF and lower LTPF, before decreasing and eventually ceasing under 

upper LTPF, and UTPF regimes. The significance of these speculations is revisited later.

Talling et al. (2012) and Talling (2013) examined the properties of subaqueous debris flows, concentrating 

solely on the plug flow component, and presented an analysis of the potential influence of yield strength 

(strictly ‘matrix strength’ sensu Middleton & Hampton, 1973, and Lowe, 1979) as a function of clay 

concentration (Fig. 3). On the basis of yield strength, flows were then subdivided into low (0.1 to 10 Pa, 

corresponding to 10 to 20% kaolin by volume), intermediate (10 to 100 Pa, 20 to 30% kaolin) and high-

strength (100 to 1000 Pa, 30 to 40% kaolin) debris flows (Talling et al., 2012; Talling, 2013). This analysis 

highlights the likely maximum clast size that can be transported by a flow (for the case of a kaolinite-

dominated debris flow), illustrating how this size decreases with decreasing suspended clay concentration 

(and hence yield strength) and increasing clast density (Fig. 3). These relationships are critical in both 

determining the shear stress exerted on a cohesive bed by an overriding flow, and in determining how 

clasts can be transported within the body of the flow to act as tools that generate erosive structures in 

the underlying substrate. Because such models of subaqueous debris flows concentrate solely on the plug 

flow component, they are not directly comparable with previous transitional flow experiments (Baas et 

al., 2009, 2011, 2016b). However, given the typical clay concentrations, the intermediate-strength and 

high-strength debris flows, which are of interest in the subsequent discussion, likely compare to the quasi-

laminar plug flows (QLPF) and potentially the fully laminar plug flows (LPF) described previously. This 

comparison is supported by the subaqueous sediment gravity flow experiments of Baker et al. (2017), 

who demonstrated a change in flow type at similar kaolinite concentrations to those of Talling et al. 

(2012). The experiments of Baker et al. (2017) produced transitional flows with a dense, cohesive, lower 

layer (probably a QLPF / intermediate-strength debris flow; the experiments lacked turbulence data to 

confirm the former), at kaolinite concentrations of 22 to 25% by volume. Fully cohesive flows (likely an 

LPF / high-strength debris flow) were produced at volumetric concentrations of 27%. The experiments of 

Baker et al. (2017) also classify the low strength ‘debris flows’ of Talling et al. (2012) and Talling (2013) as 

high-concentration turbidity currents; in shallow water settings flows with such yield strengths are often 

referred to as fluid muds (Winterwerp & van Kesteren, 2004).A
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SEAFLOOR SUBSTRATES

Substrate controls on erosion 

In addition to understanding flow dynamics, it is important to consider the role of the seafloor substrate 

in the formation of flutes and tool marks. The nature of the seafloor substrate not only governs the 

threshold at which an overriding flow will erode the bed, but is also an important control on the location, 

extent, depth and morphology of the erosional features that form once this threshold is exceeded. Grain 

size is the primary control on the erosion threshold for non-cohesive sediment (i.e. coarse silt, sand and 

gravel), and hence the prediction of erosion in granular media is generally straightforward (Soulsby & 

Whitehouse, 1997). Some notable exceptions exist, such as where biological factors inhibit sediment 

transport (e.g. Parsons et al., 2016) or where the substrate is composed of calcareous or biogenic grains. 

In the latter case, density corrections are required to the classic Shields approach (e.g. Oehmig, 1993; 

Miller & Komar, 1977). However, most of the world’s oceans are floored with cohesive muddy substrates 

(Dutkiewicz et al., 2015), with the cohesive component composed of clay and non-sortable silt (≤10 μm; 

McCave et al., 1995), and this is the substrate in which scour and tool marks are most commonly found 

(Allen, 1984). So what effect does a cohesive substrate have on erosion at the base of a flow?

Identifying a single or dominant control on erodibility in cohesive sediment has proven elusive, with many 

studies yielding apparently contradictory results (McCave, 1984; Grabowski et al., 2011; Winterwerp et 

al., 2012). Factors that have been demonstrated to control how, where and when erosion occurs include: 

(i) physical properties, such as grain size (Roberts et al., 1998; Thomsen & Gust, 2000; Dickhudt et al., 

2011), plasticity index (Smerdon & Beasley, 1959), particle size distribution (Panagiotopoulos et al., 1997; 

Houwing, 1999), shear strength (Kamphius & Hall, 1983; Dade et al., 1992; Winterwerp et al., 2012), bulk 

density and water content (Amos et al., 1998, 2004; Winterwerp & van Kesteren, 2004; Bale et al., 2007); 

(ii) geochemical properties, including organic content (Righetti & Lucarelli, 2007), clay mineralogy and 

relative cation concentration (Mehta et al., 1989; Grabowski et al., 2011); and (iii) biological modification 

caused by bioturbation (Sgro et al., 2005; Fernandes et al., 2006; Widdows et al., 2009), feeding and 

egestion by organisms (Andersen et al., 2005) and the secretion of stabilizing mucus-like substances such 

as extra-cellular polymeric substances (EPS) (Sutherland et al., 1998; Friend et al., 2003; Lundkvist et al., 

2007; Malarkey et al., 2015; Parsons et al., 2016). Of these factors, bulk density appears to exert the 

dominant control on the spatial extent and depth of erosion in cohesive sediments (Amos et al., 2004; 

Winterwerp et al., 2012), but erodibility is clearly a function of interactions between multiple competing 

and contributing processes (Grabowski et al., 2011). Therefore, the syn-depositional and post-A
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depositional processes involved in the accumulation of primarily deep-water cohesive sediment that is 

most commonly found beneath flutes and tool marks are now considered specifically. 

The specific case of deep-water cohesive sediments

As cohesive sediment accumulates at the seafloor, it starts to consolidate under self-weight burial, which 

leads to a linear increase in bulk density and undrained shear strength with depth, known as normal 

consolidation (Skempton, 1954). The effect of this consolidation may serve to depth-limit erosion 

(Parchure & Mehta, 1985; Winterwerp & van Kesteren, 2004), although studies of modern deep-water 

sediments have revealed several deviations from a simple normally-consolidated profile that are detailed 

below. 

Fluid-like benthic boundary layer 

The first exception to the trend of strength linearly increasing with depth is found at the seawater–

seafloor interface, which is typically composed of unconsolidated aggregates (Boudreau & Jorgensen, 

2001) and in some cases may be treated more as a fluid than a sediment (Winterwerp & van Kesteren, 

2004), because of high water content (>>50% of the mass is water, thus water content is >>100% relative 

to the dry mass), very low undrained shear strengths (<<1 kPa) and intense bioturbation (Baudet & Ho, 

2004; Colliat et al., 2011; Hill et al., 2011; Kuo & Bolton, 2013). Whereas this interfacial ‘benthic boundary’ 

layer is often lost or disturbed by piston coring or in situ geotechnical testing, shallow box coring of 

modern deep-water seafloor sediments commonly reveals a thin, centimetres-thick, layer of highly mixed 

fluid-like mud overlying a more competent mud that has begun to consolidate (Figs 4C and 5). This 

seafloor layer of low shear strength can be easily eroded under even relatively low bed shear stresses (for 

example, Fig. 6A points ‘a’ and ‘b’, which transition very rapidly into mass erosion). 

Shallow strengthening

The second exception is based on in situ shear strength measurements, which indicate that deep-water 

sediment is often much stronger within a zone a few tens of centimetres to approximately a metre below 

the seafloor than would be expected from normal consolidation alone, and sometimes by an order of 

magnitude (Fig. 4). None of the sites shown in Fig. 4 have undergone any loading other than that 

experienced by progressive accumulation of sediment, nor is there any variation in lithology. Hence these 

cohesive sediments are apparently over-consolidated, or more correctly phrased, they have a high yield 

stress ratio (vertical yield stress / effective overburden pressure) (Burland, 1990). This enhanced strength A
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is then lost at depth (more than tens of centimetres to ca 1 to 2 m below seafloor; Fig. 4), where a 

normally consolidated trend is restored. 

The exact reason for the zone of greater yield stress ratio is unclear, but it has been linked to biological 

influences related to food and chemical dependencies that may explain the depth-limitation. Possible 

explanations include: (i) sediment strength mediation by sulphate-reducing bacteria that are abundant in 

the top 1 to 2 m of most of the world’s ocean substrates (Parkes et al., 2000); (ii) stabilizing effects of 

bioturbation by organisms such as polychaete worms (Colliat et al., 2011; Kuo & Bolton, 2013), and (iii) 

particle-bonding effects by EPS secreted by organisms such as diatoms (Ehlers et al., 2005). Regardless of 

the cause, this enhanced strength will provide a much higher resistance to erosion than normally 

consolidated sediment and may strongly depth-limit and otherwise control the nature of erosion (Fig. 6). 

This shallow strengthening of muds may explain why some powerful sediment density flows only erode 

localized scours or grooves, but do not cause widespread erosion (e.g. Amy & Talling, 2006; Talling et al., 

2013a). Where some sediment density flows do succeed in ‘breaking through’ this strengthened layer, 

they may erode large volumes of cohesive sediment, potentially manifested as abundant intraclasts of 

substrate, transform to transitional flows or debris flows, and deposit hybrid event beds (e.g. Haughton et 

al., 2003, 2009; Talling et al., 2004), whereas other slightly less powerful flows entrain little sediment and 

remain as lower-density turbidity currents.

Exposure of previously-buried sediment at the seafloor

Truly over-consolidated sediment can also be found at, or close to, the seafloor where erosion or uplift 

have exposed previously buried sediment (Burland, 1990). Experiments using clearwater flows have found 

that over-consolidated (remoulded shear strength, cu, >200 kPa), cohesive (and also lithified or weakly 

cemented) sediment effectively inhibits the types of erosion observed in lower-strength clays (Annandale, 

1995; Fig. 6). Erodibility in such materials may instead be controlled by localized weaknesses and 

imperfections within the sediment mass, such as discontinuities, joints and bedding surfaces (Annandale, 

1995), or where the sediment bed is homogeneous, erosion may be controlled largely by sediment 

abrasion (Yin et al., 2016). 

Biological modification of the substrate

The final exception relates to the influence of benthic and microbial organisms, which are abundant in 

cohesive sediment within approximately the top metre below the seafloor worldwide (Parkes et al., 2000; 

Murray et al., 2002). The interactions of these organisms with the seafloor substrate and shallow A
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subsurface sediment can significantly modify their geomechanical properties (Table 2). The magnitude, 

type and depth-extent of such modifications are strongly controlled by physico-chemical factors that 

often strengthen the substrate (Murray et al., 2002), and thus aid the formation of flute and tool marks. 

For instance, internal burrow pressures of up to 40 kPa have been reported for some benthic organisms 

that exceed the typical shear strength of deep-water seafloor sediment (Murray et al., 2002; Fig. 4). The 

effects of such bioturbation-induced pressure lead to compaction and strengthening in cohesive 

sediment. Other exceptions undoubtedly exist, but the intention here is to highlight that the mechanical 

behaviour of modern deep-water cohesive sediments can be spatially and temporally complicated, and 

can exert a strong control on when, where and how erosion occurs. 

Seafloor substrates over geological time

A key question is whether the modern seafloor is a good analogue for sediment over geological time, and 

thus whether these variations with depth are typical. The level and type of bioturbation in deep-sea 

substrates experienced a major change during the Great Ordovician Biodiversification event (Orr, 2001; 

Màngano et al., 2016; Buatois & Mángano, 2018). Since the Ordovician, the diversity of deep-sea trace 

fossils has fluctuated – often related to large-scale changes in ocean circulation and oxygenation, such as 

basin-scale anoxic events – and some ichnotaxa, such as Zoophycos and Ophiomorpha, have changed their 

environmental range (e.g. Cummings & Hodgson, 2011a; Uchman & Wetzel, 2011). However, such 

changes appear unlikely to have dramatically altered the influence of these fauna on sediment properties. 

The successful application of ichnofacies and ichnofabric models that integrate modern and ancient traces 

to diagnose deep-sea environments (Heard & Pickering, 2008; Cummings & Hodgson, 2011b; Callow et al., 

2014; Heard et al., 2014; Knaust et al., 2014; Buatois & Mángano, 2018; Rodríguez-Tovar & Hernández-

Molina, 2018) further suggests that bioturbation has not changed fundamentally, otherwise this approach 

would not work.

Interestingly, work in shallow marine successions has argued that the mixed layer due to bioturbation, 

presently approximately the upper 10 cm, may have increased in thickness slowly through the Cambrian, 

only reaching modern conditions in the late Silurian (Tarhan et al., 2015; Tarhan, 2018a). In marked 

contrast, a progressive decrease in near-bed substrate strength over the whole Phanerozoic has recently 

been inferred based on a decline in the number of studies reporting flutes and tool marks as a function of 

geological time period (Tarhan, 2018b). Tarhan (2018b), however, does not consider potential 

observational bias, and the process arguments supporting a link to substrates do not consider many of the 

processes discussed above. A
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Considering the evolution of trace fossils, and allowing for the postulated changes in mixed layer depth in 

shallow marine conditions, the authors conclude that modern deep-sea seafloors are likely a good 

analogue for deep-sea substrates since at least the late Silurian, albeit there is a need for further research. 

FLUTES

Flute casts or flutes (after Crowell, 1955) are erosive features that widen downstream from a point, the 

‘nose’, abruptly deepening downstream before gradually decreasing in depth towards their downstream 

end (Figs 7 and 8). They are formed by the erosion of a cohesive substrate that is subsequently infilled by 

sand, or in some cases gravel (Winn & Dott, 1977; Jobe et al., 2010), and thus are observed as sole marks 

on the base of beds. Flutes generally range in length from several centimetres to ca 0.50 m (Allen, 1971a), 

with widths of 0.01 to 0.20 m and depths of a few centimetres to 0.1 m (Collinson et al., 2006). However, 

flutes that are metres long, up to 1.0 m wide, and 1.5 m deep are known (Winn & Dott, 1977, 1979; Jobe 

et al., 2010). Even larger ‘flutes’, metres to hundreds of metres long, have been observed on the upper 

surface of beds where they are typically referred to as megaflutes (e.g. Elliott, 2000; Macdonald et al., 

2011a,b; Hofstra et al., 2015), but the analysis herein is restricted to sole marks. Allen (1971a) introduced 

a summary figure for flute morphology (Fig. 7A), later referred to as the ‘ideal flute’ (Allen, 1984), which in 

addition to the basic features described above, also exhibits lateral furrows and a median ridge (Fig. 8B). 

However, flutes can also consist of simple smooth forms that lack a median ridge and lateral furrows (Fig. 

8B). Flutes exhibit a great variation in planform shape, from parabolic-transitional examples (Figs 7B and 

8A) to long, thin spindles (Figs 7B and 8C) and asymmetrical, and comet-shaped, forms (see Fig. 7B). 

Parabolic-transitional flutes are relatively rare, with parabolic flutes far more common (Figs 7B and 8B), 

the latter form representing the ‘ideal flutes’. Parabolic forms range in size from a few centimetres to 

>0.50 m long, and have length to width ratios between 1 and 4 (Allen, 1971a). In contrast, spindle-shaped 

flutes are fairly common, 0.05 to 0.15 m long, typically lack median ridges and lateral structures, and are 

much longer than they are wide (Allen, 1971a, 1984). Comet-shaped flute marks are rare and tend to be 

smaller still, typically a few centimetres in length and rarely more than 0.1 m long, and they have sinuous 

edges in the downstream direction (Allen, 1971a, 1984). Polygonal flutes in mud beds were described by 

Allen (1971a; reproduced in Collinson et al., 2006 and Collinson & Mountney, 2019); however, the present 

re-analysis of those examples listed therein fails to identify clear examples, perhaps reflected in the 

absence of this form in later summaries (Allen, 1984). The authors thus conclude that polygonal forms do 

not occur in muds, although such forms are well-known from cave scallops where dissolution processes 

dominate (Allen, 1971a; Richardson & Carling, 2005). Flutes can be found covering entire bedding planes A
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(conjugate), in clusters or as individual marks (isolate), and typically many different types of flute can exist 

on the same bed (Allen, 1971a, 1984; Pett & Walker, 1971).

Longitudinal distribution of flutes

A number of observations have been made concerning the variation in flute occurrence and morphology 

with downstream distance, and as a function of variables such as bed thickness and Bouma division, that 

in turn vary downstream. Flutes at the base of TA beds were observed to be wide and ‘bulbous’ [defined 

as very broad at the upstream end, sensu Dżułyński & Walton (1965), and used in this sense throughout 

the present paper; note that Allen (1984) defined ‘bulbous’ flutes differently, as having narrow deep 

heads], whilst those below TB and TC beds were narrow with pointed noses (Pett & Walker, 1971). Larger 

flutes have been observed on the base of thicker beds (Sestini & Curcio, 1965; Middleton, 1970; Tanaka, 

1970, Allen, 1984), with Pett & Walker (1971) showing a clear relationship between flute width and bed 

thickness, but not between flute depth and bed thickness, suggesting that there may be a substrate 

control on flute depth. Such measurements assume that no later loading of flutes has occurred (e.g. 

Kelling & Walton, 1957). These field observations suggest that flutes become narrower, smaller, and have 

more pointed noses, with downstream distance. Furthermore, these relationships have been used to 

imply that larger flutes associated with thicker, more proximal sands, were formed by faster, thicker and 

longer-lived currents, and correspondingly, that smaller more distal flutes on thinner beds were formed 

by slower, thinner, shorter-lived currents (Allen, 1984). In addition to these field observations, Allen 

(1971a) modelled the distribution of flute marks with downstream distance, based on defect theory, and 

predicted that flutes would become smaller downstream and that they would change from whole bed 

surfaces covered in flutes (conjugate) to isolated flutes. 

Experiments

The earliest experiments that were conceived to understand the development of flutes are those of Fuchs 

[1895; see Wetzel (2006) for an English translation of some key parts] who used sand and plaster-of-Paris 

to succeed in reproducing a range of ‘bulges’ on the bases of beds. Mutti et al. (2009) argued that Fuchs 

(1895) successfully reproduced small flutes experimentally, although none of these ‘bulges’ show much 

similarity with the planform and cross-sectional form of flutes (Dżułyński & Walton, 1963). Later work by 

Rücklin (1938) is more widely credited as forming the first flutes (Dżułyński & Walton, 1963; Allen, 1984), 

albeit that the similarities are limited (Allen, 1971a) and these experiments were not in mud beds; the bed 

composition was 5.8% clay <10 µm and 94.2% coarse grains consisting of quartz (20 to 80 µm) and mica 

(50 to 200 µm). Subsequent work examined flute formation in weak mud beds with flows composed of A
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plaster-of-Paris (Dżułyński & Walton, 1963; Dżułyński, 1965), but it is not clear if these features resulted 

directly from erosion, or from deformation and loading (Allen, 1971a). In contrast, the work of Allen 

(1968, 1969, 1971a) on flows over weak and higher-strength mud beds did demonstrate the formation of 

flutes, with conjugate forms in weak beds, and individual flutes in higher-strength modelling clay. The key 

breakthroughs in understanding flute formation have been derived principally from the seminal work of 

Allen (1971a, 1973, 1975) who employed clearwater flows to dissolve beds composed of plaster-of-Paris. 

