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Abstract
This study examined the relative contribution of exercise duration and intensity to team-sport athlete’s  
training load. Male, professional rugby league (n = 10) and union (n = 22) players were monitored 
over 6- and 52-week training periods, respectively. Whole-session (load) and per-minute (intensity) 
metrics were monitored (league: session rating of perceived exertion training load [sRPE-TL], 
individualised training impulse, total distance, BodyLoad™; union: sRPE-TL, total distance, high-
speed running distance, PlayerLoad™). Separate principal component analyses were conducted on 
the load and intensity measures to consolidate raw data into principal components (PC, k = 4). The 
first load PC captured 70% and 74% of the total variance in the rugby league and rugby union 
datasets, respectively.. Multiple linear regression subsequently revealed that session duration 
explained 73% and 57% of the variance in first load PC, respectively, while the four intensity PCs 
explained an additional 24% and 34%, respectively. Across two professional rugby training 
programmes, the majority of the variability in training load measures was explained by session 
duration (~60–70%), while a smaller proportion was explained by session intensity (~30%). When 
modelling the training load, training intensity and duration should be disaggregated to better account 
for their between-session variability.

Introduction
Measuring the training load of an athlete provides coaches and sports scientists with 
a quantitative representation of two theoretical constructs: the intensity and duration 
of the stimulus prescribed to an athlete (i.e. the external load) and their response 
across psycho-physiological and biomechanical pathways (i.e. the internal load) 
(Vanrenterghem et al., 2017). It can be measured by a variety of sources (e.g. Global 
Positioning Systems [GPS], heart-rate-monitors, perceptual-based) (Akubat et al., 
2012; Weaving et al., 2014; McLaren et al., 2017). Irrespective of the measurement 
method, it is common practice to mathematically represent this construct for each 
individual training session by multiplying a measure of intensity with the duration of 
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the activity completed to amalgamate into a single value (i.e. training load).  For 
example, a 60 min training session spent at a Borg category-10 ratio scale of 5 
would yield a session RPE training load (sRPE-TL) value of 300 arbitrary units (AU) 

(i.e. 5 x 60) (Foster et al., 2001). Similarly, moving at a mean speed of 1.5 m·s-1 for 
60 minutes would yield a total-distance of 5400 m for the whole session (Lovell et al., 
2013; Weaving et al., 2014). Repeated measures of daily training load are then 
collated within time-series analyses to represent how the previously defined 
constructs of training load accumulate and decay over time (e.g. across a training 
programme) such as week-to-week summations (e.g. 17000 m) (Akubat et al., 2012; 
Taylor et al., 2018) moving-averages or exponentially-weighted-moving-averages 
(Hulin et al., 2015; Williams et al., 2016; Cummins et al.,  2018). 
Given the lack of a gold-standard criterion, valid measurements of training load and 
their representation in time series analyses are thought to be those that can show a 
dose-response relationship with the outcomes of a training period such as changes 
in fatigue response, training induced adaptation, injury status or performance 
(Akubat et al., 2012; Sanders et al. 2017; Fox et al., 2018; Taylor et al., 2018). 
Recent investigations question the ability of current training load methods variables 
to accurately predict future training outcomes, such as injury, even when 
sophisticated analysis techniques are used (Carey et al., 2017; Fanchini et al., 
2018). Methodological issues have been reported to contribute to these findings, 
including the discretisation of continuous training load data (Carey et al., 2018), 
mathematical coupling (Lolli et al., 2018) and inappropriate use of ratios (Lolli et al., 
2018). Although these are important, an unconsidered area is how training load is 
mathematically represented for an individual training session.
One unconsidered area is the hierarchical level in which training load variables are 
aggregated (e.g. seconds, min, hourly, daily, weekly, monthly or yearly) 
(Anthanasopoulous et al., 2017). For example, the highest hierarchical level of data 
aggregation within a training load context might be a macrocycle (i.e. yearly [e.g. 
270,000 m]) then mesocycle (i.e. monthly [e.g. 41,000 m]) then microcycle (i.e. 
weekly [e.g. 14,500 m]) down to the lowest currently reported level of daily training 
load (e.g. 3,000 m). However, there has been little evaluation of the validity of 
amalgamating the intensity and duration of an individual/daily training session into a 
single variable. This is important to evaluate as most methods used to quantify 
training load (e.g., heart rate or GPS) sample at much higher frequencies (e.g. heart 
beat-to-beat, 10 Hz GPS speed sampling frequency). In other disciplines, time-series 
data represented at higher frequencies (e.g. min vs. daily) have been shown to 
provide different information to aggregated data at higher hierarchical levels, and by 
combining the information provided between the different levels of the temporal 
hierarchy (e.g. min by min, daily, weekly, monthly)  forecasting accuracy has been 
shown to improve (Anthanasopoulous et al., 2017). Considering this, given the 
perceived importance of training load monitoring (Akenhead & Nassis, 2015) it is 
necessary to evaluate the validity of current mathematical representations of training 
load, including the amalgamation of training session intensity and duration into a 
single value. However, the issue of time-series aggregation in respect to the 
monitoring of training load has been largely ignored.  
Conceptually, this is important to consider as historically, there has been much 
theoretical and experimental debate as to whether it is the volume or intensity of 
training that is most efficacious and/or effective to drive training-induced adaptations 
or other outcomes of training such as injury (Hawley, 2008; Seiler, 2010; Seiler et al., 
2013). Although the representation of training volume is often accepted as the 