Whilst the processes are different, i.e. dissolution versus abrasion-driven erosion in muds, the 

experiments produced analogous forms, and enabled the formative processes to be studied in detail. 

However, the focus on studies using plaster-of-Paris has meant that the understanding of substrate 

controls on flute initiation and development remains limited.

The nature of formative flows for flutes

Allen (1968, 1971a) demonstrated that flutes are associated with turbulent flows that produce flow 

separation. The nature of flow separation changes as a function of flute morphology, from prominent 

horizontal rollers (with rotation in the downstream direction) within parabolic flutes (Figs 7 and 9), to a 

pair of rotating vortices (with rotation transverse to the main flow) within narrow flutes (Fig. 9) (Allen, 

1971a). The initiation of flutes has been associated with the presence of defects in the bed, which can be 

produced by hollows formed by bioturbation, steps in bed height, or inhomogeneities within the 

substrate (Allen, 1984). Alternatively, flows over some very weak mud substrates can form their own 

defects that can then develop into flutes (Allen, 1969). Knowledge of flute development on stronger 

planar beds is largely lacking, since Allen’s (1971a) experiments with modelling clay all used initial defects. 

Yin et al. (2016) also used modelling clay but with planar beds, and found that, whereas defects 

developed and grew with time, the resulting erosional structures were more analogous to bedrock 

erosion features in rivers (Richardson & Carling, 2005), rather than flutes in muds. However, the results of 

Yin et al. (2016) suggest that defects in planar mud beds can form purely from abrasion by a sediment-

laden flow. These previous experiments on clay beds, although limited in number and in terms of 

substrate measurements (with the exception of Yin et al., 2016), also suggest that there is likely a strong 

substrate control on flute formation. Weak beds (for example, Fig. 5) may be unable to maintain the 

relatively steep slopes associated with flutes, notably at the nose, whilst beds that are too strong enable 

undercutting of the margins and the production of structures more analogous of bedrock rivers (Yin et al., 

2016). 
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For a given substrate, the evolution of bed defects is dependent on initial defect size and the properties of 

the flow, with Allen (1971a) referring to these as ‘unstable’ forms leading to the development of parabolic 

flutes (Type I) and ‘stable’ forms producing spindle-shaped flutes (Type II) (Fig. 9). Allen (1971a) related 

this developmental divergence to the nature of separated flow within flutes, and in particular to the 

transition of the viscous sublayer upstream of the flute, to a turbulent flow, via the sublayer rolling up 

into a series of vortices. Based on theory derived from experiments on unstable laminar shear layers 

(Sato, 1956, 1959) and experimental data on flutes (Allen, 1971a), a criterion for the critical defect length, 

Xcrit, was introduced, based on the downstream distance for transition to a turbulent flow (Allen, 1971a, 

1984):

   Xcrit = 5.90d (1.25dU/ν)-7/8 (1)

where d is flow depth, U is mean downstream velocity and ν is kinematic viscosity. Consequently, when 

the downstream length of the initial bed defect, X, is greater than the critical defect length, Xcrit, turbulent 

flow can directly act on the bed defect, and flutes will exhibit ‘unstable’ behaviour (Type I, Fig. 9), whereas 

if X < Xcrit then flutes are ‘stable’ (Type II, Fig. 9).

Allen (1971a) argued that, as flows travel downstream, flow velocity declines because of progressive 

sedimentation, and also assumed that the flow depth would either decrease downstream (Allen, 1984) or 

that flow depth was unlikely to increase downstream (Allen, 1971a). However, whereas this may not 

necessarily be true, the product of velocity and depth will decline, unless the flow is undergoing 

autosuspension (Pantin, 1979; Parker et al., 1986). Analysis of Eq. 1, using the criterion that the product of 

velocity and depth decreases downstream, therefore predicts that the critical defect length, Xcrit, increases 

with distance downstream. Assuming that there is no downstream variation in initial defect size, or 

substrate properties, this in turn predicts that parabolic forms are more prevalent upstream, and that 

spindle-shaped flutes are more likely downstream, as seen in field observations where larger bulbous 

flutes are observed below TA beds, and smaller, narrower and more pointed flutes are observed below 

Bouma TB and TC beds (Pett & Walker, 1971). 

Downstream distribution of flutes: a paradox

The prediction that, as flows decelerate, flutes decrease in size whilst changing morphologically until flows 

are no longer able to erode the substrate, suggests that there should be a lack of erosive bedforms 

downstream of flutes. Paradoxically however, erosive bedforms in the form of tool marks are generally A
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plentiful in more distal locations (e.g. Walker, 1967; Lovell, 1969; Slacza & Unrug, 1976), whereas flutes 

are typically preferentially associated with more proximal locations (see ‘Distribution and association of 

scour marks and tool marks’). Given that flows have decelerated to a point where they cannot erode the 

bed, then it is paradoxical that they are able to support grains large enough (order millimetres to 

centimetres diameter) to form the range of tool marks typically observed in these distal environments 

(see Tool marks section). The pioneering work of Allen (1971a, 1973, 1975, 1984) involved consideration 

of clearwater flows, and analogies with cohesionless turbidity currents. The present work assesses what 

the effects of cohesive transitional flows would be on flute dynamics and morphology, and whether these 

flows offer an answer to the apparently paradoxical distribution of flutes and tool marks.

Transitional flows and flute dynamics

As clay is added to an initial cohesionless turbulent flow, the flow is modified forming a turbulence-

enhanced transitional flow (TETF; see ‘The fluid dynamics of mud-poor to mud-rich flows’ above), which 

occurred at kaolin clay concentrations as low as 0.046% in the experiments of Baas & Best (2008). As 

demonstrated in work on ripples, TETF is associated with enhancement of turbulence within the 

separation zone as a result of growth of the internal shear layer (Fig. 1; Baas & Best, 2008). The influence 

of this enhanced turbulence is most notable at the flow re-attachment point. If such TETFs erode into a 

cohesive bed, this may lead to enhanced erosion and increased maximum depth of flutes, as compared to 

turbulent flows, potentially producing wider and more bulbous flutes. With increasing clay content, 

turbulence-attenuated transitional flows (TATF) develop (Fig. 1; Baas & Best, 2008), marked by an initial 

decline in turbulence in the shear layer of the separation zone generated behind the leading edge of the 

flute, relative to turbulent flows. However, Baas & Best (2008) noted no corresponding decline in the 

length of the separation zone. Such turbulence attenuation likely leads to shallower flutes. Further 

increases in clay content within the TATF region (Fig. 1) will lead to additional declines in turbulence in the 

shear layer, and a progressive decrease in the length of the flow separation zone, likely leading to smaller, 

thinner flutes. At some point, the cohesive strength of the flow will destroy the flow separation zone 

entirely (Baas & Best, 2008), with the likely demise of further flute development at this point. Transitional 

flows over mobile beds showed a rapid decline in bedform height and wavelength, at some point between 

the upper part of the lower transitional plug flow regime and the lower part of the upper transitional plug 

flow regime. These morphological changes occur in response to decreasing turbulence in the flow 

separation zone, and potentially also because of the rapid increase in the thickness of the viscous sublayer 

(Fig. 2). By analogy, flutes may also cease to actively form around the transition between LTPF and UTPF 

conditions. This re-analysis of flutes demonstrates that flutes will continue to form, and indeed may be A
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enhanced, under transitional flows. Thus the key conclusion of Allen (1968, 1971a) that flutes are the 

product of turbulent flows does not strictly hold, because they can also be formed under transitional 

flows, provided bed shear stress exceeds the critical erosion threshold.

If the criterion of Allen (1971a) for separating the development of initial bed defects (Eq. 1) is re-

examined for transitional flows, the authors observe that transitional flows should have an effect through 

increases in the dynamic viscosity, which can increase by an order of magnitude, or more, in transitional 

flows (Baas et al., 2009). Changes in clay content may therefore produce the same downstream effects as 

changes in velocity. As flows become more transitional, and dynamic viscosity increases, the critical defect 

size, Xcrit, should increase and thus flutes are more likely to become ‘stable’ and change from parabolic 

flutes to spindle-shaped flutes.

Examination of flow separation dynamics, and of the stability criterion for flute types, demonstrates that 

transitional flows likely influence flute evolution and morphology. Increases in turbulence in TETFs and 

LTPFs are postulated to lead to the development of wide, bulbous flutes. Further increases in suspended 

sediment concentration in the upper part of LTPFs or the lower part of UTPFs likely lead to progressive 

turbulence dampening and thus decreased flute sizes, more stable spindle-shaped flutes, and ultimately a 

loss of flute production or growth entirely. 

In terms of understanding the downstream distribution of sole marks, the key question is how flows 

transform with downstream distance. Many turbidity currents have been postulated to gradually 

transform downstream from non-cohesive to cohesive through the erosion and ingestion of mud from the 

seafloor, and through the increasing importance of clay cohesion relative to turbulence generation 

(Haughton et al., 2003, 2009; Talling et al., 2004). In such cases, the increasing cohesion of the flow would 

work in tandem with the decreasing product of flow velocity and depth to encourage a transition to 

smaller spindle-shaped flutes, and ultimately to a lack of flute development. This offers a potential 

solution to the paradox of how erosive tool marks can be found downstream of flutes, but only if these 

tool marks are associated with more cohesive currents such as transitional flows or debris flows. The 

origin and development of tool marks are thus examined next. 

TOOL MARKS

As noted earlier, tool marks can be subdivided into continuous and discontinuous forms; the former 

consist of grooves and chevron marks, and the latter of prod, bounce, skip and roll marks. These A
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structures are considered in turn, starting with the continuous forms. However, first the source of the 

tools is reviewed. 

The nature of tools

The nature of the tools forming tool marks has been unclear in most past studies, because the tool is 

found rarely at the end of marks such as grooves. Examples include mudstone clasts, pieces of wood, 

pebbles, bones and shells (Dżułyński & Radomski, 1955; Dżułyński & Ślączka, 1958; McBride, 1962; 

Dżułyński & Walton, 1965; Glaessner, 1958; Enos, 1969a; Dżułyński, 1996). A number of authors have 

concluded that mudstone clasts are the most likely tools (Dżułyński & Radomski, 1955; Wood & Smith, 

1958; Dżułyński & Walton, 1965; Middleton & Hampton, 1973, 1976), although Kuenen (1957) argued 

that mudstone clasts were improbable as tools since they would undergo rapid rounding through abrasion 

and therefore would not produce grooves with internal striations. Kuenen (1957) instead suggested that 

stones or shells pulled by ‘a sail of seaweed’ would enable clasts to be dragged along rather than rolling 

along (see also Dżułyński & Ślączka, 1958). The potential for abrasion of mudstone clasts is examined 

later, after the nature of individual tool marks has been described, and potential formative mechanisms 

considered. 

An alternative approach to identifying the nature of the formative tools is to consider the 

availability of tools in deep-water clastic environments. Extrabasinal pebbles are typically restricted to 

high-gradient, tectonically active systems (Hsu, 1959; Winn & Dott, 1977; Leszczyński, 1989; Jobe et al., 

2010). Plant fragments, many of which are too small or fragile to act as tools, are thought to be 

preferentially associated with hyperpycnal currents (Zavala et al., 2012; Deville et al., 2015; Zavala & 

Arcuri, 2016) or the collapse of shelf-edge deltas (Hodgson, 2009), and may be concentrated towards the 

lower energy parts of the flow, i.e. the top and back of the flow (Haughton et al., 2003; Kneller & 

McCaffrey, 2003; Hodgson, 2009). Consequently, plant fragments are less likely to be in direct contact 

with the bed. Furthermore, tool marks are widely reported from Palaeozoic deep-water strata prior to the 

advent of plants that were greater than a few centimetres in size, and before the development of 

significant internal structure, in the Devonian (Kenrick et al., 2012), and therefore before plant fragments 

as likely tool makers (e.g. Craig & Walton, 1962; Enos, 1969a; Parkash & Middleton, 1970; Clayton, 1994; 

Haines et al., 2001).

Additional sources of tools, such as bones and shells, appear to be unusual and relatively rare. In 

contrast, mudstone clasts are ubiquitous in deep-water clastic systems across a wide range of 

environments, including broad sediment bypass zones such as channel-lobe transitions, channel lag 

deposits, and in the deposits of debris flows and hybrid events (Mutti & Nilsen, 1981; Johansson & Stow, A
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1995; Haughton et al., 2003, 2009; Posamentier & Kolla, 2003; Stevenson et al., 2015; Brooks et al., 

2018a). These mudstone clast-rich deposits extend from proximal areas on the slope, through submarine 

channels, all the way to the fringes of basin-floor lobes (Posamentier & Kolla, 2003; Talling et al., 2004; 

Luthi et al., 2006; Hodgson, 2009; Talling, 2013; Stevenson et al., 2015). Many of these mudstone clasts 

are intra-basinal as a result of the erosion of seafloor muds, but mudstone clasts incorporated into debris 

flows can be very far-travelled (Talling, 2013; Stevenson et al., 2015). As highlighted earlier, the 

generation of such intraclasts may be favoured by the presence and erosive break-up of a near-surface 

over-consolidated layer.

Groove casts

Groove casts, also referred to as groove marks or grooves, were first named by Shrock (1948), and 

subdivided into drag marks and slide marks by Kuenen & Sanders (1956) and Kuenen (1957), referring to 

those features observed below greywackes (i.e. muddy sands) and those formed from slumping, 

respectively. However, later research found that it is difficult to differentiate these two types (Dżułyński & 

Ślączka, 1958; Bouma, 1962). The term ‘drag mark’ has since been used more generally to refer to grooves 

in deep-water systems and other environments, as well as glacial striae, features formed by drifting 

grounded ice and boulders on playa floors (Allen, 1984). 

Groove casts are recognized as one of the most common sole marks in deep-water sediments (Dżułyński 

& Walton, 1965), and are the most common tool mark (Middleton & Hampton, 1973, 1976), with Enos 

(1969a) estimating that 69% of sole marks in coarse-grained, mud-rich, sandstones of the Ordovician 

Cloridorme Formation are grooves. Grooves appear as elongate ridges on the base of sandstone beds (Fig. 

10), infilling erosion surfaces in cohesive sediment, typically mud, although Dakin et al. (2013) reported 

grooves in partially lithified sandstones. Most grooves extend for the full length of a given outcrop (Enos, 

1969a) and can be up to 35 m in length (Draganits et al., 2008), are remarkably straight, typically exhibit 

constant depth and width, and may have smooth rounded internal surfaces, or internal parallel 

longitudinal striae (Figs 10 and 11; Dżułyński & Walton, 1965; Allen, 1984). Exceptionally, groove casts can 

exhibit spiralling of the internal striae (Dżułyński & Ślączka, 1958; Dżułyński & Sanders, 1962a). Margins of 

grooves are typically sharp, although raised lateral ridges are associated with some grooves (Dżułyński & 

Walton, 1965; Fig. 12). Grooves vary from <1 mm to up to 4 m wide and can be up to 0.2 m deep 

(Dżułyński & Walton, 1965; Draganits et al., 2008). Whilst groove widths cover a wide range, the width of 

typical grooves is poorly constrained. Dirnerová & Janočko (2014) reported widths of 5 to 50 mm for a 

series of units, and 5 to 100 mm appears typical of many examples (Dżułyński & Walton, 1965; Enos, A
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1969a; Ricci Lucchi, 1995; Collinson et al., 2006). The number and spacing of internal striae are not 

reported, although examples show one to tens of internal striae, with sub-millimetric to centimetric 

spacing (Fig. 10E; Dżułyński & Sanders, 1962a; Potter & Pettijohn, 1963; Pettijohn & Potter, 1964; 

Dżułyński & Walton, 1965; Lanteaume et al., 1967; Ricci Lucchi, 1995), up to decimetres for very large 

grooves (Draganits et al., 2008). Large numbers of grooves can cover entire surfaces (Figs 10 and 11), 

where they may show a range of sizes, or grooves can be present as isolated examples (Fig. 21A). Where 

present in groups, they are typically parallel or sub-parallel to each other (Kuenen, 1957; Allen, 1984; 

Collinson et al., 2006). However, grooves may also show cross-cutting relationships with angles of up to 

90, although typically <40 (Fig. 10B; Dżułyński & Walton, 1965; Enos, 1969a; Ricci Lucchi, 1969a). Groove 

casts have been seen to commence at an ‘irregular bulge’ (Dżułyński & Ślączka, 1958) representing the 

counterpart of the original irregular depression, or from chevron marks (Fig. 16A and B), whilst 

terminations can consist of either: (i) a tapering of the groove to meet the original substrate surface; (ii) a 

rounded end, sometimes with an associated small mud ridge in the downstream direction; or (iii) an 

abrupt, twisted end (Dżułyński & Sanders, 1962a; Dżułyński & Walton, 1965). Terminations are, however, 

very rarely seen, with Enos (1969a) reporting just 10 terminations across >1500 beds. Even when 

terminations are present, most lack their formative tools. Key unaddressed questions concern how the 

tools are transported away from the ends of their grooves, and ultimately where these tools are 

deposited. Grooves have primarily been associated with turbidites (e.g. Kuenen, 1957; Bouma, 1962; 

Crimes, 1963; Dżułyński & Walton, 1965; Enos, 1969a; Ricci Lucchi, 1969a; Pett & Walker, 1971; Allen, 

1984) and have, along with other tool marks, been incorporated into the Bouma sequence (Middleton & 

Hampton, 1973, 1976; Collinson et al., 2006; Talling et al., 2012a). However, grooves have also been 

observed in association with hybrid event beds (Talling et al., 2004, 2012a,b; Patacci et al., 2014; Southern 

et al., 2015; Fonnesu et al., 2016, 2018), with high-strength cohesive debris flows (Johns et al., 1981; 

Kastens, 1984; Labaume et al., 1987; Payros et al., 1999; Talling et al., 2012a; Dakin et al., 2013) and with 

slumps (Kuenen, 1957; Crimes, 1973). Outcrop examples of high-strength debris flows rarely show 

grooves, perhaps in part because of associated large-scale deformation of the substrate (Johns et al., 

1981; Labaume et al., 1987). In contrast, Kastens (1984) imaged a spectacular example from the modern 

seafloor, where a debris flow had left a series of parallel grooves immediately upslope of the debris flow 

deposit, with the grooves approximately matching the diameter of the largest clasts (Fig. 12). 