duration of the session (time [s or min]), the most appropriate method to represent 
the intensity of a training session is disputed (Banister, 1975; Akubat & Abt, 2011; 
Akubat et al., 2012). For example, in team sports, using the mean intensity (e.g. 
either mean speed, rating of perceived exertion or heart rate) of a session leads to a 
loss of information by not taking into account the exponential physiological response 
to increasing exercise intensity during intermittent exercise (Akubat & Abt, 2011). 
This has led to methods of individualising the numerical representation of training 
intensity. The individualised training impulse (iTRIMP) was developed (Manzi et al., 
2009) to alleviate this issue, by weighting the exercise intensity using each 
individual’s heart-rate–blood-lactate relationship established during incremental 
exercise. From this, the current iTRIMP method is to calculate an iTRIMP value  for 
each heart beat and then sum to aggregate into a single value for that daily training 
session.
Considering this theoretical debate concerning the importance of session duration 
and intensity, it would seem counterintuitive to amalgamate intensity and duration 
into a single value. This is because, even when adopting a sophisticated 
individualisation of training intensity (e.g. iTRIMP), the mathematical method of  
aggregating volume and intensity into a single  value for each daily training session 
means there is a subsequent loss of information regarding training intensity when 
collecting repeated measurements of daily training load across a training 
programme. This is because the between-session variability in intensity is also 
concurrently bound to the between-session variability in training duration. For 
example, two different daily training sessions (e.g. long duration, low intensity; low 
duration, high intensity) can provide the same daily training load value despite clear 
differences in the intensity and durations of the sessions. Therefore, when collecting 
repeated measures within a time-series representation (e.g. daily training load over a 
two-year period of time), the two daily training sessions are numerically represented 
as being the same and subsequently inferred to elicit the same type and magnitude 
of training adaptation or outcome over time, despite clear differences in the intensity 
and volume of the exercise prescription. Despite the widespread use of these 
practices in professional team sports, little is known regarding the extent to which the 
variability in multiple aggregated daily training session values (e.g., sRPE-TL = 420 
AU; iTRIMP = 212 AU) over a period of training are affected by the variability in the 
duration or intensity of the training sessions. Specifically, further examination of how 
much of the variability in training load measures is captured by both duration and 
intensity across a period of training is needed. 
Therefore, the aim of the current study was to investigate the relationship between 
session duration, intensity and load represented by many common measures in 
professional rugby league and rugby union players across a period of training.  In 
particular, in order to better represent the total training-load- and intensity-related 
information, principal component analysis (PCA) was used to construct orthogonal 
(i.e. uncorrelated) linear-weighted composite variables (principal components, PCs) 
from training intensity and load variables collected across both professional rugby 
union and rugby league training programmes. Consolidating raw data into principal 
components as such eliminates redundancy and collinearity in the measured 
variables and thus identifies more clearly the key relationships between constructs of 
training intensity, duration, and load.

Methods
Participants
Ten male professional rugby league players from the same European Super League club (mean 
[standard deviation; SD]): age: 25 [3] y; stature 185 [6] cm; mass 94.0 [8.3] kg) and twenty-two male 



professional rugby union players from the same Championship club (mean [SD]: age: 27 [4] y; stature 
187 [7] cm; mass 102.2 [13.1] kg) took part in the investigation. Written informed consent was 
provided by all players prior to participation in the study. Institutional ethics approval was granted prior 
to commencement of the study, which conformed to the Declaration of Helsinki.
Design
Observational research designs were conducted across a 6-week pre-season (rugby league) and 52-
week complete season (rugby union).  Subject to player availability (e.g. injury, selection to match-day 
squad), training load, intensity and volume were monitored in every field-based training session or 
match (rugby league; n = 24 sessions; rugby union; n = 179 sessions). Rugby league and rugby union 
players provided a mean (SD) of 19 (4) and 103 (36) sessions, respectively (total individual 
observations; rugby league: n = 197; rugby union: n = 2266). 
In the rugby league dataset, measures of session training load collected were sRPE-TL (AU), iTRIMP 
(AU), total-distance (m) and BodyLoad™ (AU). Session intensity was calculated by normalising each 
training load measure by the session duration. Measures of session intensity were sRPE (AU), 
iTRIMP per min (AU·min-1), m·min-1, and BodyLoad per min (AU·min-1). 
In the rugby union dataset, measures of session training load collected were sRPE-TL (AU), 
PlayerLoad™ (AU), total- and individualised-high-speed-distance (m). Measures of session intensity 
were sRPE (AU), PlayerLoad per min (AU·min-1), meters per min (m·min-1), and individualised-high-
speed-distance per min (m·min-1). 
In both datasets, session duration (min) was the sole measure of session volume.  
Methodology
Training load variables were collected using either GPS, tri-axial accelerometer, heart rate or 
category-ratio scaling methods during or following each session or match. Prior to the 
commencement of the study, all players were familiarised with these methods of data collection as per 
the club’s usual practices. The content of the training programmes was prescribed by the respective 
coaching staff with no input from the research team. 
Whole-session training load measurements
Rugby league dataset
Total-distance was measured during each training session using the GPS component of the 
microtechnology device (SPI Pro XII, GPSports, Canberra, Australia) which attains a 15 Hz sampling 
rate through linear interpolation of the 5 Hz GPS chip (Weaving et al., 2014). These specific devices 
have been reported to provide an acceptable degree of validity and reliability during a high-intensity, 
intermittent, team-sport specific circuit (Johnston et al., 2014). Throughout the data collection period, 
the mean (SD) number of satellites and horizontal dilution of precision was 9 (1) and 0.97 (0.32), 
respectively suggesting suitable accuracy of the data (Malone et al., 2017). A 100 Hz tri-axial 
accelerometer also housed within the SPI Pro XII was used to collect BodyLoad™, which is a vector 
magnitude measure that aims to account for the total external load resulting from accelerations, 
decelerations, changes of direction and impacts and was collected as per previous methods (Lovell et 
al., 2013; Weaving et al., 2014). The tri-axial accelerometer used to quantify BodyLoad™ has 
previously demonstrated acceptable validity and reliability to quantify accelerations (Kelly et al., 
2015). Both total-distance and BodyLoad™ were calculated and exported from the manufacturer’s 
proprietary software (TeamAMS Version 16.1, GPSports, Canberra, Australia). 
iTRIMP was calculated by modelling each player’s heart rate-blood lactate response established 
during an incremental treadmill test (5 x 4 min stages commencing at 7 km·h-1 and incrementing by 2 
km·h-1) and from that determining a weighting factor that was then applied to each heart rate 
measured during training and matches as per previous methods (Akubat et al., 2012; Manzi et al., 
2013; Weaving et al., 2014; Taylor et al., 2017). Heart rate was collected during each training session 
(every 5 s) using Polar heart rate straps (T14, Polar, Oy, Finland) which transmitted continuously to 
the microtechnology device (SPI Pro XII, GPSports, Canberra, Australia). To determine the total 
iTRIMP value for each session, each 5 s heart rate during the session was weighted according to the 
individuals own established weighting factors and summed. Raw heart rate data for every training 
session were exported from the GPS manufacturer software (TeamAMS Version 16.1, GPSports, 
Canberra, Australia) into dedicated software to determine individual session iTRIMP values (iTRIMP 
Software, Training Impulse LTD, UK). 
Rugby union dataset
Each player wore a microtechnology device (Optimeye X4, Catapult Innovations, Melbourne, 
Australia; firmware version: 7.17) containing 10 Hz GPS, 100 Hz tri-axial accelerometer, gyroscope 
and magnetometer. GPS-based measures of total-distance and individualised high-speed-distance 
were downloaded to, and then exported from, proprietary Catapult Openfield Software (version 
1.12.0). High-speed-distance thresholds were individualised for each player as a percentage (> 61%) 
of the maximal velocity achieved during a 40 m maximal sprint which was assessed using the 
microtechnology device at regular intervals during the data collection period (Roe et al., 2016). 