Mapping of grooves beneath individual event beds suggests that grooves may cover lengths and areas far 

in excess of those identified from individual outcrops, as shown in Fig. 14. In these examples from the 

basin plain deposits of the Miocene Marnoso-arenacea Formation in the Italian Apennines (see Table 3 for A
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context) grooves are present for distances in excess of 40 km and over areas up to ca 300 km2. It is 

unknown whether individual grooves are continuous for these distances or whether these consist of a 

succession of individual isolated grooves. 

The highly parallel nature of groove casts, their large longitudinal and areal extent, and the frequent 

occurrence of internal parallel striae (Fig. 10E), all suggest that the tools were dragged in a single position 

(without rotating), at a constant height (no bouncing), through a substrate that was sufficiently strong 

that it could not be deformed by fluid stresses or flow back into the eroded space once the groove had 

been cut. The occasional spiralling of internal laminae and twisted termination suggest that in these rare 

cases the clasts are able to rotate, albeit relatively slowly with respect to their downstream movement in 

the case of the internal striae.

Experiments

Crowell (1955) claimed that Rücklin (1938) had produced groove marks, but the feature produced has 

little in common with groove marks (Dżułyński & Walton, 1965), and furthermore these experiments were 

not in mud beds (5.8% clay <10 μm; 94.2% silt and sand). The very first work to produce grooves was thus 

Kuenen (1957, see plate 1D) who produced grooves (‘slide marks’ of Kuenen, 1957) from experimental 

slumps, using a 2 cm thick sandy cover sliding over a clay layer at inclinations from a few degrees to 10 to 

20°. Subsequently, Ten Haaf (1959; reported in Dżułyński & Sanders, 1962a) studied erosive marks caused 

by snowballs catapulted over a surface of fresh snow, and concluded that groove marks were linked to 

flows with great current velocity, interpreted as the product of turbidity currents. Later experiments using 

plaster-of-Paris for the currents and kaolin clay or gelatine for the substrate were undertaken to examine 

sole structures formed under ‘artificial turbidity currents’ (Dżułyński & Walton, 1963, 1965; Dżułyński, 

1965; Dżułyński & Simpson, 1966; Dżułyński, 1996). A variety of tools (fish bones, hardened mud or 

plaster-of-Paris fragments; numbers and sizes unknown) were placed at the base of a short ramp and on 

the clay floor of the tank, and plaster-of-Paris currents were then released down the ramp. The 

experiments succeeded in making short individual grooves, including one that showed internal laminae 

that spiralled longitudinally (Dżułyński, 1965). However, sub-parallel groups of grooves that characterize 

outcrop examples were not reproduced. The grooves were also associated with a range of other tool 

marks including prod, bounce and skip marks (Dżułyński & Walton, 1963, 1965; Dżułyński, 1965, 1996; 

Dżułyński & Simpson, 1966). This is in contrast to outcrop examples where these features are commonly 

separated in space or time, implying that the optimal conditions for groove formation were not achieved 

in these experimental studies. A
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A key question concerning the experiments of Dżułyński and co-workers is how representative the flows 

that formed these grooves and associated tool marks are of turbidity currents, even allowing for the scale 

of the experiments (Peakall et al., 1996). Relatively few details of the experiments were given, but basic 

flow parameters can be estimated. Densities and viscosities were not measured, but the proportions of 

water to plaster-of-Paris were 3:2 or 2:1 (Dżułyński & Walton, 1965), 3:1 in the case of the experiments on 

tool marks (Dżułyński & Walton, 1963), or 2:1 / 3:1 (Dżułyński & Simpson, 1966). No details of the 

mixtures used in Dżułyński (1965) were provided. Whereas plaster-of-Paris is quite a variable material, 

assuming a typical bulk density of 785 kg m-3 and an absence of changes in volume as a result of the 

dissolution of the plaster-of-Paris and initial hydration of the calcium sulphate hemihydrate minerals 

(note that these volume changes are small; Jørgensen & Posner, 1959), gives flow densities of ca 1520 kg 

m-3, ca 1390 kg m-3 and ca 1260 kg m-3 for the 3:2, 2:1 and 3:1 mixtures, respectively. Viscosities at the 

time of mixing can be estimated at ca 1.0 to 2.5 Pa s-1 (Murakami & Hanada, 1956), about the same as 

runny honey (Yanniotis et al., 2006), albeit plaster-of-Paris increases in viscosity rapidly after just a few 

minutes, if there were any delays in the experiments (Murakami & Hanada, 1956). The yield strength of 

the plaster-of-Paris flows used in these experiments is harder to estimate, although plaster-of-Paris does 

exhibit yield strength at high concentrations (Rees, 1983). In summary, the experiments of Dżułyński & 

Walton (1963, 1965) likely had viscosities equivalent to kaolin suspensions with approximately 20% by 

volume concentration (cf. Talling, 2013, fig. 9A), had densities representative of kaolin suspensions with 

volumes of 15 to >30% (cf. Fig. 3) and likely had some yield strength. These flows consequently had 

densities largely in the intermediate-strength debris flow field (Fig. 3), had viscosities equivalent to the 

lower boundary of the intermediate-strength debris flow field (Talling, 2013) and had a yield strength 

likely in the broad range for the low strength debris flows (0.1 to 10.0 Pa) of Talling (2013), or the lower 

and upper transitional plug flows of Baas et al. (2009, 2011). In turn, flow rheology is also dependent on 

applied stress and thus velocity (Baas et al., 2009, 2011; Talling, 2013). Whereas velocities are unknown, 

and thus the exact rheology cannot be specified, it is clear that the experiments are more representative 

of transitional plug flows, or intermediate-strength debris flows, than the turbidity currents that these 

workers compared them to.

A beautiful example of apparently well-defined parallel grooves has been observed in an experimental 

subaqueous debris flow composed of kaolinite-water slurries with approximately 40% by weight kaolinite, 

where the coherent head had broken off from the body of the flow because of hydroplaning (Fig. 15; 

Hampton, 1970; Middleton & Hampton, 1973). Presumably, the grooves were formed by: clasts that were A
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larger than the thickness of the basal water layer beneath the hydroplaning block; at the back of the 

broken-off debris flow component; or as fluid dissipated underneath the flow as it came to rest. Small 

clasts of kaolinite are observed behind the flow, and likely formed the tools. Kastens (1984) noted the 

similarities between the grooves shown in these experiments and those observed on the modern seafloor 

(Fig. 12). However, it should be noted that there was no initial substrate in these experiments (Hampton, 

1970), unlike Kuenen’s (1957) experiments with slumps, and therefore the grooves were cutting into a 

deposit formed by the passing current.

Chevron marks

Chevron marks (Dunbar & Rodgers, 1957) consist of a series of open and continuous V-shaped, or U-

shaped, ridges that are aligned in a given direction (Fig. 16). The chevrons have been shown to close in the 

downstream direction (Craig & Walton, 1962; Dżułyński & Sanders, 1962a). Chevrons comprise a 

continuum of forms from uninterrupted chevrons (V-shaped or U-shaped ridges), when the whole form is 

present, through cut chevrons consisting of V-shaped forms that are cut down the middle, to interrupted 

chevrons, with ridges and furrows either side of a clear groove mark (Fig. 17; Craig & Walton, 1962; 

Dżułyński & Sanders, 1962a). Chevron marks have been observed to occasionally transition downstream 

between these different forms: from uninterrupted, to cut, or interrupted chevrons (Craig & Walton, 

1962; Dżułyński & Sanders, 1962b), and from interrupted to uninterrupted chevrons (Dżułyński & Sanders, 

1962a). Allen (1984) suggested that these transitions represent the concave-up trajectory of the clast as it 

gets closer to (and/or cuts) the bed, and then moves away again. However, as with grooves, transitions 

are unusual and they are typically constant in form where observed, coming under the ‘continuous’ class 

of tool marks. The different forms are consequently associated with different positions of the tool relative 

to the bed, with the tool cutting into the bed (interrupted chevrons, cut chevrons) or presumably at a 

constant height above the bed (uninterrupted chevrons). Chevrons are typically a few millimetres wide, 

with greater widths typically associated with interrupted chevrons (Craig & Walton, 1962). In longitudinal 

cross-section, the downstream end of the chevron ridge is steepest and is folded over on itself (Fig. 17; 

Dżułyński & Sanders, 1962a; Allen, 1984). The chevrons appear to form by fluid stressing of weak ductile 

muds, and thus are partly a function of the bed substrate properties (Dżułyński & Walton, 1965). The fluid 

stressing itself is believed to be caused by wakes that form around the moving tool, and have been 

likened to the wakes that form behind ships (Craig & Walton, 1962; Dżułyński & Sanders, 1962a; Allen, 

1984). In some cases, transitions occur from uninterrupted chevrons to regular groove marks (Kuenen, 

1957; Fig. 16A and B), indicating that the formative tool was moving downward through the flow, and 

then into contact with the bed. The loss of chevrons when the tool makes contact with the bed potentially A
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implies an abrupt increase in substrate strength. However, abrupt changes in the cohesive strength of the 

seafloor may be relatively unusual, albeit that biological controls and/or oxygenation may create these. 

Alternatively, such transitions may suggest that the fluid dynamics around the tool itself alter the strength 

of wakes impacting the substrate. Here, the potential for variations in the strength of wakes is explored by 

further considering ship wakes. 

Ships form interrupted chevrons because the vessel itself cuts the bow wave, in the same way as the 

interrupted chevrons are assumed to form. In contrast, the bow wave of a tool above the surface of a bed 

may be able to propagate downward forming uninterrupted chevrons. For ships, the magnitude of the 

transverse waves forming the wake is a strong function of the length-based Froude number, FL = U/√(gL), 

where U is streamwise velocity, g is acceleration due to gravity and L is the length of the ship’s waterline 

(e.g. Parnell & Kofoed-Hansen, 2001; Soomere, 2007). A so-called ‘hump speed’ occurs when FL is ca 0.56, 

producing increased wave energy. This can be further exacerbated if the vessel is in shallow water, as 

characterized by the depth-averaged Froude number Fh = U/√(gh), where h is the water depth. As Fh 

increases, wave heights increase, and if the critical value of Fh coincides with the ‘hump speed’ very large 

waves can be generated, which is a problem for some fast ferries (Parnell & Kofoed-Hansen, 2001). It is 

not clear how far such analogies can be taken with respect to a fully submerged tool with wakes rather 

than waves, but it does suggest that different regimes may exist that could lead to major changes in the 

size and strength of the wakes generated around a moving tool. Consequently, the absence of chevrons in 

most grooves may suggest that the uppermost part of the substrate was too consolidated, and the 

particle velocity and orientation were suboptimal, for the generation of sufficiently strong wakes capable 

of deforming the substrate.

Experiments

Experiments with: (i) plaster-of-Paris flows crossing weak clay beds; or (ii) sandy suspensions crossing 

beds of soft plaster-of-Paris produced from settled suspensions, enabled tools to form incredibly realistic 

chevron marks (Dżułyński & Walton, 1963; Dżułyński & Simpson, 1966; Dżułyński, 1996). Matchsticks 

manually moved across, but above, the surface of an experimental mud-bed that had been left long 

enough to develop a thin cohesive ‘skin’ were also observed to form chevrons (Dżułyński & Walton, 1963, 

1965; Kelling et al., 2007). Similarly, dragging a stick through the mud, produced cut chevron marks 

(Dżułyński & Walton, 1963, 1965).

The nature of formative flows for grooves and chevronsA
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This section reviews the possible mechanisms for the formation of grooves and chevrons, in terms of the 

evidence from groove orientations and cross-cutting relationships, and flow type (low-density and high-

density turbidity currents, granular flows, liquefied/fluidized flows and debris flows; the latter equivalent 

to quasi-laminar plug flows and laminar plug flows, described earlier) (Fig. 18), in the light of progress in 

understanding the dynamics of sediment gravity flows.

Groove orientations

As noted earlier, grooves are typically parallel to one another, but they can also show cross-cutting 

relationships. There has been much debate concerning the interpretation of cross-cutting groove marks, 

with interpretations as the product of a single flow (e.g. Kuenen & Ten Haaf, 1958; Enos, 1969a; Allen, 

1971b) or multiple flows (e.g. Crowell, 1958; Mulder et al., 2002). Multiple flows should exhibit two or 

more maxima in terms of the distribution of crossing groove directions, and a consistent relationship 

between the age of the mark and orientation. However, these relationships are not typically observed 

(Enos, 1969a; Allen, 1984). A key consideration here is that in contrast to flutes, which form over a period 

of time, grooves are thought to be cut by a tool near-instantaneously, so individual marks can reflect 

small-scale changes in current direction, rather than time-averaged properties (Allen, 1971b; see later 

discussion). Explanations for cross-cutting relationships from single flows include: (i) variations in 

turbulent flow related to the growth and decay of lobes (and clefts) at the head of a turbidity current, 

which are associated with secondary flows (Kuenen & Ten Haaf, 1958; Allen, 1971b); (ii) flow divergence 

in an expanding current (Potter & Pettijohn, 1963); (iii) a ‘meandering’ migration of the flow over time 

(Walker, 1970); (iv) variations in flow direction between split debrite blocks in a transforming flow (sensu 

Felix & Peakall, 2006; Draganits et al., 2008); and (v) rotation of blocks in the flow that are much larger 

than the grooves (Draganits et al., 2008). Rotation of blocks in the flow can explain even the largest 

angular differences (90) between grooves (Draganits et al., 2008). Other ideas discussed by Ricci Lucchi 

(1969a), including Coriolis force, flows in the ambient fluid, irregularities on the bed, and transverse 

slopes, were all considered untenable by Allen (1971b). 

Low-density turbidity currents (Fig. 18A)

The formation of grooves was first linked to turbidity currents by Kuenen (1953; see also Kuenen & 

Sanders, 1956) although the density of these turbidity currents was not inferred. Turbulent, low-density 

turbidity currents as agents for the formation of grooves were postulated by the catapulting snowball 

experiments of Ten Haaf (1959), in the experiments of Dżułyński and co-workers (Dżułyński & Walton, 

1963; Dżułyński, 1996, 2001) and through consideration of suspended sediment within the head (Allen, A
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1971b). However, the experiments of Dżułyński and co-workers have been shown here to be more 

comparable to transitional plug flows and intermediate-strength debris flows, and in any case only 

succeeded in generating isolated grooves over short distances. Similarly, snowballs only generate straight 

grooves in very soft substrates, by momentum alone, and leave the tool at the end of the groove (Ten 

Haaf, 1959). Key questions are whether low-density turbulent turbidity currents can: (i) transport groups 

of particles in near-parallel straight lines; (ii) transport particles that are partially ‘submerged’ and erode 

into a substrate, at a constant depth, particularly where this substrate has sufficient strength to avoid 

fluid stressing; (iii) keep a particle in a fixed position with respect to the bed surface (i.e. without 

rotation), thus maintaining grooves of constant width and form; (iv) hold particles at constant heights 

above the bed, as required for the formation of chevrons; and (v) preserve the grooves and chevrons in a 

pristine form. Video analysis of cobbles in bedload-rivers shows that sliding of particles is typically limited 

to events of less than one grain diameter in length, rolling events consist of short sub-parallel straight 

segments a few grain diameters in length, and that particles are dispersed laterally within the flow 

relatively quickly (Drake et al., 1988; see also Seizilles et al., 2014). Overpassing of gravels across much 

finer sands is likely more applicable to transport of tools over muds, and might lead to clasts travelling in 

near-parallel straight lines. However, analysis of gravel overpassing shows that clasts typically roll, and 

sometimes bounce, rather than move across the bed in a fixed orientation (Allen, 1983), such as via 

sliding. Particles above the bed in a turbulent flow typically move either as saltation load with 

characteristic ballistic profiles, or in suspension, where particles move within the flow (Bagnold, 1973; 

Francis, 1973; Lee & Hsu, 1994). In both cases, particles would not be expected to maintain a constant 

height above the bed, as is postulated to occur in the formation of chevron marks. It is also unclear why 

forms associated with turbulent flow, such as flutes (see earlier) do not form. Perhaps the substrate is too 

firm for the applied turbulent bed shear stresses to cause erosion (cf. Fig. 6A), and thus flutes do not 

form. A similar argument might explain why grooves and chevrons are typically preserved pristinely, 

apparently unmodified by turbulent flow. 

Consequently, the different observations combined (Fig. 18A) indicate that low-concentration turbulent 

currents are highly unlikely to produce and preserve groups of parallel to sub-parallel grooves or chevron 

marks. Nonetheless, it may be possible for isolated short grooves to form from the movement of 

individual particles overpassing a deformable bed, in a manner similar to the snowball effect, albeit the 

grooves may not be as regular if particles roll, and the tool would be expected to be present at the end 

[see for instance fig. 2 of Shchepetkina et al. (2018) from estuarine systems]. A
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High-density turbidity currents (HDTCs) with traction carpet (Fig. 18B)

Many of the postulated mechanisms in the literature for groove formation involve high-concentration 

layers at the base of turbidity currents. Dżułyński & Sanders (1962a) suggested turbulent traction carpets 

that restrict the impact of large-scale turbulent eddies from the main body of the flow. Dense 

concentrations of near-bed sand, approaching laminar conditions, were: (i) inferred for some thin, closely 

spaced groove marks by Dżułyński & Walton (1965); (ii) invoked in the form of a thin high-viscosity 

fluidized sheet at the base of turbidity currents by Hsu (1959; see also Sanders, 1965); and (iii) proposed 

as having formed in flows exhibiting turbulence suppression because of high near-bed concentrations of 

suspended particles (Ricci Lucchi, 1995). Draganits et al. (2008) also suggested that the basal layer of the 

flow was laminar, and might be formed by the head of concentrated density flows (sensu Mulder & 

Alexander, 2001). These high-concentration layers are associated with flows that are interpreted in 

current classifications as high-density turbidity currents (Kneller & Branney, 1995; Talling et al., 2012a; 

equivalent to the concentrated density flows of Mulder & Alexander, 2001). Such flows form massive or 

graded Bouma TA deposits, possibly with inversely graded layers at their base (TB-3 of Talling et al., 2012a), 

as a result of incremental deposition under high-concentration turbulence-damped conditions (Sohn, 

1997; Talling et al., 2012a) or velocity fluctuations on the scale of seconds (Cartigny et al., 2013). The key 

controlling difference is the sediment fall-out rate, with lower rates associated with inversely graded 

layers, and higher rates with massive or normally graded TA deposits (Sumner et al., 2008). The highest-

concentration basal layers have been called ‘traction carpets’ (Dżułyński & Sanders, 1962a; Lowe, 1982) or 

laminar shear layers (Vrolijk & Southard, 1997; Sumner et al., 2008) and are thought to be at most a few 

centimetres thick (Hiscott, 1994; Sohn, 1997; Talling et al., 2012a), although the experiments of Sumner et 

al. (2008) only produced layers <5 mm thick. Inverse grading, where present, occurs as a result of larger 

particles moving away from the bed, through a geometrical mechanism of larger particles moving over 

smaller ones, and kinetic sieving as smaller particles migrate downward (Sohn, 1997; Dasgupta & Manna, 

2011). Dispersive pressure is not an important process in traction carpets as implied in earlier work (Sohn, 

1997; Dasgupta & Manna, 2011). High-speed imaging of large particles close to the bed in the 

experiments of Postma et al. (1988) also reveals that particles do not remain at fixed heights within the 

flow, but rather move vertically and rotate within the flow. Experimental work has also shown that clasts 

higher in the flow preferentially glide along the top of these high-concentration basal layers (traction 

carpets) rather than settle through them (Postma et al., 1988), explaining discontinuous mudstone clast 

layers in discrete horizons within Bouma TA beds, at bed amalgamations, or dispersed within the flow 

(Hiscott et al., 1997; Talling et al., 2012a). A
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Given these processes, it does not appear that larger clasts would be incorporated and maintained within 

traction carpets and therefore be dragged along the bed and form grooves (Fig. 18B). In many cases, the 

clasts, as shown by groove dimensions, are considerably larger [typically a few tens of millimetres, and 

rarely >1 m in diameter (Allen, 1984)] than the thickness of the traction carpets. In fact, typical grain sizes 

within these layers are less than a tenth of the thickness of the traction carpet (Sohn, 1997). Furthermore, 

larger particles preferentially move away from the bed if initially incorporated into a traction carpet that is 

forming, or glide along the upper surface of the traction carpet rather than sinking in once a high-

concentration layer has formed. Both mechanisms also militate against the formation of repeated 

chevrons, where a tool needs to be held at a constant height above the bed, or partly within the bed. The 

dense medium of a traction carpet that extends to the bed would also appear incapable of enabling the 

formation and propagation of the ‘bow’ waves around clasts that are thought to form chevrons. 

High-density turbidity currents (HDTCs) with high-concentration basal layer (Fig. 18C)

High-concentration basal layers can also be formed in HDTCs in the absence of traction carpets (e.g. Lowe, 

1982; Baker et al., 2017), either during initial tractional sedimentation prior to the development of 

traction carpets (Lowe, 1982) or during bypass of the HDTC (Baker et al., 2017). Failure of the sediment 

bed in canyon systems has also been postulated to lead to the downstream formation of a high-

concentration basal layer beneath a turbidity current (Paull et al., 2018). Tractional sedimentation in 

sand-rich HDTCs is typically dominated by upper-stage plane beds and dune-like bedforms, associated 

with a turbulent flow regime, prior to increasing sediment concentrations near the base leading to the 

development of traction carpets (Lowe, 1982). In a supercritical regime, high-concentration basal layers 

have been postulated to develop over cyclic steps (Hughes Clarke, 2016; Paull et al., 2018). This initial 

turbulence-driven tractional regime is highly unlikely to be able to maintain larger clasts in fixed positions 

and at a constant height within the flow, and thus form grooves, for the reasons discussed above for ‘low-

density turbidity currents’. In the postulated high-concentration basal layers of Monterey Canyon, 

associated with upslope migrating bedforms, large (ca 0.45 m diameter) spherical and cuboid 

instrumented ‘artificial-clasts’ are observed to rotate within the flow, and are thought to be rafted in, or 

at the upper interface of, the dense layer (Paull et al., 2018). These ‘artificial-clasts’ further suggest that 

clasts are not dragged in a fixed position at the base of high concentration basal layers. In the same 

campaign, an 800 kg tripod was moved several kilometres down canyon. Whilst the movement of the 

tripod demonstrates the power of such flows, the authors do not consider the density or dimensions of 

the structure to be representative of a natural clast (6000 kg/m3; 2.5 tall, 1.5 m long legs and a large basal 

cross-sectional area, see fig. 4b of Paull et al., 2018) and once tipped over it is likely to be A
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hydrodynamically stable. Furthermore, the tripod was observed to stop and start during a flow event (fig. 

4c of Paull et al., 2018) indicating that it was not fixed in place in the flow. Thus, the available evidence 

suggests that these postulated high-concentration basal portions of turbidity currents are not capable of 

holding clasts in a fixed position. For coarser gravel-rich HDTCs, few tractional structures are formed, and 

traction carpets are thought to dominate (Lowe, 1982).

Most current knowledge of HDTCs is based on their depositional characteristics, in the form of bedforms 

and traction carpets, as discussed above. However, HDTCs may also exhibit a bypass phase, as can be 

observed in laboratory experiments (Baker et al., 2017). Little is known about the structure of HDTCs 

during bypass, with wide variation in estimated flow concentrations for what constitutes HDTCs: between 

5% and 9% (Mulder & Alexander, 2001), >10% (Talling et al., 2012a), >20 to 30% (Lowe, 1982) or from ca 7 

to 45% (Kuenen, 1966; Middleton, 1967). Density stratification of gravity currents is also known to be 

important, and thus these estimates of flow concentration are likely not bulk concentrations but instead 

reflect basal conditions (e.g. Peakall et al., 2000; Peakall & Sumner, 2015). During sediment bypass, HDTCs 

may have lower basal sediment concentrations (less pronounced stratification), with these only increasing 

as flows decelerate and sediment falls out from suspension rapidly (Peakall & Sumner, 2015). However, 

herein the possibility is considered that flows may bypass with basal concentrations at which hindered 

settling and dispersive pressure become important (e.g. Lowe, 1982). This would dampen turbulence and 

potentially lead to near-bed turbulence being extinguished through reduction of mixing (Cantero et al., 

2012, 2014), and/or near-bed turbulence suppression through the transitional behaviour of clays present 

within the flow (Baas & Best, 2002; Baas et al., 2009, 2011, 2016b). This, in turn, may lead to laminar basal 

layers. However, larger particles would not be expected to remain at a constant height within a hindered 

settling zone, with large particles either falling through the layer, or moving away from the bed if 

dispersive pressure is important enough (Fig. 18C). If turbulence is extinguished entirely, flows may 

undergo rapid sedimentation with little if any tractional component (Cantero et al., 2012). Consequently, 

larger particles are unlikely to remain at fixed heights within the flow and be dragged through a substrate 

to form grooves (Fig. 18C). 

Granular flows (Fig. 18D)

Grain or granular flows are sediment gravity flows composed of cohesionless grains maintained by 

dispersive pressure induced by grain-to-grain collisions (Bagnold, 1956; Lowe, 1976a). Groove marks 

formed by granular flows have been interpreted from pyroclastic flows, with Pittari & Cas (2004) 

interpreting the formative flow as a highly concentrated granular flow that was capable of keeping clasts A
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in a fixed position, and noting that the flows had 35 to 40% fine-grained ash. Similarly, Sparks et al. (1997) 

argued for a dense concentrated granular avalanche, and assumed this had a fine-grained component. 

Grooves have also been recognized in other pyroclastic flow deposits (Cole et al., 2002; Sparks et al., 

2002), albeit Sparks et al. (2002) attributed groove formation to a turbulent flow component at the head. 

Grain flows, particularly polymodal sand and gravel flows, are able to form in deep-water environments 

(e.g. Middleton, 1970; Middleton & Hampton, 1973, 1976; Lowe, 1976a; Iverson et al., 1997; Henstra et 

al., 2016), but they may be restricted to comparatively steep slopes (more than a few degrees; Lowe, 

1976a). Furthermore, in subaqueous deep-water environments, the fine-grained silt–clay component, if 

more than a few percent, is likely coupled to the water phase producing a debris flow (Lowe, 1976a; 

Iverson, 1997; Pittari & Cas, 2004), and so the prevalence of granular flows will be restricted. It is unclear 

whether subaqueous granular flows without a significant fine-grained component are able to maintain 

clasts in a fixed position without clast rotation (Fig. 18D). This might be possible only if the grains in the 

basal part of the flow lock together and the flow then glides downslope by inertia (pers. comm., George 

Postma). However, grooves beneath granular flows have not been reported in deep-water systems, 

suggesting that this is unlikely.

Fluidized, liquefied and nearly-liquefied flows (Fig. 18E and F)

Fluidized flows with an overriding gravity current (Sanders, 1965), or thin fluidized traction carpets as 

discussed earlier (Hsu, 1959; Sanders, 1965), have been suggested as mechanisms for the formation of 

grooves. Truly liquefied flows are produced where pore pressure equals the weight of the grains, leading 

to the grains temporarily losing contact with one another and floating within the surrounding fluid (Lowe, 

1976b). Re-sedimentation then occurs from the base upward as grains settle through the fluid. 

Consequently, subaqueous liquefied flows, even of coarse silts and sands, are unlikely to move more than 

a kilometre, since resettling takes place relatively quickly (Lowe, 1976b). In contrast, truly fluidized flows 

have an external source of fluid that enables the upward velocity of water to match, or exceed, the 

settling velocity of the grains (Lowe, 1976b). Fluidized flows are therefore likely restricted to very thin 

flows generated from the tops of liquefied flows, and thus are considered to be unimportant in deep-

water settings (Lowe, 1976b). In both cases, flows have no strength and cannot hold a tool in place and 

drag it through a substrate; consequently, such flows will not be associated with groove or chevron 

formation (Fig. 18E). 
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However, in some cases, usage of the terms ‘liquefied’ and ‘fluidized’ flows has altered from these 

definitions, leading to potential confusion. Liquefied flows (Talling et al., 2013a) and liquefied debris flows 

(Talling et al., 2012a) were defined where: “it is unknown whether all, or a significant part of the sediment 

weight is borne by excess pore fluid pressure” (Talling et al., 2013a); and “where excess pore pressures 

primarily support the grains” (Talling et al., 2012a), respectively. Both definitions extend liquefied flows to 

those with pore fluid pressures below where liquefaction occurs, thus reflecting different flow processes. 

Analogies are made with subaerial debris flow experiments where pore pressures in excess of the total 

normal stress have been recorded, implying that these experimental flows were sometimes liquefied 

(Iverson, 1997; Major & Iverson, 1999; Iverson et al., 2010). However, the measurements in those 

experiments were local, recorded by sensors at the base of the flow (Major & Iverson, 1999). Typical pore 

pressures within such subaerial debris flows were well below the liquefaction limit, balancing about 80% 

or more of the total normal stress (Major & Iverson, 1999), and they were described as ‘nearly liquefied’ 

(Iverson, 1997; Major & Iverson, 1999; Iverson et al., 2010). Driving forces for these elevated pore 

pressures are contractive shearing, where sediment undergoes rapid contraction as a result of shear from 

an overlying flow, which can lead to a very rapid rise of pore pressure (Iverson et al., 2000; Iverson, 2005) 

and sediment consolidation (Iverson, 1997); note that contractive shearing may be a mechanism for 

Bouma TA formation (see Supplementary Information). In the case of sediment consolidation, it will be 

progressively hindered (rather than monotonic; Iverson, 1997) as pore pressures rise, and thus the 

process of pore pressure increase from this mechanism is self-regulating, with compaction unable to drive 

the flow towards true liquefaction. The elevated pore pressures in the body of these flows enhance flow 

mobility and keep shear strength very low (Major & Iverson, 1999; Iverson et al., 2010). Consequently, 

tools are unlikely to be held in fixed positions at the base of these flows whilst dragged through a 

substrate, and grooves and chevrons should not form below the body of such flows (Fig. 18F). In contrast, 

the fronts of these nearly-liquefied flows in subaerial environments do not exhibit elevated pore 

pressures as they are relatively dry and thus have higher shear strengths (Iverson, 1997; Major & Iverson, 

1999; Iverson et al., 2010). Whilst the pore pressure distribution in the fronts of subaqueous debris flows 

is unknown, these flows will be wet, and thus the authors postulate that shear strength will not be as 

high, and thus grooves and chevrons are much less likely to be formed at the flow front in subaqueous 

flows (Fig. 18F). 

Fluidized subaqueous density flows have been claimed to be long-lived based on experiments and field 

studies. These studies are critiqued in the Supplementary data, which concludes that the experiments 

(Ilstad et al., 2004a; Breien et al., 2010) are neither fluidized nor liquefied, and the F5 facies of Mutti and A
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co-workers (Mutti, 1992; Tinterri et al., 2003; Mutti et al., 2009) is not formed by fully fluidized flow. 

Consequently, fluidized subaqueous flows are not considered further as a mechanism for groove 

formation. Thus a return to the definitions of liquefied and fluidized flows are recommended here, as 

envisaged by Lowe (1976b), reflecting the mechanisms of liquefaction and fluidization themselves. The 

elevated pore pressures recognized in experimental subaerial debris flows (Iverson, 1997; Major & 

Iverson, 1999) may be typical of some subaqueous debris flows; the ‘liquefied flows’ and ‘liquefied debris 

flows’ of Talling et al. (2012a, 2013a), are herein renamed ‘nearly-liquefied flows’ (Iverson, 1997). 

However, the presence of clasts that have been transported over long distances in most debris flows in 

deep-water systems indicates significant yield strength (and thus lower pore pressures). These latter 

examples are discussed below in the ‘Debris flow’ section.  

Debris flows and hybrid events (Fig. 18G, H and I)

Processes of groove formation: Based on outcrop studies, only Draganits et al. (2008) and Pyles & Jennette 

(2009) have suggested that grooves on the base of sand beds might be the product of debris flows 

(equivalent to quasi-laminar plug flows and laminar plug flows; see earlier), and in the former case this 

was one of two suggestions (see section on High-density turbidity currents). Pyles & Jennette (2009) 

inferred that grooves in the Carboniferous-aged Ross Formation, Ireland, were formed by shale clasts 

being dragged by a laminar flow, interpreted as a debris flow, and noted that the clasts in the overlying 

debrite scaled with the width of the grooves. However, no other process arguments were provided to 

substantiate this interpretation. Additionally, the ‘slide marks’ of Kuenen & Sanders (1956) and Kuenen 

(1957), a sub-classification of grooves (see introduction to the Groove casts section), were interpreted as 

formed from slumping, although debris flows were not specifically considered. It is argued here that 

debris flows, and the debritic flow components of hybrid events, can account for the observed attributes 

of grooves, in addition to those formed from slumps and slides. In contrast to the other mechanisms 

discussed above, debris flows have been shown to form multiple parallel to sub-parallel grooves in a 

natural seafloor example (Fig. 12; Kastens, 1984). Such flows have cohesive strength, are loaded with 

clasts, and can exhibit laminar conditions, thus enabling clasts to be held in position at the base of the 

flow. However, in order for clasts to erode the substrate there needs to be a slip condition at the base of 

the flow – that is the clasts need to be moving relative to the substrate. A slip condition can occur in one 

of two ways. If the plug flow extends all the way to the flow base (a laminar plug flow; Fig. 18G), then 

there can be a slip condition at the base (for example, Fig. 13). Alternatively, the flow may exhibit a shear-

layer that separates the plug flow region from the basal viscous sub-layer (quasi-laminar plug flow), as 

shown experimentally in Baas et al. (2009) and in the re-analysis herein of data from Hermidas et al. A
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(2018). In this QLPF case, then although at the base of the flow the velocity goes to zero, there is still slip 

between the base of the plug flow, where the clasts are attached, and the bed (Fig. 18H and I). In both 

cases, clasts (tools) at the base of the plug zone are moving faster than the substrate and therefore can be 

dragged through a substrate in straight lines at a fixed depth, thus forming grooves (Fig. 18H).

Subaerial debris flows are known to transport particles adjacent to the bed in their heads where there is a 

slip condition, followed by basal particles moving vertically and laterally away from the bed (Johnson et 

al., 2012; Fig. 13). The migration of these particles would explain both cross-cutting grooves (i.e. the 

distribution of groove orientations around a single maximum direction; see ‘Evidence from groove 

directions’), and also the absence of particles at the ends of grooves (Fig. 18G and H). Particles are simply 

uplifted into the main debris flow and transported down system away from the site of groove formation 

(Fig. 13). Lobes and clefts, which have been postulated as a mechanism for cross-cutting grooves in 

turbidity currents, may occur, but they have not been observed in subaqueous debris flows in the 

laboratory (Sohn, 2000). A cohesive flow also explains the lack of particle rotation observed in most 

groove casts, since particles are held in place by the cohesive strength of the flow (Fig. 18G to I). Debris 

flows are known to concentrate larger particles towards the front of the flow (Iverson, 1997; Gray & 

Kokelaar, 2010; Johnson et al., 2012), and these outsized clasts may therefore be the primary tools for 

groove formation, explaining the limited cross-cutting of grooves (Fig. 18G and H). In subaerial debris 

flows, large clasts also accumulate at lateral margins, but these are rapidly deposited so are less likely to 

form grooves (Gray & Kokelaar, 2010). Similar parallel longitudinal grooves have been observed in 

experiments with subaqueous debris flows where hydroplaning at the front provides a slip-component 

(Fig. 15; Hampton, 1970; Middleton & Hampton, 1973). Grooves are also observed in other natural flows 

where the tools are supported by flows with cohesive strength, as shown by the giant grooves (kilometres 

to tens of kilometres long) at the base of large-scale mass transport deposits (MTDs) observed in three-

dimensional seismic reflection data (e.g. Posamentier & Kolla, 2003; Gee et al., 2005; Ortiz-Karpf et al., 

2017; Soutter et al., 2018). The longitudinal continuity of these MTD grooves raises the question as to 

what the longitudinal extent of individual grooves is in deep-water clastic systems (see later discussion). 

Analogies can also be made with glacial striae on rock (Allen, 1984), where the tools are ‘welded’ onto the 

bottom of an ice sheet, to the formation of mega-scale glacial lineations by fractured ice at the base of 

ice-sheets (Clark, 1993; Piasecka et al., 2018), and to a lesser extent the grounding of ice in sediments in 

oceans (Reimnitz et al., 1977; Vogt et al., 1994; Piasecka et al., 2018), where the weight of ice maintains 

the tool on the substrate. A further groove-like feature, referred to as ‘glide tracks’, is formed by large 

outrunner blocks in front of debris flows (Prior et al., 1984; Nissen et al., 1999). However, unlike grooves A
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formed beneath the parent flow, these typically exhibit depth changes along the track at distances on the 

order of the glide track width, reflecting the lack of stability of the blocks (Kuijpers et al., 2001; De Blasio 

et al., 2006). This is in marked contrast to the uniformity in depth observed in grooves in outcrop.