PlayerLoad™ was derived from the 100 Hz tri-axial accelerometer as per previous methods (Boyd et 
al., 2011). Throughout the data collection period, the mean (SD) number of satellites and horizontal 
dilution of precision was 12 (1) and 0.72 (0.27), respectively suggesting suitable accuracy of the data 
(Malone et al., 2017).
For both the rugby league and rugby union datasets, each player provided their sRPE with limited 
third-party observation ~30 minutes after the completion of each training session and match, using a 
modified Borg category ratio-10 scale (Foster et al., 2001). This rating was then multiplied by training 
session duration to give sRPE-TL (Foster et al., 2001). 
Statistical Analysis
All analyses were performed separately on the rugby league and rugby union 
datasets. In both datasets, PCA was conducted twice using a custom-built algorithm 
in R (R v1.1.3, R Foundation for Statistical Computing, Vienna, Austria)—first, on the 
training load variables and then secondly on the intensity variables. In each case, 
PCA involved mean-adjusting and standardising the data to unit variance, and 
constructing a n by m matrix, X, containing m measured variables, each comprising 
n observations representing the individual training sessions. From these, the 

respective covariance matrices, XTX, were computed and eigen-decomposition 
performed to generate the eigenvalues and eigenvectors for each covariance matrix. 
The original (mean adjusted and standardized) data were then projected into the 
eigenspace of the covariance matrix, to construct a pair of n by m matrices 
containing the PC ‘scores’ for the respective training load and intensity data sets. 
Having done this the proportion of variance attributable to each constructed PC was 
determined from the respective eigenvalues. 
Subsequently, multiple linear regression analysis was used with a simultaneous enter method to 
examine the contribution of duration (first independent variable) and intensity (second to fifth 
independent variables, represented by four PCs) on each of the four training load PCs (dependent 
variables). The strength of each bivariate association was calculated using Pearson’s r, with 95% 
confidence intervals (CI) used to represent uncertainty in the estimates. To determine how much of 
the variance in each training load PC could be explained by volume (session duration) and intensity, 
the coefficient of determination (R2) was calculated for each stage of all models in both the rugby 
league and rugby union datasets. Variable inflation factors for the rugby league (duration = 1.16; 1st 
intensity PC = 1.00; 2nd intensity PC = 1.05; 3rd intensity PC = 1.07; 4th intensity PC = 1.03) and 
rugby union (duration = 1.19; 1st intensity PC = 1.08; 2nd intensity PC = 1.05; 3rd intensity PC = 1.06; 
4th intensity PC = 1.00) demonstrated minimal levels of multicollinearity within the regression models.