Chevron tool marks are also more readily explained by QLPF debris flows, because these allow a particle 

to be held at a fixed height above, or partly within, the substrate, thus enabling a series of repeated bow 

waves to form around the particle, and the formation of the chevrons (Fig. 18I). In contrast, as noted 

earlier, it is hard to envisage a mechanism for maintaining a particle at a fixed height above the bed for 

either turbulent low-density turbidity currents or high-density turbidity currents with a high-

concentration basal layer. The generation of chevrons would, however, suggest that the basal layer is 

sufficiently fluidal that bow waves are able to propagate through it to the substrate surface (Fig. 18I). The 

type of chevron (uninterrupted, cut or interrupted, Fig. 17) may in turn reflect – and in deposits, predict – 

the thickness of this fluidal layer, and thus the depth from the bed to the base of the plug layer, relative to 

the size of the cutting clasts. 

Nature of debris flows forming grooves: Taking groove widths in the range 10 to 100 mm (see earlier 

discussion), and assuming that the clasts that created them are of the same diameter (in agreement with 

the observations of Kastens, 1984; Fig. 12) rather than asperities of much larger particles, the minimum 

cohesive strength of the debris flow required to support the clasts can be calculated. Using the approach 

of Talling et al. (2012a), based in part on Hampton (1975), suggests that grains of 10 to 100 mm diameter 

and of typical densities (based on mud densities 0 to 10 m below the seafloor taken from Flemings et al. 

(2006)) can be transported by low-strength (1 to 10 Pa) to intermediate-strength (10 to 100 Pa) debris 

flows. The boundary between low and intermediate densities is at an approximate diameter of 20 mm, 

and thus most of these clast sizes would require intermediate-strength debris flows (Fig. 3). These 

strengths equate to volumetric kaolinite concentrations of between >13 to 30%, although more cohesive 

clays, such as bentonite, would produce the same strengths at considerably lower volumetric 

concentrations (Marr et al., 2001; Baas et al., 2016b; Baker et al., 2017). These intermediate-strength 

debris flows are mobile enough to traverse low-gradient slopes and reach fan fringes, and to produce 

relatively thin (<2 m thick) deposits (Schwab et al., 1996; Talling et al., 2004, 2010, 2012a; Ducassou et al., 

2013). Hydroplaning of debris flows, where ambient fluid is injected beneath the head (Hampton, 1970; 

Mohrig et al., 1998), may occur in these intermediate-strength flows (cf. Baker et al., 2017) but 

preferentially occurs for high-strength debris flows (Ilstad et al., 2004b; Talling et al., 2012a), albeit that 

flow velocity is also a controlling factor in hydroplaning. Where flows undergo hydroplaning, tools will A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

groove the bed if larger than the thickness of the basal water layer beneath the debris flow, or grooves 

may be formed by the debris flow immediately behind the hydroplaning head. The likely rarity of 

hydroplaning in these intermediate-strength debris flows suggests, however, that outsized clasts towards 

the front of the flow may be responsible for the formation of grooves, albeit flow in the body of the 

current may also be able to generate grooves. 

Hybrid events and groove formation: The debritic component of clast-rich hybrid event beds is typically 

associated with intermediate-strength cohesive debris flow (Talling, 2013), and these can reach the very 

distal portions of submarine lobes and basin plains (Talling et al., 2004; Hodgson, 2009). Hybrid event 

beds, including clast-rich types, are common in these distal locations (Haughton et al., 2003, 2009; Talling, 

2013), with hybrid event beds accounting for >31% (Fonnesu et al., 2018) and >83% (Spychala et al., 

2017a), respectively, of total thickness in the basin plain and lobe frontal fringes. Some flows may erode 

and generate clasts a considerable distance up-dip, as shown by exotic mud clasts (Haughton et al., 2003, 

2009; Talling et al., 2007a, 2012b). In combination with the absence of the debritic component of hybrid 

event beds in proximal areas, this observation of extensive clast transport suggests that hybrid event beds 

are capable of bypassing a debritic component over large longitudinal distances; for instance, tens of 

kilometres in the case of the Marnoso-arenacea (Fig. 14; Talling et al., 2012b; Talling, 2013). Other hybrid 

event beds likely source mudstone clasts more distally (Hodgson, 2009; Kane et al., 2017; Fonnesu et al., 

2018). However, given that flows must transition from being primarily erosive, thus generating mudstone 

clasts, to primarily depositional, and that debris flows deposit en masse, bypass of the clast-rich 

component likely also occurs. 

Some models of hybrid events assume that the debritic component travels across an underlying sand (e.g. 

Haughton et al., 2009) or above a sand-rich ‘high density flow’ (Fonnesu et al., 2016), in which case it is 

unlikely that the debritic component can groove the seafloor through this layer. However, such models 

are largely based on studies of depositional hybrid events. Models of hybrid events transforming from an 

initial debris flow do show a separate debritic component bypassing (Haughton et al., 2003, fig. 11C). 

Furthermore, the evidence for large-scale bypass of some hybrid events and the absence of deposits in 

proximal areas, suggests that the hybrid events were not depositional at all points and thus travelling over 

sand beds. Similarly, the evidence for active erosion of the seafloor, demonstrates that the hybrid event 

cannot be travelling over a pre-existing sand-layer. Furthermore, the process arguments presented herein 

suggest that a sand-rich high-density flow as envisaged by Fonnesu et al. (2016) has insufficient cohesive 

and frictional strength to hold tools in a rigid position and thus groove the bed. Instead, these process A
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mechanisms strongly suggest that the debritic component must be a separate component in touch with 

the bed during the bypass phase. These observations and arguments are in keeping with those of Talling 

(2013) who tackled the question of why the debritic component almost always ends up above the 

deposits of a high density turbidity current deposit, and is capped by the deposit of a low density turbidity 

current. Talling (2013) concluded that this is due to the longitudinal structure of the flow, with the basal 

sand likely deposited by a forerunning HDTC that moves faster than the debris flow component, which in 

turn moves faster than the LDTC (Fig. 19).

Intermediate-strength debris flows, not associated with hybrid event beds, can also occur in distal areas, 

albeit more rarely (e.g. Ducassou et al., 2013; Spychala et al., 2017b), and these bypassing flows should 

also act to form grooves up-dip. Therefore, the presence of grooves and chevrons indicates that they 

were cut by a clast-rich intermediate-strength debris flow (QLPF to LPF) and, given their prevalence, in 

many cases by a debritic component of a hybrid event.

Grooves and hybrid event beds: implications for hybrid event bed processes

Some studies show that hybrid event beds often lack grooves at their base (e.g. Haughton et al., 2009; 

Jackson et al., 2009; Talling et al., 2012a; Grundvåg et al., 2014), although in some cases grooves may be 

observed up-dip where outcrop allows such correlation (for example, Figs 11A and 14A; Fonnesu et al., 

2018). However, grooves have been observed on the bases of some hybrid event beds (HEBs) containing 

both clast-rich and clast-less debrite units (Figs 11B and 14A; Talling et al., 2004, 2012a,b; Patacci et al., 

2014; Southern et al., 2015; Fonnesu et al., 2016, 2018), albeit it should be noted that debrites in HEBs 

can show significant spatial variations (Fig. 14B; Fonnesu et al., 2015). A more detailed assessment of the 

presence or absence of grooves at the base of hybrid event beds is not possible at present, as grooves are 

often reported for entire outcrop sections, usually as palaeocurrent indicators, rather than specifically 

linked to hybrid beds (for example, Spychala et al., 2015, 2017b; Malkowski et al., 2017, 2018), or tool 

marks are treated as a single category, and thus grooves are not specified (e.g. Hodgson, 2009). Here the 

authors concentrate on those examples where grooves are present. Examples of grooved hybrid event 

beds have been interpreted following the standard paradigm that views them as the product of erosion 

under the head of a turbulent turbidity current, potentially with a dense stratified basal layer (Fonnesu et 

al., 2016; Fig. 19A). However, as argued previously, low-density and high-density turbidity currents are 

unable to explain groove formation, and the grooves themselves indicate erosion by a dominantly 

bypassing debris flow component. The grooved surfaces are, in turn, overlain by clean sand, followed by a 

debritic interval and finally more sand (Talling et al., 2004; Patacci et al., 2014; Fonnesu et al., 2016, A
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2018), to produce the typical tripartite hybrid event bed signature (Haughton et al., 2003, 2009; Talling et 

al., 2004; Fig. 19B).

The presence of grooves up-dip from the deposits of hybrid event beds (for example, Figs 11A and 14, 

Beds 3 and 5) may signify erosion by a clast-rich debritic component, with or without a forerunning 

turbidity current, followed by deposition from a later turbiditic component (Fig. 20A). Beds 1, 3 and 6 (Fig. 

14) show examples of clast-less debrites running to the limits of the outcrop suggesting that if there is a 

clast-rich unit towards the front of the flow then it is beyond the outcrop limits. This model has analogies 

with the model of hybrid event beds where a debris flow erodes or bypasses material up-dip, before 

undergoing flow transformation and successive deposition of sand from a forerunning turbidity current, 

followed by debritic deposition, to form the hybrid bed down-dip (Talling et al., 2004). However, in these 

models (Talling et al., 2004), the trailing turbidity current that forms the capping component of the 

tripartite hybrid event bed, and that might be expected to be deposited on the grooved surfaces, is low-

density, forming thin beds characterized by TCDE divisions. Consequently, this model cannot explain the 

presence of high-density turbidity current deposits overlying grooved surfaces, up-dip of hybrid event 

beds (for example, Figs 11A and 14; Fonnesu et al., 2018). The dominant model of hybrid event bed 

formation, where flows gradually transform down-dip from non-cohesive to cohesive, would have the 

same issue (Fig. 19B; Haughton et al., 2003, 2009; Talling et al., 2004); assuming that a debritic 

component does interact with the substrate at some point, and therefore forms grooves, the deposits 

overlying such erosive surfaces would be expected to be composed of low density turbidites. 

In cases where grooves are present at the base of hybrid event beds, the longitudinal flow transformation 

model from turbulent turbidity current at the front, through a following debris flow and then a dilute 

turbidity current (Fig. 19B; Talling et al., 2004; Haughton et al., 2009), is inapplicable because, as argued 

earlier, the basal surface is the product of a debris flow, as also is the division above the basal sand. Three 

models can be postulated to explain the observations. Firstly, erosion by the head of a turbidity current 

may lead to increasing mud and mud-clast content and local transformation into a debris flow (e.g. Talling 

et al., 2004; Kane et al., 2017), which cuts the basal grooves (Fig. 20B). This debris flow may then be 

followed by a turbidity current component and then the debritic component, as in the model of Haughton 

et al. (2009; Fig. 20B). Secondly, the flow may be broken longitudinally into a series of debritic and 

turbiditic components, reflecting retrogressive failure up-dip (Piper et al., 1999; Brooks et al., 2018b), or 

the debris flow component may split into a series of discrete blocks during flow transformation (Felix & 

Peakall, 2006; Felix et al., 2009). In this case, the first debritic pulse cuts the grooves, followed by A
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deposition from the subsequent turbidity current and debritic components (Fig. 20C). However, such 

processes would be expected to form multiple stacked debrites, in contrast with vertical sequences of 

hybrid event beds (Haughton et al., 2003, 2009; Talling et al., 2004; Fig. 19B). Thirdly, the deposits may 

reflect a bypassing debris flow that cuts the grooves and then starts to become vertically stratified, with 

sand deposition from the debris flow followed by deposition of the debrite component (Fig. 20D). The 

influence of vertical stratification in hybrid event beds has previously been suggested from both 

laboratory (Baas et al., 2009, 2011; Sumner et al., 2009) and field studies (Fig. 19C; Talling et al., 2004, 

2010, 2012a). However, sand separating from a mud–sand debris flow is physically simpler (and has been 

modelled experimentally), than from a debritic phase with larger mud clasts. In the latter case, the 

mudstone clasts would need to be less dense than the flow, whereas the sand would have to be denser 

than the flow and thus able to settle. However, as flow density must be high for the larger mudstone 

clasts to remain supported then yield strength would be expected to be significant. Given this, the sand 

would have to settle through a dense, possibly high strength, material. Alternatively, if a clast-rich debrite 

is at the front of the flow, followed up-dip by a clast-less debrite, sand may separate from this 

component. It remains unclear how feasible such a mechanism is.

In summary, with the possible exception of the case where the front of the turbidity current develops into 

a debris flow through erosion (Fig. 20B), all of the models suffer from limitations. Flow transformation 

from an initial debris flow (Fig. 20A) does not predict high-concentration turbiditic deposits above 

grooves. Longitudinal flow segregation with multiple debritic components (Fig. 20C) predicts too many 

debrites in the hybrid event bed. Finally, in the case of the vertical segregation model (Fig. 20D), there are 

issues concerning how sand segregates from a mixture of mud and large mud clasts, or whether there are 

longitudinal variations from clast-rich to clast-less debrite. Flows forming hybrid event beds therefore 

potentially have more complex longitudinal and temporal changes than have hitherto been postulated, 

and these account for observations such as high-density turbidity current deposits overlying grooved 

surfaces up-dip of hybrid beds. 

An alternative to the different models of hybrid event beds is that the flow forming the grooved surface is 

entirely separate from the flow forming the overlying deposits (Fig. 20E). In this case, an initial debris flow, 

slide or slump cuts a grooved surface on the seafloor after the flow bypasses down-dip. Given that debris 

flows typically either deposit en masse or not at all, the grooves may be left in pristine form on the 

seafloor as the flow bypasses, as seen in Fig. 12 (Kastens, 1984), or may be covered by a thin layer of 

unconsolidated mud from minor flow transformation of the top of the debris flow, as well as any A
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subsequent hemipelagic deposition. A subsequent turbidity current may ‘ingest’ any unconsolidated mud 

(of low strength, see Seafloor substrates section) and deposit onto the grooved surface. 

Herein it is also noted that flutes can be present at the base of some hybrid event beds (e.g. Patacci et al., 

2014), often in beds without clast-rich components (Talling et al., 2004, 2012a; Fonnesu et al., 2018), or 

on the same surfaces as grooves and other tool marks (Fonnesu et al., 2016). This indicates that turbulent 

or transitional flows also eroded the basal erosion surface, and in the case of mixed groove–flute 

assemblages that flow evolution took place, or a later turbulent or transitional flow event eroded grooves 

from an earlier event. The presence of flutes in the absence of grooves may suggest the occurrence of a 

forerunning turbidity current, or a cohesive transitional flow.

Morphology and abrasion of mudstone clasts

Kuenen (1957) argued against mudstone clasts being the primary source of tools on the grounds that they 

would undergo rapid rounding through abrasion. Mudstone clasts do indeed abrade on timescales of tens 

of minutes to hours depending on applied shear stress and composition (Smith, 1972). Such abrasion is 

observed in turbidity currents, with transported clasts typically showing rounded to sub-rounded clasts 

(Johansson & Stow, 1995). Similarly, hybrid event bed debrites can show rounded to angular clasts, again 

likely reflecting transport distance (e.g. Davis et al., 2009; Hodgson, 2009). Grooves show both smooth 

curved internal surfaces and surfaces marked by parallel striae. Consequently, these surfaces likely reflect 

the nature of clasts that cut them, with longer-travelled sub-rounded clasts likely cutting the smooth 

surfaces. Striae are likely formed by clast asperities perhaps from recently eroded clasts, although 

potentially they may be the product of armoured mudstone clasts in some cases. The nature of the 

groove morphology may, in part, be a reflection of the time period of formation; although the true length 

of grooves is unknown because of outcrop extent, they are known to be up to tens of metres long. 

Current velocities for deep-water flows are poorly known (Talling et al., 2013b; Peakall & Sumner, 2015). 

However, Talling et al. (2012a) calculated that a 1 m thick, intermediate-strength, kaolin-rich debris flow 

on a slope of 0.1 (typical of mid to lower fans; Pirmez & Imran, 2003) would require a velocity of ca 0.5 to 

1.0 m s-1. Such flow velocities are in-line with velocities measured or estimated for distal turbidity currents 

(Klaucke et al., 1997; Pirmez & Imran, 2003; Vangriesheim et al., 2009; Stevenson et al., 2014; Peakall & 

Sumner, 2015). Assuming a velocity of 1 m s-1, the clast travel time over the length of grooves observed in 

outcrop equates to seconds to tens of seconds, which is too short a period to result in significant abrasion 

(e.g. Smith, 1972). Moreover, the mudstone clasts are likely more indurated than the substrate into which 

they are cutting. A
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For cases where the extent of individual grooves is not limited by the timescale between initial 

impingement of a clast on a bed, and being uplifted vertically at the flow front (Johnson et al., 2012; Fig. 

13; see earlier discussion), then consideration of mudstone abrasion rates enables estimates of maximum 

groove lengths to be made. Groove lengths of hundreds of metres (timescale of minutes) to kilometres 

(tens of minutes) would appear possible, dependent on the composition of the mudstone clasts (Smith, 

1972). Nonetheless, individual grooves are likely to be shorter than the tens of kilometres observed under 

large MTDs, likely reflecting that in MTDs they are cut by much larger tools (e.g. Gee et al., 2005; Ortiz-

Karpf et al., 2017; Soutter et al., 2018) where abrasion relative to clast size will be less important, and in 

at least some cases by stronger tools (e.g. Soutter et al., 2018).

Discontinuous tool marks

Prod, bounce, skip and roll marks form from the impact of tools with a soft substrate (Dżułyński & 

Sanders, 1962a; see Fig. 21). Prod marks (Figs 21 and 22; Dżułyński & Ślączka, 1958) are considered to be 

the most useful for palaeocurrent analyses since they are asymmetrical, with a longer shallower upstream 

slope, and a shorter steeper downstream slope; the shallower slope may be ornamented with longitudinal 

striae (Dżułyński et al., 1959; Lanteaume et al., 1967; Allen, 1984). Bounce marks (Figs 21 and 22; Wood & 

Smith, 1958), also called skim marks (Allen, 1984), are symmetrical to slightly asymmetrical and typically 

tens to hundreds of millimetres long (>3 m in exceptional cases), <50 mm wide, less than a few 

millimetres deep and may contain parallel internal striae (Lanteaume et al., 1967; Allen, 1984). Skip marks 

(Fig. 22; Dżułyński et al., 1959) are a series of discontinuous tool marks, typically at a similar spacing, that 

are produced by a single tool. The morphology of each mark may be almost identical, or variable, but 

similar enough to be recognizable as being formed by the same tool (Dżułyński & Walton, 1965). Skip 

marks can include tumble marks (Fig. 22; Allen, 1984), formed from a tool somersaulting, such as fish 

vertebrae and angular mud clasts (Dżułyński & Walton, 1965; Allen, 1984). Skip marks can also consist of a 

series of bounce marks that can sometimes become almost continuous, approaching the appearance of 

grooves (Collinson et al., 2006). Lastly, roll marks (Fig. 22; Dżułyński & Ślączka, 1958) are made by 

cylindrical objects (for example, fish vertebrae, ammonite and straight orthocone shells) that enable the 

tool to roll over the bed (Dżułyński & Sanders, 1962a; Dżułyński & Walton, 1965; Bates, 1974). 

Discontinuous tool marks can be superimposed on, and consequently can be younger than, both flutes 

and grooves (Fig. 21B; Dżułyński & Sanders, 1962a; Dżułyński & Walton, 1965; Ricci Lucchi, 1995). Given 

their small size and erosion depths (typically millimetres to tens of millimetres) (Dżułyński & Walton, 

1965; Collinson et al., 2006) relative to flutes and grooves, any evidence of their formation prior to flutes A
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and grooves may be lost, although where erosion by later forms is limited, evidence for discontinuous tool 

marks that formed earlier can be found (Fig. 21C). 

The nature of formative flows for discontinuous tool marks

Roll marks require a flow where the particles are not periodically lifted from the bed by buoyant or 

turbulent forces, and thus flow concentration is likely comparatively low, and turbulence limited. 

Furthermore, roll marks will be hindered by high viscosity and the development of thickened viscous 

boundary layers. Consequently roll mark formation will be favoured by relatively fluidal flows with 

comparatively low viscosity, low concentration, and limited turbulence; these likely include weak 

turbulent flows (TF) and lower-concentration transitional flows (TETF and LTPF). Similarly, skip marks are 

formed by tumbling particles that are in close contact to the bed, but the tools are either more angular 

than those involved in roll marks, or experience sufficient lift forces to periodically lose contact with the 

bed. These tumble marks may also be favoured by weak turbulent flows, or transitional flows (TETF and 

LTPF). However, a greater spacing between tumble marks implies that a significant buoyant force is 

present that supports the particle, and thus an association with higher-concentration transitional flows 

(for example, UTPF).

The asymmetrical morphology of prod marks suggests that tools may exhibit ballistic trajectories like 

saltating grains, and thus approach the bed at comparatively low angles, before rebounding from the bed 

and being lifted up at a higher angle (Bagnold, 1973; Francis, 1973; Lee & Hsu, 1994). Experiments with 

large saltating particles, up to 6 mm diameter, showed a narrow range of incidence angles (10 to 35) 

and a take-off angle range of 21 to 87, with a mean of ca 65 (Ancey et al., 2002), in keeping with 

qualitative observations of prod marks. Saltation is normally linked to turbulent flows (Pilotti & Menduni, 

1997); but Francis (1973) demonstrated experimentally that in higher-viscosity flows composed of 

glycerine-water mixtures saltation could also occur under laminar conditions, suggesting that for clay-rich 

flows, transport under transitional flow conditions (Baas & Best, 2002) would also be possible. Laminar or 

transitional clay-rich flows would also act to provide a buoyant force aiding transport of larger tools. 

The presence of fine striae on the upstream slope of some prod marks suggests that the incident grain 

was not spinning when it impacted the bed. This is surprising since grains typically rotate during saltation, 

driven by bed collisions, grain-to-grain collisions and velocity gradients across the particle (Best, 1998). 

Larger particles, like those observed to form tool marks, are known to rotate more slowly than smaller 

particles, for instance about four or five rotations per second for ca 4.8 mm diameter particles in water A
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(Francis, 1973; Best, 1998) in contrast to ca 40 rotations per second for ca 1.4 mm diameter particles in 

water (Lee & Hsu, 1994; Best, 1998). Two mechanisms, in addition to increased particle size, may act to 

reduce or eliminate rotation of tools: increased viscosity (Best, 1998) and reduction in the velocity 

gradient. Transitional flows possess enhanced viscosities (potentially an order of magnitude or more 

increase relative to a clearwater flow), and also exhibit greatly reduced shear immediately adjacent to the 

bed, notably for lower and upper transitional flows, and quasi-laminar plug flow (Baas et al., 2009, 

2016b). This basal zone of low shear, representing a thickened viscous sublayer, was ca 6 mm thick in the 

experiments of Baas et al. (2009), representing ca 4 to 5% of flow thickness. Although how the thickness 

of this low shear zone scales with flow thickness for larger flows is unknown, for flows that are metres to 

tens of metres deep the thickness of this basal zone might be expected to be of the order of centimetres 

to 10 cm. Given that particle saltation heights are typically about two to four times the grain diameter for 

rotating particles in liquids (Francis, 1973; Fernandez Luque & Van Beek, 1976; Krecic & Hanes, 1997), and 

potentially as low as a third of this in the absence of rotation (Krecic & Hanes, 1997), saltation trajectories 

may well be expected to be restricted to this basal zone of low shear if occurring in transitional flows. 

Consequently, the presence of this basal zone of low shear, in combination with enhanced viscosities, 

suggests that the formative flows in prod marks exhibiting striae are transitional flows, most likely upper 

transitional plug flows (see later). An additional control on particle rotation may be the interaction of 

tools – particularly for mudstone clasts – with a cohesive bed, leading to markedly inelastic collisions. The 

loss of kinetic energy associated with inelastic collisions might result in a corresponding reduction in 

imparted angular momentum (Wiberg & Smith, 1985) and thus rotation rates. A reduction or cessation of 

particle rotation in turn affects particle trajectories through reduction of lift associated with the Magnus 

effect (Rubinow & Keller, 1961), leading to much shorter saltation hop lengths and lower trajectories 

(Krecic & Hanes, 1997). Moreover, the reduction or absence of rotation further reduces turbulence 

generation towards the base of the flow, because rotating grains have been shown to generate additional 

turbulence (Best, 1998).

In sharp contrast to prod marks, bounce marks are formed by particles that graze the bed with a concave-

up trajectory (Allen, 1984). This concave trajectory is atypical of grains in a bedload layer, which typically 

roll, slide or saltate (e.g. Lee & Hsu, 1994), and suggests that the tool is largely supported by the flow, 

presumably by the buoyant force. However, the tool is not fully supported, in contrast to particles 

transported in a well-developed plug flow, such as an intermediate-strength debris flow. Skip marks 

consisting of repeated bounce marks further argue for a significant buoyant force, since the morphologies 

do not fit with saltating tools in terms of their longitudinal symmetry and length to width ratio. The A
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observation that some skip marks consist of bounce marks that are almost continuous and start to look 

like grooves, suggests that in these cases the particles are further supported by the flow, and close to 

becoming intermediate-strength debris flows that fully support the tools (see Groove casts section). Given 

the processes identified herein, ‘bounce marks’ is a remarkably poor choice of term for these features, 

since unlike prod marks the particles do not really bounce, but rather skim the surface. Consequently the 

term ‘skim marks’ used by Allen (1984) is recommended here, because it reflects the key process.

As noted earlier, the change in the morphology of flute marks and the ultimate cessation of their 

formation is interpreted to be caused by a change from turbulent flow to transitional flow, with a 

corresponding reduction of the size, and eventual elimination, of the flow separation zones at the flow–

bed interface integral to flute formation (cf., Baas & Best, 2008; see Flutes section). Discontinuous tool 

marks do not appear to form simultaneously with flutes, although they can overprint them. Furthermore, 

as observed here, some types of tool mark, such as skim (bounce) marks, provide evidence for a 

substantial buoyant force that enables particles to graze the bed in gentle arcs. Herein, discontinuous 

marks are interpreted to be typically the product of transitional flows. If the flow is either fully turbulent, 

or in the turbulence-enhanced transitional flow (TETF), or lower transitional plug flow (LTPF) regimes, 

flutes are likely to form (see Flutes section), assuming that substrate conditions enable mass erosion from 

the bed. In such flow regimes, substantial bed turbulence is present encouraging scour, and the mud 

clasts responsible for discontinuous tool marks may not be supported within the flow. Cessation of flute 

development likely occurs in the upper part of the lower transitional plug flow regime, or the lower part 

of the upper transitional plug flow regime (UTPF), because of a loss of turbulence (see Flutes section), at a 

stage where increasing concentration and viscosity may enable support for tools within the flow. At the 

other end of the spectrum, if the flow is a plug flow of sufficient cohesive strength to form an 

intermediate-strength debris flow (upper part of the quasi-laminar plug flow regime, QLPF, or a fully 

laminar plug flow, LPF), tools will be held rigidly in place within the flow and form grooves. Between these 

two end members, transitional flows of progressively increasing strength can support clasts, with: (i) prod 

marks envisaged as forming in the upper part of the UTPF regime (e.g. Baas & Best, 2008); (ii) prod marks 

with striae at their upstream end likely reflecting stronger flows (uppermost part of the UTPF regime); and 

(iii) skim marks forming in stronger transitional flows (uppermost part of the UTPF and lower part of the 

QLPF regimes; Baas et al., 2009) that possess sufficient density to provide significant buoyant force (Fig. 

23). Skip marks dominated by relatively short marks will be the product of an upper UTPF regime, 

whereas skip marks consisting of repeated longer skim marks are likely formed in the lower QLPF regime. 

Roll marks are most likely the product of low concentration, low viscosity flows with limited turbulence A
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(TF, TETF and LTPF), whereas skip marks that involve tumbling may reflect either: (i) low concentration, 

low viscosity conditions; or (ii) if the spacing between tumble marks is greater, a higher buoyancy 

associated with transitional flows such as UTPF. Both forms require relatively planar beds to pass over, are 

unlikely to be able to form over surfaces composed of flutes, and cannot form under higher concentration 

flows such as upper QLPFs (Fig. 23).  

The influence of tool properties on the nature of discontinuous tool marks

The nature of the tools themselves, and the availability of tools, also helps to determine the character of 

tool marks. However, the tools carried by a flow are at least partially controlled by the fluid dynamics, 

which will limit the maximum size and density of the particles. Particle shape is a more independent 

parameter, although as noted earlier (see Morphology and abrasion of mudstone clasts) it is in part a 

function of travel distance for tools such as mudstone clasts. The shape of particles will affect the nature 

of the tool marks and in some cases, notably where fossils are the tools, they can produce very 

characteristic tool marks (e.g. Dżułyński & Ślączka, 1958, 1960; Dżułyński & Walton, 1965; Howe, 1999). 

Similarly, the presence of fine striae in some prod marks and skim marks, implies particles with sharp 

asperities. Particle shape is also known to affect saltation with trajectories becoming longer and lower, 

and thus flatter, with decreasing sphericity (Williams, 1964; Rice, 1991), thus potentially affecting contact 

angles with the substrate.

DISCUSSION 

Distribution and association of scour marks and tool marks: a process explanation

The present analysis of formative mechanisms for the range of different sole structures enables an 

explanation for their observed spatial and temporal distributions. As discussed earlier, flutes are typically 

associated with thicker sandstones in proximal locations, whilst tool marks are frequently associated with 

thinner, more distal sandstones, and flutes and tool marks are typically found on different bedding planes 

at a given point spatially. Furthermore, large bulbous flutes are typically found up-dip from small spindle-

shaped flutes (Pett & Walker, 1971). To summarize the key process mechanisms proposed herein, large 

bulbous flutes are likely formed by turbulent and turbulence-enhanced transitional flows, whereas 

spindle-shaped flutes are associated with stronger transitional flows (LTPF and lower UTPF). 

Discontinuous tool marks may be formed by a variety of flow types, from laminar to turbulent. However 

skim marks are associated with flows with significant buoyant force that enable the tools to gently graze 

the bed in low curving arcs. Similarly, prod marks with striae at their up-dip ends indicate flows that are A
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comparatively viscous with thickened basal sublayers. Finally, grooves and chevrons can only be formed 

by debris flows exhibiting a slip condition that have the cohesive strength needed to maintain tools, 

primarily mudstone clasts, in fixed positions at a given height within the flow that are dragged through 

the substrate. In the case of chevrons, this requires a fluidal layer at the base of the debris flow plug, 

suggesting a quasi-laminar plug flow. Observed examples of longitudinal variation from large bulbous 

flutes, to spindle-shaped flutes, to discontinuous and continuous tool marks therefore suggest increasing 

flow cohesion downstream, and enables a process-orientated model to be proposed (Fig. 24A). 

Increasing flow cohesion downstream 

This progressive increase in cohesion is in agreement with the standard model for the formation of hybrid 

event beds (Haughton et al., 2003, 2009; Talling et al., 2004) that proposes flows gradually transform 

downstream from non-cohesive to cohesion-dominated. In this model, as flows ingest mud, and 

decelerate as slopes decline, cohesive forces begin to progressively dominate over turbulent forces. These 

rheological changes would lead to a successive decline in flute size and their eventual disappearance, 

through the development of more transitional flows and discontinuous tool marks, and lastly the 

formation of grooves and chevrons as flows form debritic components that are likely associated with 

hybrid event beds (Fig. 24A). This longitudinal relationship between discontinuous tool marks, and 

grooves and chevrons, has not been demonstrated in the field, because tool marks have not typically 

been subdivided. However, the presence of hybrid event beds at the distal fringes of submarine lobes and 

basin plains (Talling et al., 2004; Hodgson, 2009; Spychala et al., 2017a) suggests that, in these cases, 

grooves and chevrons are preferentially found in distal locations. However, it should be noted that 

transformations can start and finish anywhere along the transport profile shown in Fig. 24.

Decreasing flow cohesion downstream 

Whereas the postulated model of longitudinal change from low to high cohesion explains the typical field 

observations of flutes and tool marks as summarized in the literature, some field observations predict the 

opposite transition from grooves in TA beds to flutes in TC beds (Table 1; Bouma, 1962; Crimes, 1973). 

These observations are in keeping with flows that start as high-concentration debris flows (or slumps and 

slides) and progressively dilute downstream, reducing flow cohesion. In such cases where initial high-

cohesion flows transform to lower-cohesion flows (e.g. Piper et al., 1999; Talling et al., 2004; Felix et al., 

2009), the distribution of flutes and tool marks should be reversed relative to the hybrid event bed model 

of increasing flow cohesion, with grooves up-dip, then discontinuous tool marks, and finally flutes, 

assuming that the flow remains erosive throughout (Fig. 24B). Such a scenario is supported by A
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observations of the Annot Sandstone, Peïra Cava, France, where grooves are present but hybrid beds and 

mass transport deposits are very rare, and decrease as a proportion of beds downstream (Table 3; Cunha 

et al., 2017). Some slumps with coeval overlying sands (‘welded slump-graded sand couplets’) do occur in 

Peïra Cava, and are interpreted as the products of partial flow transformation from high to low-

concentration (Stanley, 1982). Similarly, extensive grooves are observed in the Zumaia section of the 

Basque Basin, Spain (Tables 1 and 3; Crimes, 1973) yet hybrid beds are not reported in that time interval 

(Table 3). Analysis of the distribution of recurrence intervals suggests that the basin-plain beds at Zumaia 

were sourced from large-scale disintegrating slope collapses (Clare et al., 2014, 2015). Furthermore, a 

large, transversely sourced slump, down dip from Zumaia, exhibits grooves at its base (Crimes, 1976). 

Both the recurrence intervals and the observed slump with basal grooves suggest that, in this basin, the 

grooves were likely formed from flows transforming from high to low-cohesion flows. Again, it should be 

appreciated that Fig. 24 is schematic, and flows may initiate with different flow properties and may not 

transform entirely.

Other sole type distributions

Some debris flows may travel very large distances without undergoing significant flow transformation 

(Ducassou et al., 2013), and therefore may be able to form grooves at any point. Similarly, turbulent flows 

that do not undergo flow transformation to more cohesive flows may just form flutes, with velocity and 

flow depth controlling the change from larger to smaller flutes without a viscosity change, as envisaged by 

Allen (1971a). Potentially, other scenarios are also possible. The authors postulate that some sediment 

gravity flows may first transform from high to low-cohesion through a range of dilution mechanisms (e.g. 

Felix & Peakall, 2006; Felix et al., 2009), prior to the flow decelerating, and viscous forces becoming more 

important towards the end of the flow (e.g. Talling et al., 2004). The accompanying changes in flow 

cohesion would be expected to result in changes from grooves to sole structures associated with lower 

cohesion (Fig. 24A), and then a switch back to sole structures related to increasing cohesion (Fig. 24B), 

with the point of lowest flow cohesion determining the range of the more fluidal sole structures. It should 

also be noted that whereas the present discussion only considers longitudinal changes in flow properties 

and thus sole structures, there will also be changes laterally, depending on how flow structure changes 

from on-axis to off-axis.

Temporal changes in sole structures

The prevalence of flutes or tool marks on a given surface suggests that in many flows, at a given point 

spatially, the erosive phase of the flow only comprises a single flow type, and thus the major changes in A
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flow type are longitudinal. However, flutes can pre-date or post-date tool marks (Fig. 21B and C), 

indicating that in some examples there is also a temporal variation in the nature of flow types within a 

given event. This assertion assumes that the erosive surface formed from a single event. Flutes followed 

by tool marks suggests an increased cohesive flow strength over time, which may be associated with a 

forerunning more turbulent flow phase and a slower, more viscous, later flow component (for example, 

Figs 19B and 20A), or potentially with increased seafloor erosion (see Fig. 4 and discussion in the ‘Seafloor 

substrates’ section). Flutes post-dating tool marks indicates that flows have become more turbulent, 

suggesting that a more dilute turbulent flow phase followed a faster, higher-concentration, flow phase. 

Amy et al. (2005a) demonstrated experimentally that for stratified gravity currents, both of these 

scenarios are possible, and that the variation in the vertical distribution of viscosity controls whether the 

lower viscosity, more turbulent, layer either outruns or lags the higher viscosity layer. These temporal 

changes in flow properties have been postulated previously as explanations for flutes cutting tool marks 

or vice versa (Dżułyński & Sanders, 1962a; Draganits et al., 2008; Pyles & Jennette, 2009).