Results
Whole-session training load and intensity
Table 1 describes the mean and standard deviations of the observed training  load and intensity 
variables for the rugby league and rugby union datasets.
Table 2 describes the results of the principal component analysis (% of variance explained by each 
principal component and associated eigenvectors) for 1.) the measured training load variables and 2.) 
the measured training intensity variables for both the rugby league and rugby union datasets.  
Session duration and regression analyses
For the rugby league and union datasets, the mean (SD) session durations were 44 (16) and 75 (30) 
min, respectively.
Figure 1 displays the scatterplots and r value (95% confidence interval) for the relationship between 
the 1st (Fig 1A), 2nd (Fig 1B), 3rd (Fig 1C) and 4th (Figure 1D) training load PCs with session 
duration for the rugby league dataset.
Figure 2 displays the scatterplots and r value (95% confidence interval) for the relationship between 
the 1st (Fig 2A), 2nd (Fig 2B), 3rd (Fig 2C) and 4th (Figure 2D) training load PCs with session 
duration for the rugby union dataset. 
Table 3 and 4 present the results of the linear regression models for the rugby league (Table 3) and 
rugby union (Table 4) datasets, reporting the magnitude of variance (r2) in the 1st to 4th training load 
PCs that was captured by duration and the intensity PCs.



In the rugby league dataset, session duration explained 73% of the variance in the 1st training load 
PC and the combined intensity PCs explained 24% of the variance (Table 4). The intensity PCs 
explained more of the variance for the lower ranked training load PCs: 2nd (r2 = 0.76), 3rd (r2 = 0.75) 
and 4th (r2 = 0.80), with duration explaining 3–15% (Table 3). 
In the rugby union dataset, session duration explained 57% of the variance in the 1st training load PC 
and the combined intensity PCs explained 34% of the variance (Table 4). The intensity PCs explained 
more of the variance in the lower ranked training load PCs: 2nd (r2 = 0.84), 3rd (r2 = 0.82) and 4th (r2 
= 0.71), with duration explaining 0–5% (Table 4). 

Figure 1. Rugby league dataset. Scatterplots and r value [95% confidence interval] for the 
relationship between 1st (Fig 1A), 2nd (Fig 1B), 3rd (Fig 1C) and 4th (Figure 1D) training load 
PCs and session duration.

Figure 2. Rugby union dataset. Scatterplots and r value [95% confidence interval] for the 
relationship between 1st (Fig 3A), 2nd (Fig 3B), 3rd (Fig 3C) and 4th (Figure 3D) training load 
PCs and session duration.
Discussion
The main finding of the current study is that the majority of combined variance captured in the 
measured training load variables is explained by session duration. This was evidenced as PCA 
revealed that the 1st PC accounted for 70% and 74% of the total training load variance in the rugby 
league and union datasets, respectively. Subsequently, session duration was able to account for 73% 
and 57% of these variances (Table 3 and 4, respectively), suggesting that the majority of the 
aggregated whole training load metrics provide a greater reflection of session duration. While the 
majority of the variance in the measured training load appears to be associated with duration, the 
much weaker relationship between duration and the lower ranked training load PCs in the rugby 
league (2nd: R2 = 0.15; 3rd: R2 = 0.08 and 4th R2 = 0.03; Table 3) and rugby union datasets 
(2nd:Rr2 = 0.05; 3rd: R2 = 0.01 and 4th R2 = 0.00; Table 4) show that other factors, such as intensity, 
have a more auxiliary contribution to measures of training load. 
Collectively, the results of this study suggests that session duration reflected the largest portion of the 
variance shared by the aggregated daily training load variables over the training periods within 
professional rugby league and union training. As the summation and moving- or exponentially-
weighted moving average of these daily training load values are used to relate to important training 
outcomes such as injury (Hulin et al., 2016) or changes in physiological adaptation (Akubat et al., 
2012; Taylor et al., 2017), researchers and practitioners should note that these representations could 
be predominately representing the inherent variability in the duration of sessions across periods of 
time. This is logical, as total-distance is the mean speed of the session multiplied by the duration of 
the session, whereas sRPE-TL is the players’ perceived intensity of the session multiplied by the 
session duration. Therefore, although intensity is  reflected by these measures, by aggregating with 
session duration, it appears that duration becomes the major contributory component to the variability 
in training load over a period of time. 
To better understand the contribution of intensity to the representation of training load, the training 
load variables were normalised to session duration (whole session training load divided by session 
duration) and multiple linear regression performed using the intensity PC scores (Table 3 and 4). 
Indeed, when the 1st to 4th PC scores of intensity were regressed onto the individual training load PC 
scores, training intensity had a smaller contribution towards the total explained variance within the first 
(primary) training load PC (~30%). Interestingly, the combined intensity PCs were much more strongly 
related to the lower ranking (i.e., capturing less total variance) training load PCs (rugby league: 2nd 
PC: R2 = 0.76; 3rd PC: R2 = 0.75; and 4th: PC: R2 = 0.80; rugby union: 2nd PC: R2 = 0.84; 3rd PC: 
R2 = 0.82; and 4th: PC: R2 = 0.71) than to the 1st training load PC (rugby league: R2 = 0.24; rugby 
union: R2 = 0.34). These findings therefore support the lesser, relative contribution of intensity to 
training load measures, providing additional evidence to suggest that session duration is a primary 
explanatory variable.
Despite these findings, there is still much debate over whether it is the intensity or duration of the 
training session that is more important in driving adaptation or training induced responses which is 
likely dependent on the specific sport (Hawley, 2008). For example, in world class endurance runners, 
both the total volume of training (r = 0.75 to 0.77) and high-intensity-interval training volume (0.53 to 
0.56) completed over 3 to 7 year periods were substantially related to performance in this cohort. 