Implications for the Bouma sequence

The formation of grooves by dominantly bypassing debritic flow components, and the successive 

development of grooves and then flutes (or vice versa), demonstrate that the erosive surface and 

overlying deposits can be produced by different types of current. Thus many sole structures do not have a 

genetic link to the overlying turbidity current deposit, as encapsulated in the present pictorial Bouma 

sequence. It is noted here that Bouma (1962) and early workers (Dżułyński & Walton, 1965; Harms & 

Fahnestock, 1965; Walker, 1965, 1967) only considered the five internal divisions of the sequence, and did 

not incorporate a basal erosive surface. However, later workers added the erosive surface to the base of 

the Bouma TA division in summary diagrams of the Bouma sequence (Blatt et al., 1972), and then explicitly 

linked this surface to sole marks, including tool marks (Middleton & Hampton, 1973, 1976), to yield the 

standard pictorial Bouma sequence we know today and that has been almost universally adopted (e.g. 

Bridge & Demicco, 2008; Leeder, 2011; Talling et al., 2012a; Boggs, 2014; Pickering & Hiscott, 2016; 

Collinson & Mountney, 2019; Fig. 25). 

The recognition of erosion by one phase of the flow, for instance grooved surfaces formed by debris 

flows, and deposition by a subsequent phase of the flow, producing turbidity current deposits, also 

implies that the temporal gap between erosion and deposition can be considerable. Whilst a time gap 

between the erosive surface and the underlying deposit is implicit in the Bouma sequence, this time gap 

has been assumed to be very short for heterolithic and unconfined settings, based on the pioneering work A
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of Kuenen (1957) who stated: “the conclusion is inevitable that flute casts and drag marks [grooves] result 

from the same current that deposited the covering bed a moment later”. For bypass surfaces, such as 

channel bases and scours, no genetic linkage between erosive surface and overlying surface is typically 

implied (e.g. Stevenson et al., 2015), albeit the dominant sand-on-sand surfaces in axial locations (e.g. 

Hubbard et al., 2014) in these environments may limit the frequency of sole structures. Herein, the 

authors challenge the belief for unconfined and heterolithic settings that there is a genetic linkage 

between erosive surface and overlying deposit, and argue that the time gap in the Bouma sequence can 

be orders of magnitude greater than that previously envisaged.

The erosively grooved surface, if present, can be overlain by the full range of sandy Bouma sub-divisions 

(TA to TC) (Table 1; Fig. 11; Bouma, 1962; Pett & Walker, 1971; Crimes, 1973), again illustrating that there 

can be a temporal disconnect between the erosive and depositional phases of the same event. A grooved 

erosive surface, therefore, is neither a part of the sedimentological record of a waning turbidity current, 

nor the classical Bouma sequence. Here, a new pictorial version of the Bouma sequence is suggested (Fig. 

26), that returns to the original Bouma (1962) sequence as a record of waning turbidity currents, and 

recognizes that the basal components of the Bouma sequence at a given longitudinal or lateral position 

can be deposited on an erosive surface that may record waxing turbidity currents, and processes other 

than turbidity currents. These additional processes recorded by the erosive surface may include debritic 

flow components, and transformation of flows between debritic and turbiditic components where flutes 

and groove marks are superimposed. 

There remains debate as to whether the erosive surface and the overlying deposit are the product of the 

same flow, albeit one that may have multiple rheological components. As discussed earlier, most workers 

suggest that cross-cutting groove marks likely represent the product of single flows (e.g. Kuenen & Ten 

Haaf, 1958; Allen, 1971b), yet others have argued for multiple flows (e.g. Crowell, 1958; Mulder et al., 

2002). The present study suggests that debritic flow components are able to erode grooved surfaces 

whilst bypassing almost all sediment, as demonstrated by a modern example from the eastern 

Mediterranean (Fig. 12; Kastens, 1984). Furthermore, there is no record of a mudstone clast lag or coarse 

granules (particles >1 mm) immediately overlying these surfaces (cf. Talling et al., 2007c; Talling, 2013) 

and only occasional examples of clasts deposited at the ends of grooves. Consequently, this suggests that 

intermediate-strength debris flows can bypass the surface entirely, thus allowing successive debris flows 

to produce cross-cutting marks. Such intermediate-strength debris flows may exhibit limited shear mixing 

and consequently only generate small-scale turbidity currents (Talling et al., 2010; Talling, 2013). A key A
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question is whether the tails of these dilute flows might be expected to lead to deposition of turbiditic 

sands or just to muds on top of the grooves. The pristine grooves observed on the modern seafloor 

immediately up-dip of a debris flow deposit (Fig. 12; Kastens, 1984) show that some grooves can be 

preserved without any overlying deposit from the flow. It thus raises the clear possibility that the erosive 

surface and overlying deposits within the Bouma sequence may not be formed by a single flow event. 

Formation of flutes and tool marks under the head?

It has long been argued that flutes and tool marks form during erosion by the head of the turbidity 

current and that deposition takes place in the body (e.g. Kuenen & Ten Haaf, 1958; Middleton, 1967; 

Allen, 1971b; Cantero et al., 2008). The present study has shown that some tool marks, such as grooves, 

form under debris flows. Additionally, the presence of superimposed grooves and flutes, formed by 

debritic and turbulent turbidity current components of the same flow, show that sole marks cannot 

always form under the head of a flow. Where grooves precede flutes (Kuenen, 1957; Dżułyński & Sanders, 

1962a; Enos, 1969a; Ricci Lucchi, 1969a; Draganits et al., 2008), there must be erosion in some part of the 

turbiditic body of the flow, and for the opposite case of flutes preceding grooves, the debris flow 

component must form grooves under the body of the flow (Dżułyński & Sanders, 1962a; Ricci Lucchi, 

1969a), unless grooves and flutes are formed by separate flows. In systems with long flow run-outs, there 

may also be a substantial temporal gap between the erosion of grooves and flutes or vice versa, given that 

the lengths of clast-rich and clast-less debritic components can be up to several tens of kilometres (Fig. 

14; Amy et al., 2005b; Amy & Talling, 2006; Talling et al., 2012b). The hypothesis that flutes and tool 

marks can only form in the head is also at odds with the evidence that many turbidity currents bypass for 

much of their duration, with variations between bypass and erosion (Stevenson et al., 2015). Similar 

arguments can be made based on the superimposition of discontinuous tool marks on flutes (Fig. 21B) 

and vice versa (Fig. 21C), representing a change from turbulent flow to transitional flow in the former 

case, and the opposite in the latter case (Fig. 23). In both cases, this transition between turbulent and 

transitional flow is unlikely to happen within the spatial extent of the head. It would therefore appear that 

scour and tool marks are not limited to the head of the flow, and could instead form for a far greater 

proportion of some flows.

Implications for palaeocurrent measurements

The present synthesis illustrates that, when taking palaeocurrent measurements, it is important to note 

the type of sole structures measured, because this can provide a host of other information that can aid 

interpretation of flow properties and enhance prediction. However, there may also be a link between A
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palaeocurrents and sole structure type, at least in areas where interaction with topography is important. 

Kneller & McCaffrey (1999) pointed out that flow density, and density stratification, influence the nature 

of topographic interaction. Herein, it has been demonstrated that different sole structures are related to 

flows that have different density, stratification and rheology. Consequently, it might be expected that at a 

given point, different flow types, and therefore sole structure type, may give different palaeocurrent 

measurements when flows interact with topography. Beautiful examples of this are shown from the 

Marnoso-arenacea, Italy, where grooves show an enhanced variability relative to flutes, which is 

interpreted to be a result of topographic interaction (Muzzi Magalhaes & Tinterri, 2010, fig. 20; Tinterri & 

Muzzi Magalhaes, 2011; see also Bell et al., 2018). However, in other examples of interaction with 

topography flutes and grooves show similar palaeocurrents (Tinterri et al., 2016; Cunha et al., 2017). Such 

variations might reflect the nature of topography, and incident angles, as well as the aforementioned flow 

properties (cf. Kneller & McCaffrey, 1999). 

CONCLUSIONS

This paper presents a radical re-examination of the formative flow conditions of flutes and tool marks 

formed in deep-water environments, and demonstrates that flutes are not solely the product of turbulent 

flows, but can also be formed by transitional flows. The authors also show that discontinuous tool marks – 

such as skim marks and prod marks with up-dip striae – are the product of more cohesive transitional 

flows than flutes. Although, since the pioneering work of Kuenen (1953), grooves and chevron marks have 

been assumed almost universally to have been formed by turbidity currents, herein it is proposed that 

they are formed by debris flows, as well as slumps and slides as Kuenen (1957) recognized. Chevron marks 

further indicate that there must be a fluidal layer at the base of the debris flow, as seen in quasi-laminar 

plug flows (sensu Baas et al., 2009). The cross-cutting nature of some flutes and tool marks indicates that 

flows can also undergo transitions in flow type at a given spatial location. Flutes and tool marks are thus 

the product of a range of sediment gravity flow types, but in most cases they are not the product of low-

density or high- density non-cohesive turbidity currents, as envisaged in past literature. This fluid dynamic 

linkage is used herein to propose the first synoptic model that explains the observed longitudinal 

distribution of flute type, and different tool mark types, in terms of progressive changes in cohesion of 

flows down-dip, with flows transforming from turbulent non-cohesive flows, through transitional flows, to 

debris flows, or vice-versa. This model also provides a tool for more detailed analysis of the relationships 

between sole marks and palaeohydraulic conditions in outcrop.
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The recognition that grooves and chevrons are dominantly the product of debris flows (and also slumps 

and slides) demonstrates that existing pictorial descriptions of the Bouma sequence incorrectly assume a 

genetic link between the basal erosive surface and the overlying deposit. This work introduces a new 

pictorial version of the Bouma sequence that incorporates this insight and illustrates that the erosive 

surface can represent significant sediment bypass. In addition, it is shown that the formation of flutes and 

tool marks is not restricted to the head of gravity currents. It is also evident that substrate characteristics 

are crucial for sole structures, yet remain poorly understood. This study shows that modern seafloor 

substrates exhibit a narrow (<1 m thick) zone of shallow strengthening – up to an order of magnitude 

stronger than predicted by consolidation – in the top few decimetres to approximately 2 m. This variation 

in shear strength with depth may lead to rapid flow bulking if erosion breaks through this layer, and 

account for the bimodality in flow transformation. 

Although knowledge of aggradational bedforms has increased through decades of flow measurement and 

experimentation, almost no work has been undertaken on flutes and tool marks since the pioneering 

work of the 1950s to the early 1970s, thus restricting their utility to palaeocurrent indicators. In the 

interim, our knowledge of the fluid dynamics of sediment gravity currents, and the nature of the shallow 

seafloor substrate, have advanced enormously. Here, the authors demonstrate that it is possible to use 

flutes and tool marks to interpret: (i) flow type at deposition; (ii) the nature of flow transformation; and 

(iii) the nature of the basal layer within debris flows where chevron marks are present. This new 

understanding suggests that it is then possible to predict the nature of deposit type down-dip. The 

present study demonstrates that there is much information to be gleaned from a greater understanding 

of these sole structures, and that there is much more to be learnt from refocusing on these under-utilized 

sedimentary structures. 
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NOMENCLATURE

Cu Remoulded shear strength (Pa)

d Flow depth (m)

Fh Depth-averaged Froude number

FL Length based Froude number

g Acceleration due to gravity (9.81 m s-1)

h Water depth (m)

L Length of ship’s waterline (m)

U Mean downstream velocity (m s-1)

X Length of initial bed defect (m)

Xcrit Critical bed defect length (m)

ν Kinematic viscosity (m2 s-1)

σ Shear stress (Pa)
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FIGURE CAPTIONS

Figure 1. Schematic models for transitional flows: (A) to (E) transitional flows over a plane bed as a 

function of increasing clay concentration (top to bottom), depicted in sections parallel to flow (modified 

from Baas et al., 2009). The viscous sublayer (vsl) increases in thickness from ca 1 mm in turbulent flows 

as clay content increases, and shows a marked jump in thickness in the upper transitional plug flow (UTPF) 

regime; (F) to (J) transitional flows over a transverse bedform as a function of increasing clay 

concentration (top to bottom) showing the changing fluid dynamic features in the leeside of the bedform. 

Views are depicted parallel to flow (modified from Baas & Best, 2008). Flow is from left to right. See text 

for further details.

Figure 2. Morphological relationships for current ripples formed under different transitional flows. (A) 

Equilibrium ripple height, and (B) equilibrium ripple wavelength, as a function of sediment concentration 

(kaolinite clay) and transitional flow regime. TF = turbulent flow, TETF = turbulence-enhanced transitional 

flow, LTPF = lower transitional plug flow, UTPF = upper transitional plug flow, QLPF = quasi-laminar plug 

flow. Modified from Baas et al. (2011).

Figure 3. Estimation of the maximum clast size that can be supported by the yield strength (matrix 

strength) of a mud-rich fluid, and by buoyancy, for increasing kaolin concentrations. Modified from Talling 

et al. (2012) and Talling (2013).

Figure 4. Plots of undrained shear strength against depth for cohesive sediments from a range of modern 

deep-water locations worldwide (WD = water depth). Grey filled polygon indicates expected shear 

strength for each site assuming normal consolidation during burial (defined as virgin consolidation by 

Skempton, 1954). All sites feature apparently over-consolidated sediments in the top 1 m, despite the lack 

of significant post-depositional loading.

Figure 5. (A) Sample of near-seafloor sediment from offshore Angola (ca 1500 m water depth), illustrating 

the reworking by polychaete worms of background matrix into faecal pellets that line a burrow (modified 

from Kuo & Bolton, 2013). (B) Box core from western Mediterranean (ca 800 m water depth), showing 

contrast between high water content upper benthic boundary layer, and underlying consolidating clay 

sediment.
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Figure 6. (A) Relationship between remoulded shear strength and bed shear stress. Points ‘a’ to ‘d’ 

indicate the effects of a flow which exerts the same shear stress, on beds with different remoulded shear 

strengths. Where lower initial strengths occur, floc erosion (erosion of individual flocs) or surface erosion 

(erosion of surface layers as a result of the top of the bed liquefying) regimes are bypassed, leading to 

mass erosion (where ‘lumps’ of material are removed following local failure within the bed). Remoulded 

here refers to the shear strength following failure (where failure is the peak shear strength, as in Fig. 4) 

and prior to reaching the minimum shear strength that results from complete deformation. (B) 

Biostabilizing effect of EPS (extra-cellular polymeric substances) observed in the East Frisian Wadden Sea, 

Germany. As EPS surface concentration increases, so too does the erosion threshold. Points are shaded 

relative to the density of macrozoobenthos stabilizers. Both figures modified from Winterwerp & van 

Kesteren, 2004).

Figure 7. Flute morphology for the ‘ideal flute’, a parabolic flute (A), and flutes types as seen in planform 

(B). For simplicity, only the main flute types are shown, and asymmetrical forms are not included. Based 

on Allen (1971a, 1984).

Figure 8. Examples of flutes. (A) Large parabolic-transitional (bulbous) flutes on the base of a submarine 

channel, Lower Silurian Aberystwyth Grits, Wales. (B) Parabolic flutes, Aberystwyth Grits, Wales. Note the 

mixture of flutes, with some exhibiting prominent median ridges, whilst others exhibit simple smooth 

shapes. (C) Spindle flutes with some flutes exhibiting a pronounced spiralling pattern, referred to as 

twisted flutes by Allen (1971a), middle Ordovician Cloridorme Formation, Gaspé Peninsula, Quebec, 

Canada. Finger for scale.

Figure 9. Schematic evolution of flutes from an initial bed defect, showing stable and unstable 

developmental paths: V is the time-averaged areal mean erosion rate, a parameter that changes over 

time, t, and was measured in the experiments from repeated profiles; X is the initial length of the defect. 

In addition to the bed streamlines shown in planform for the final stable and unstable forms, the flow 

fields are shown longitudinally and in cross-section. These patterns were derived from experiments using 

clear water flows over plaster-of-Paris beds. Based on Allen (1971a).

Figure 10. Examples of grooves. (A) A series of smooth parallel grooves. Total width of parallel grooves ca 

0.4 m. Lower Silurian, Aberystwyth Grits, Wales. (B) Rounded grooves exhibiting occasional cross-cutting, 

Aberystwyth Grits, Wales, maximum width across groove field ca 1 m. (C) Parallel grooves, middle A
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Ordovician Cloridorme Formation, Quebec, Canada. Lens cap for scale, diameter 58 mm. (D) Grooves from 

the Miocene Marnoso-arenacea Formation, Italian Apennines, exhibiting a relatively smooth form. 

Hammer for scale, 33 cm long. (E) Close up of groove, showing internal striations, Cloridorme Formation, 

Quebec, Canada. Lens cap for scale, diameter 77 mm.

Figure 11. Examples of grooves, illustrating the relationships between sole structures and the overlying 

beds. (A) Grooves beneath massive Bouma A bed, updip of a clast-rich hybrid event bed, Miocene 

Marnoso-arenacea Formation, Italy (location shown in Bed 5 planform map, Fig. 14). (B) Grooves beneath 

a hybrid event bed, Lower Silurian Aberystwyth Grits, Wales, featuring a sandy debrite division (H3 

division of Haughton et al., 2009) shown by the lighter layer in the middle of the bed. (C) Grooves on 

lower surface cut by younger prod marks at a high angle to the grooves (palaeoflow of prods towards 

base of photograph). The grooved surface is overlain by rippled sands, representing the Bouma C division, 

with a strong palaeoflow component orientated in the direction of the grooves, and approximately 

transverse to the flow direction indicated by the prod marks. Yellow scale bar is 10 cm. (D) Grooves, cut 

by later flute marks; flow direction from top left to bottom right. The grooves and flutes are overlain by a 

Bouma B division, however there is insufficient definition of the laminae for photographic reproduction. 

Examples (C) and (D) are from samples in the collection of the Natural Sciences Education Centre at the 

Jagiellonian University, Kraków, Poland.

Figure 12. Photograph showing the formation of linear, parallel, flat-bottomed grooves bounded by lateral 

ridges, by a debris flow in the Angelico Basin, Calabrian Ridge, eastern Mediterranean Sea. Note how the 

groove width appears to match the size of the clasts. Modified from Kastens (1984).

Figure 13. Cutaway sketches showing a moving-frame view of tool behaviour and groove formation in a 

subaerial debris flow head: (A) Initial descent of tool (clast) towards the base; (B) initial cutting of groove; 

(C) completion of groove cutting and uplift of the tool into the flow; and (D) lateral movement of the clast. 

Note that the groove is being cut in a downstream direction, but that the base of the flow behind the 

head is moving more slowly than the front speed, therefore in a moving-frame of reference as shown 

here the groove appears to be cut upstream. Flow dynamics modified from Johnson et al. (2012).