(International Association of Athletics Federations [IAFF] Score) (Casado, Handley, Santos-
Concejero, Ruiz-Perez, 2019). Therefore, theoretically, it is currently unclear whether it is duration or 
intensity that should be given more weighting within the representation of training load and future 
consensus is needed to establish how much weighting should be given to duration or intensity. 
However, the findings also suggest that for practitioners who manage large squads of players and do 
not have the resources to utilise such methods (e.g. community sport settings, youth teams), training 
duration could be a simple and cost-effective introductory approach to monitoring the training load of 
their athletes, as it provides adequate surrogate information of  commonly used training load 
measures that have been reported to associate with outcomes such as injury (Hulin et al., 2015; 
Cummins et al., 2018). For researchers and practitioners working at the elite level in team-sports, the 
findings suggest that time-series methods that can consider more granular representations of training 
intensity and duration (i.e. training load) should be explored in an attempt to provide greater sensitivity 
to explain important training outcomes such as changes in fitness, injury risk and/or performance. 
In the first instance, a disaggregation of daily training intensity and duration could be used when 
modelling training load. For example, rather than multiplying intensity and duration into a single daily 
variable (i.e. vector), disaggregating the training load into two individual variables of duration and 
training intensity within the model could be used to alleviate the co-dependence (between intensity 
and duration) that arises when aggregating into a single daily value. Alternatively, future research 
should explore the disaggregation of training load data at more granular levels. For example, while 
sRPE and average speed (m·min-1) provide an average session intensity, the iTRIMP provides a 
measure of intensity every 5s by multiplying with each individuals own weighting factor from the heart-
blood lactate relationship during an incremental test (Akubat et al., 2012; Weaving et al., 2014). 
Therefore, for a 60-min training session, 720 individual iTRIMP values are generated. However, by 
simply summating/aggregating these multiple iTRIMP values into a single value for the daily training 
session, it is highly likely that valuable information regarding the within- and between-session 
fluctuations in session intensity are overlooked (i.e. lower intensity, higher duration session vs. higher 
intensity, lower duration session). This omitted information could potentially provide practitioners and 
researchers with a more valid and reproducible signal of the true training load prescribed to team 
sport athletes. While the use of GPS tracking and heart rate is commonplace, much work still remains 
regarding the development of suitable signal processing approaches that can optimise the available 
training load data collected. For example, the use of Fourier transforms to analyse the frequency 
content of time series signals is widely used in other disciplines (Kammler, 2007; Walker, 2017) as is 
taking into account the combined information provided by all available levels of the temporal hierarchy 
(e.g. yearly, monthly, weekly, daily, minutes, seconds) when forecasting future outcomes like injury or 
training induced adaptations (Oliveria & Ramos, 2019). The findings of the current study suggest that 
such methods warrant future consideration when modelling the training load and responses over time 
to mitigate the predominant reflection of session duration when representing repeated measurements 
of training load across a training period. 
Finally, the study is not without its limitations. Whilst we have considered a number of different 
variables to represent the internal and external training load it is likely that the observed relationships 
might not hold true with the inclusion of other training load variables. In addition, whilst we conducted 
the analysis on two separate rugby codes, both datasets involved training prescription from a single 
club meaning the training practices (and the subsequent observed relationships between training 
intensity, duration and load) employed might not be representative of other sports and different 
training prescriptions. 
Conclusions
The current use of training load measures that aggregate training duration and intensity into single 
daily values are unlikely to provide much additional information to that provided by the duration of the 
training session across professional rugby league and rugby union training programmes. Future 
research needs to establish methods of representing the training load within time series analysis that 
can appropriately account for variability in training intensity between sessions.