Figure 14. (A) Planform distribution of grooves, and clast-rich and clast-poor cohesive debrite intervals for 

Beds 1, 3, 5 and 6 of the Miocene Marnoso-arenacea Formation, Italian Apennines (Bed numbers after 

Amy & Talling, 2006). The debrite intervals are parts of hybrid beds. In the case of Bed 5, grooves are A
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present for >40 km, and extend over areas up to ca 300 km2. Talling et al. (2007a, 2012b) provide 

information on the broader context of these beds. (B), (C) and (D) Representative cross-sections showing 

the nature of sedimentation above the grooved intervals; note spacing between logs is schematic. (B) The 

Ridracoli section for Bed 3 shows a downstream transition from a turbidite to a hybrid bed with the main 

grooved section underlying a clast-poor hybrid bed, with some grooves also present beneath the turbidite 

(location shown as line i to i’). (C) The Pianetto transect illustrates grooves beneath a hybrid bed showing 

lateral variability between a clast-rich and clast-poor debritic unit (Modified from Talling et al., 2012b); 

location shown as line ii to ii’. (D) Bed 5 deposits are summarized for the three eastern downstream areas 

[locations shown as line iii to iii’ in (A)], illustrating a hybrid bed with a clast-rich debrite overlying the 

grooves (modified from Talling et al., 2013a).

Figure 15. Plan view of a subaqueous debris flow experiment showing parallel grooves behind a detached 

head (right), with the main part of the flow shown on the left hand side, inside a 15 cm wide semi-circular 

channel [reproduced from Middleton & Hampton (1973) after Hampton (1970)].

Figure 16. Examples of chevrons. (A) Uninterrupted chevrons (ca 3 cm in width) changing downstream (to 

the left) into a groove mark (ca 1 cm in width). This suggests that a particle moved down through the flow 

until it started sliding along the bed, at which point it ceased to produce chevrons. (B) Close up of (A) 

showing detail of the uninterrupted chevrons. (A) and (B) From the Lower Silurian Aberystwyth Grits, 

Wales. (C) Interrupted chevrons, showing flow from right to left. From the middle Ordovician Cloridorme 

Formation, Gaspé Peninsula, Quebec, Canada.

Figure 17. Schematic showing the different types of chevron marks, reflecting the relative height of the 

clast with respect to the bed.

Figure 18. Summary of the different mechanisms that may potentially form grooves and chevrons. (A) 

Low-density turbidity current; (B) high density turbidity current (HDTC) with traction carpet; (C) high 

density turbidity current (HDTC) with a high concentration basal layer; (D) granular flow; (E) liquefied / 

fluidized flow. White arrows show flow direction.

Figure 18 (continued) Summary of the different mechanisms that may potentially form grooves and 

chevrons. (F) nearly liquefied debris flow [equivalent to the ‘liquefied debris flow’ of Talling et al., 

(2012a)]; (G) laminar plug flow with slip (debris flow); (H) quasi-laminar plug flow (debris flow) – grooves, A
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showing cutting by clasts attached to the base of the plug; (I) quasi-laminar plug flow (debris flow) – 

chevrons, substrate shows chevrons in cross-section (see Fig. 17) being formed by bow waves from clasts 

carried at the base of the plug. White arrows show flow direction; black arrows in (G), (H) and (I) show 

relative velocities and slip with respect to the base.

Figure 19. Models of hybrid-bed generation. (A) Forerunning turbidity current that cuts grooves, followed 

by a multi-layered flow, with high-density flow (HDF) overlain by a plug flow, and in turn a low-density 

flow (LDF). Modified from Fonnesu et al. (2016). (B) Standard model of hybrid-bed formation with 

deposition of sand from a forerunning turbidity current, followed by deposition of a clast-rich debrite, ‘L’ 

and ‘T’ represent laminar and turbulent flow respectively. The resulting deposit consists of sand at the 

base, an overlying clast-rich debrite, and finer-grained deposits (silts or sands) at the top, to give a hybrid-

bed. Modified from Haughton et al. (2009). (C) Debris flow with either a forerunning turbidity current 

depositing sand, or sand separating and settling at a late stage from the laminar plug. Modified from 

Talling (2013).

Figure 20. Models for groove formation by flows forming hybrid beds. (A) Model for grooves found up-dip 

of a hybrid-bed deposit. A bypassing debris flow, with or without a forerunning turbidity current, cuts a 

grooved surface, and a later turbidite is deposited on top of the grooved surface. (B) to (E) Models for 

hybrid beds with grooves at the base. (B) A flow with a debris flow component and a forerunning turbidity 

current. The head of the turbidity current erodes unconsolidated mud, and mud clasts, undergoing 

transformation into a debris flow, producing longitudinal segregation from frontal debris flow, through 

turbidity current, and back into a second debris flow component. (C) Longitudinal flow segregation, with 

multiple debrite components from initial conditions (for example, periodic retrogressive failure) or from 

separation and break-up of an initially single debris flow (e.g. Felix et al., 2009). The first debris flow cuts 

the grooves and is then followed successively by turbiditic and debritic components. (D) A single debris 

flow, with the frontal part cutting the grooves, followed by later separation and settling of sand from a 

laminar clast-rich plug flow (see Fig. 19C). (E) An initial debris flow cuts a grooved surface and bypasses 

down-dip. Given that debris flows deposit en masse, then the grooves may be left in pristine form on the 

sediment surface, or may be covered by a thin layer of unconsolidated mud from minor flow 

transformation of the top of the debris flow, and any subsequent hemipelagic deposition. If a turbidity 

current is generated prior to a thicker consolidated mud developing it may ‘ingest’ any unconsolidated 

mud, and then at some point deposit directly onto the grooved surface. In this case, one flow cuts the 

erosive surface and an entirely separate flow accounts for the deposit. A
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Figure 21. Examples of discontinuous tool marks. (A) Prod (Pr) and skim marks (Sk), with large groove (Gr) 

displaying internal striations, in the centre. Prod mark at top right, shows internal striae suggesting a lack 

of rotation in the impinging particle (see text for details). Two sets of tool marks are observed, with the 

second set (ca ENE–WSW in terms of photograph orientation) cutting the lowermost set. This suggests 

that the earlier tool marks represent a bypass surface. Example from middle Carboniferous Quebrada de 

las Lajas, Argentina. Lens cap for scale, diameter 58 mm. (B) Prod and skim (bounce) marks superimposed 

on earlier flutes, Oligocene Krosno beds, Outer Carpathians, Poland. (C) Prod and skim (bounce) marks 

eroded by later flutes, Outer Carpathians, Poland. Examples (B) and (C) are from samples in the collection 

of the Natural Sciences Education Centre at the Jagiellonian University, Kraków, Poland.

Figure 22. Styles of discontinuous tool marks as seen in cross-section (x–y) and planform (x–z). Modified 

from Allen (1984).

Figure 23. Proposed formative flow conditions for discontinuous tool marks. TF = turbulent flow, TETF = 

turbulence-enhanced transitional flow, LTPF = lower transitional plug flow, UTPF = upper transitional plug 

flow, and QLPF = quasi-laminar plug flow.

Figure 24. A process-orientated conceptual model for the longitudinal distribution of flutes and tool 

marks. (A) The distribution of flutes and tool marks is shown for a flow that is increasing in cohesion with 

longitudinal distance, as hypothesized for instance for many hybrid event beds. (B) The distribution of 

flutes and tool marks for flows that decrease in cohesion with distance; note that the order of the sole 

structures with distance is reversed relative to (A). Note that transformations can start and finish 

anywhere along the transport path, that flows may also vary temporally at a point, and that flutes and 

tool marks will vary with substrate conditions (see main text for details). TF = turbulent flow, TETF = 

turbulence-enhanced transitional flow, LTPF = lower transitional plug flow, UTPF = upper transitional plug 

flow, QLPF = quasi-laminar plug flow, LPF = laminar plug flow (see Fig. 1 and accompanying text for more 

detail on transitional flow types).

Figure 25. Evolution of the classic Bouma sequence in pictorial form. Bouma (1962) initially defined five 

divisions. Blatt et al. (1972) added an erosive base to the A-division a decade later, and Middleton & 

Hampton (1973, 1976) then explicitly linked the erosive base on the A-division to flutes and tool marks. 

The combination of the Blatt et al. (1972) and Middleton & Hampton (1973, 1976) figures gives us the A
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present form of the Bouma sequence and, in many cases, this explicitly links grooves, as well as flutes and 

other tool marks, to the base of the A-division (e.g. Collinson et al., 2006, as pictured here).

Figure 26. Revised Bouma sequence in pictorial form, highlighting the time gap between the basal surface 

and the basal sand-rich division, which can either be the Bouma A, B or C division. The nature of the 

erosive surface provides information on the flow that formed the surface and subsequently bypassed 

down-dip. Grooves indicate erosion by a debritic flow component, and therefore a debrite will be located 

down-dip unless flow transformation has occurred. Flutes indicate that a turbulent flow, or a weaker 

transitional flow (TETF, LTPF or lower UTPF), formed the surface and a turbidite will be located down-dip, 

unless flow transformation has subsequently occurred. For simplicity, discontinuous tool marks are not 

shown. However, prod marks are likely linked to weaker transitional flows, and skim marks, and prod 

marks with upstream striae, to stronger transitional flows (see text for discussion). There is evidence from 

some examples that the basal surface may even represent a separate flow event to the overlying turbidite 

and thus there is no genetic linkage (see text for details).

Table 1. Flute and groove occurrence as a function of Bouma division.

Table 2. Overview of some biological modifications to geomechanical behaviour of cohesive substrates 

that can affect the nature of erosion.

Table 3. Context of the major field areas considered, and the distribution of grooves and hybrid beds 

within them.
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 Commencing Bouma 

division 

% per division 

 A B C A B C 

Bouma (1962) – Peïra Cava, France‡ 
      

Total beds 106 92 684    

Flutes 20 12 9 18.9 13.0 1.3 

Grooves 31 14 2 29.3 15.2 0.3 

Crimes (1973) – Zumaia, Spain* 
      

Total 147 471 439    

Flutes alone 7 17 17 4.8 3.6 3.9 

Grooves alone 14 19 15 9.5 4.0 3.2 

Flutes and grooves together 13 29 47 8.3 6.2 10.0 

Pett & Walker (1971) – Cloridorme and 

St. Roch Fm, Canada; and New York† 

      

Total 40 155 69    

Flutes 34 45 30 85.0 29.0 43.5 

Small grooves and skim marks 1 29 23 2.5 18.7 33.3 

Large grooves 2 3 0 5.0 1.9 0.0 

‡From the proximal part of the basin, interpreted as channel-lobe transition in the lower part of the section, and proximal 

basin-plain in the upper part (see Table 3 for context). Bouma (1962) also reports data for the Marnoso-arenacea, Italy, and 

the Zollhaus Flysch, Switzerland; however, total numbers of beds studied and thus flutes and grooves observed are very 

small (22 and 13, respectively). 

*From basin-plain deposits (see Table 3 for context). 

†Note that there are also several other categories of discontinuous tool marks plus organic structures, that are only found 

in TB and TC beds, and not in TA beds. Cloridorme outcrops represent basin-plain deposits at the base, moving up towards 

lobes at the top (see Table 3 for context). 
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Modification type Biological process(es) responsible Reference source 

Increased shear strength  Crustacean and polychaete burrows 

improve permeability, increase 

dewatering and hence increase shear 

strength 

 

Meadows & Tait (1989) 

Enhanced compaction Internal burrow pressures result in 

localised/differential compaction  

Hammond (1970); Elder & Hunter 

(1980); Trevor (1978); Murray et al. 

(2002)  

 

Enhanced adhesion or interparticle-

bonding 

Formation of biologically-induced 

flocs, biofilms, or inter-particle 

bonding by EPS 

Fleming & Richards (1982); Denny 

(1989); Bromley (1996); Meadows et 

al. (1990); Reynolds & Gorsline (1992) 

 

Armouring of sediment surface Winnowing brings finer sediment to 

the surface, which is removed by 

currents, leaving an armouring of 

coarser sediments 

 

Singer & Anderson (1984) 

Loss of anisotropy/heterogeneity  Bioturbation mixes sediment vertically 

and laterally 

 

Winston & Anderson (1971); Gingras 

et al. (2008) 

Lateral variations in substrate strength  Spatially variable density of benthic 

colonisation results in localised 

differences in magnitude of 

modification 

 

Murray et al. (2002) 

Enhanced bed roughness  Seafloor expression of burrows 

provides (biogenic) roughness at the 

sediment-flow interface 

 

Meadows & Meadows (1991); Bromley 

(1996); Davies (1982); Poulos (2001) 

Reworking of cohesive sediments into 

faecal pellets 

Cohesive sediment excreted as bonded 

pellets by invertebrates such as 

polychaetes that line burrows (e.g. 

Ophiomorpha)  

 

Moore (1931); Colliat et al. (2011); Kuo 

& Bolton (2013) 
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Field area Age Basin type Environments Confined/ 

Unconfined 

Spatial distribution 

of grooves 

Grooves and 

facies 

Hybrid  

prone 

Other 

Cloridorme 

Formation, 

Gaspé 

Peninsula, 

Quebec, 

Canada
 

Ordovician Foreland
3 

Basin plain at base
3
; 

lobes towards top
4
 

Confined – at base; 

flow reflection from 

margins and thick 

mud caps on thick-

bedded calcareous 

wackes suggests 

ponding
3 

Not stated; appear to be 

throughout ca 145 km 

section. Correlate over ca 

11 km section at W
1–2

. No 

clear changes in sole 

marks longitudinally; but 

moving up/down 

stratigraphy. No change 

in detailed ca 5 km 

section at top. See also
5 

 

Associated with: 

calcisiltites 

(turbidites) – 1% 

grooved; 

calcareous 

wackes (75% 

turbidites; 25% 

hybrids) – 8%; 

greywacke hybrid 

beds – 11–26%
1–2

 

Yes – abundant 

hybrid beds 

Reflected bedforms 

in thick calcareous 

wackes (TCW)
3,6

. 

Examples shown are 

turbidites
3
. 55% of 

TCW beds
1–2

 have 

flutes, 8% grooved, 

but mixture of 

turbidites and 

hybrid beds
1
 

Marnoso-

arenacea 

Formation, Italy 

Miocene Foreland
7
, 

later 

transitioning 

to a piggyback 

basin
8
 

Basin plain in 

younger (inner 

stage
9
) deposits, 

MTCs and lobes in 

older (outer 

stage
9
)

10
deposits. 

Note: inner and 

outer stages record 

the evolution of the 

basin as the MAF 

closed
10

 

Confined – younger 

parts due to large 

flows
11

; older parts, 

due to tectonically 

controlled sub-

basins
12

 

In inner stage – present 

across outcrop although 

missing in most distal 

locations
11

. Very rarely 

described in outer 

stage
13,14

 

Associated 

with
10,11,15

, and 

upstream from
11

, 

hybrid beds (both 

clast-rich and 

clast-poor)
15

; also 

with thin, fine-

grained 

sandstones (F9 

facies sensu
12

 = to 

TB and TC)
16

 

Abundant 

hybrid beds
8,15

. 

Vary from >30–

40% (Units I,II), 

to >5–10% (III, 

IV)
10

 to ca 10–

20% (VI)
8
 in 

inner stage, 

decreasing to 

almost zero in 

transition to 

outer stage
8
 

Hybrid beds present 

across the basin 

apart from most 

distal regions, here 

they transform to 

thinly bedded sands 

and silts
11

. 

New data on groove 

distribution and 

relationships to 

hybrid beds are 

shown in Fig. 14 
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Peïra Cava 

Annot 

Sandstone, 

France 

Upper 

Eocene to 

Oligocene 

Foreland 

Basin, 

consisting of a 

series of 

complex 

ponded sub-

basins
17, 18

 

Proximal (Data 

of
20

), channel-lobe 

transition
19

; 

changes vertically 

to proximal basin-

plain
18

. Central – 

proximal basin-

plain
18

. Distal, 

basin-plain
18,19

 

Confined in the main, 

although some lobes 

are recognized
18

. 

Strongly ponded at 

the distal end
18,19

 

Grooves are present 

across the basin, from 

proximal to distal, with 

the possible exception of 

the most distal ponded 

basin in the north-

east
18,20

 

Grooves linked 

primarily to TA 

and TB beds, with 

rare TC beds
20

 

(Table 1). No 

subsequent 

detailed linkage 

to facies 

Hybrid beds 

(and mass 

transport 

deposits) very 

rare, and 

decrease as a 

proportion of 

beds down-

stream
19, 21 

 

See Fig. 7 of 
19

 for a 

detailed plot of 

hybrid beds (and 

mass transport 

deposits) with 

longitudinal 

distance 

Zumaia, 

Guipúzcoa 

region, Basque 

Basin, northern 

Spain 

Late 

Cretaceous 

to Eocene. 

Section of
22

 

Palaeocene 

to L. Eocene 

Probably 

formed as an 

oblique-slip 

(pull apart 

basin
23

 

Proximal is channel-

lobe transition 

zone, changing 

downdip to lobes 

and basin-plain at 

Zumaia itself
24

 

Unconfined for lobe 

deposits
24

, basin-plain 

sheets may be 

confined 

Areal palaeocurrents are 

shown, however flutes 

and grooves are not 

separated
25

 

Grooves 

associated with 

TA, TB and TC in 

Zumaia section
22

, 

and at base of 

localized slump
25

 

Absent from 

Palaeocene to 

Lower Eocene. 

Some hybrid 

beds from Mid-

Eocene
26 

 

Recurrence intervals 

suggest that basin-

plain deposits are 

likely the product of 

disintegrating 

slides
27,28

 

1–2
Enos, 1969a,b; 

3
Pickering & Hiscott, 1985; 

4
Awadallah & Hiscott, 2004; 

5
Measurement positions of data from Pett & Walker, 1971 (see Table 1) is not sub-divided into the Cloridorme, nor 

are the Cloridorme sections stated; 
6
Edwards et al., 1994; 

7
Ricci Lucchi, 1978; 

8
Tinterri & Tagliaferri, 2015; 

9
Ricci Lucchi, 1986; 

10
Muzzi Magalhaes & Tinterri, 2010; 

11
Amy & Talling, 2006; 

12
Mutti et al., 2003; 

13
Mutti et al., 2002; 

14
de Jager, 1979; 

15
Talling et al., 2004; 

16
Tinterri & Muzzi Magalhaes, 2011; 

17
Apps et al., 2004; 

18
Amy et al., 2007 (for groove areal distribution see fig. 

11); 
19

Cunha et al., 2017; 
20

Bouma, 1962 (see fig. 19); 
21

Stanley, 1982; 
22

Crimes, 1973; 
23

van Vliet, 2007; 
24

Cummings & Hodgson, 2011b; 
25

Crimes, 1976; 
26

Unpublished data of the authors; 

27
Clare et al., 2014; 

28
Clare et al., 2015. 
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