Table 1. Mean ± standard deviation of the observed training load and training intensity variables for the 
professional rugby league and rugby union datasets. 

Training Load Training Intensity
Rugby League Dataset
Total Distance 3069 ± 1451 m 70.1 ± 21.8 m·min-1

iTRIMP 242 ± 98 AU 7.1 ± 2.2 AU·min-1

BodyLoad 63.3 ± 48 AU 1.5 ± 1.0 AU·min-1
sRPE-TL 276 ± 151 AU 6.2 ± 1.7 AU
Rugby Union Dataset
Total Distance 4567 ± 1973 m 63.2 ± 19.1 m·min-1

Individualised High-Speed Distance 201 ± 264 m 2.7 ± 3.0 m·min-1

PlayerLoad 427 ± 191 AU 5.9 ± 1.8 AU·min-1
sRPE-TL 298 ± 178  AU 3.8 ± 1.8 AU
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Table 2. Results of the two principal component analyses for the training load and training intensity measures. 
Including the % of variance explained and eigenvectors (component loadings) for each principal component. 

Load PC1 Load PC2 Load PC3 Load PC4 Intensity 
PC1

Intensity 
PC2

Intensity 
PC3

Intensity 
PC4

Rugby 
league

% of 
variance 
explained

69.5 17.1 10.6 2.7 63.0 22.7 8.7 5.4

iTRIMP 0.50 0.22 0.84 0.01 -0.54 0.27 -0.69 0.40
Total-

Distance 0.54 -0.06 -0.30 0.78 -0.56 -0.31 -0.13 -0.76

BodyLoad
™ 0.46 -0.78 -0.08 0.41 -0.49 -0.56 0.45 0.51

sRPE-TL 0.49 0.58 -0.45 0.47 -0.41 0.72 0.55 -0.08
Rugby 
union
% of 

variance 
explained

73.8 14.9 11.3 0.0 62.6 20.2 14.5 2.7

Total-
Distance 0.51 0.03 -0.29 0.73 0.62 -0.07 -0.30 0.72

High 
Speed 0.31 -0.91 0.25 -0.10 0.46 -0.30 0.83 -0.08

PlayerLoa
d™ 0.50 0.09 -0.16 0.00 0.62 0.08 -0.37 -0.69

sRPE-TL 0.39 0.37 0.83 0.00 0.14 0.95 0.27 0.08

Table 3. Results of the linear regression models from the rugby league dataset.
Response Variable Predictor Variables R2

Change Accumulated
Training Load PC1 Duration 0.73 0.73

Duration + Intensity 
PC1–4 0.24 0.97

Training Load PC2 Duration 0.15 0.15
Duration + Intensity 
PC1–4 0.76 0.91

Training Load PC3 Duration 0.08 0.08
Duration + Intensity 
PC1–4 0.75 0.83

Training Load PC4 Duration 0.03 0.03
Duration + Intensity 
PC1–4 0.80 0.83



Table 4. Results of the linear regression models from the rugby union dataset.
Response Variable Predictor Variables R2

Change Accumulated
Training Load PC1 Duration 0.57 0.57

Duration + Intensity 
PC1–4 0.34 0.91

Training Load PC2 Duration 0.05 0.05
Duration + Intensity 
PC1–4 0.84 0.89

Training Load PC3 Duration 0.01 0.01
Duration + Intensity 
PC1–4 0.82 0.83

Training Load PC4 Duration 0.00 0.00
Duration + Intensity 
PC1–4 0.71 0.71
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