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Abstract A methodology to assess input-variable sensitivity for sediment transport relations is pre-
sented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport
equations showing that it may be used to rank all input variables in terms of how their specific variance
affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexis-
tent, the results obtained may be used to (i) determine what variables would have the largest impact when
estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically
measure those variables for which a given transport equation is most sensitive; in sites where data are read-
ily available, the results would allow quantifying the effect that the variance associated with each input vari-
able has on the variance of the sediment transport estimates. An application of the method to two
transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the
potential of the method in places where input data are limited. Results are compared against Monte Carlo
simulations to assess the reliability of the method and validate its results. For both of the sediment transport
relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more
impact on sediment transport predictions than precise knowledge of other input variables such as channel
slope and flow discharge.

Plain Language Summary Estimation of accurate sediment loads in rivers is challenging; particu-
larly in areas where data needed to use sediment transport relations are scarce. Variability of the input
parameters implies difficulty in the ability to constrain the range of possible sediment transport estimates
obtained. Are all input parameters equally responsible for the variability or is there one that contributes
more to it? This paper presents a simple and useful methodology to rank the importance of each variable in
a given sediment transport relation. The results of the method, applicable to any sediment transport equa-
tion, specifically indicate how sensitive the relation is to each input parameter. This knowledge provides
useful guidance when planning or conducting field measurements within a research or engineering project,
in order to prioritize available resources so as to better constrain the variability of the input parameters and,
therefore, that of the sediment transport estimates.

1. Introduction

Assessing variable sensitivity and variability in sediment transport estimates has proven challenging to engi-
neers and scientists for many years [Garcia, 2008; Wilcock et al., 2009]. No sediment transport equation has
universal applicability [Gomez and Church, 1989] and estimates obtained with them may span orders of
magnitude [Recking et al., 2012] due mainly to their nonlinear nature [Recking, 2013a] and difficulties in
determining the critical shear stress for a given combination of sediment type and hydraulic conditions [Wil-
cock, 2010]. In many research projects and engineering applications, particularly in developing countries,
data are very limited or nonexistent. Even where data are available, variability plays an important role partic-
ularly in coarse-bed channels [Ni~no and Garcia, 1994, 1998; Cienciala and Hassan, 2016; D’Agostino and Lenzi,
1999]. These factors highlight the need for quick, easy to use, techniques to assess input-variable sensitivity
of sediment transport equations.

Previous studies in sediment transport sensitivity have mainly focused on the variability of the transport
estimates. Monte Carlo simulations have been commonly used as a tool to assess the uncertainty of
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sediment transport estimates by allowing input variables to change within a specified probability distribu-
tion [Osidele et al., 2003; Wilcock et al., 2009]. Such analyses have the advantage of determining the variabil-
ity in the transport estimates for many combinations of the input variables but this comes with a
computational cost that grows with the number of input variables and required number of simulations.
Other authors [e.g., Chang et al., 1993; Ruark et al., 2011; Judi Sani et al., 2015] have approached the problem
employing traditional sensitivity analysis which focuses on the variability of the deterministic transport esti-
mate by changing specific variables, one at a time, within a range of observed or assumed values. This tech-
nique has the advantage of being straightforward to use but is slow to implement and output variability
might be assessed without taking into account the probability distributions of the input variables and the
variability due to the interactions between them.

Recently, Bayesian statistics have been used to propose a model for sediment transport estimates [Schmelter
et al., 2011] and to analyze the uncertainty associated with model parameters as well as the sediment trans-
port computations themselves [Schmelter et al., 2012; Sabatine et al., 2015]. The Bayesian approach has the
advantage of incorporating the variability of input variables by formulating the sediment transport relations
using Bayes’ theorem, which allows taking into account real values (measurements) with simulated data to
constrain the possible values of input parameters and the likelihood of the outputs. Notwithstanding this
ability, the posterior distributions (results) are dependent on the prior distributions used, knowledge about
the possible values that input variables can take and knowledge about the likelihood of outputs. Such
knowledge, expressed in terms of credibility intervals, benefits from the availability of real data but, where
no data are available, educated guesses are needed thus introducing subjectivity into the analyses. The lat-
ter limitation is not exclusive to the Bayesian approach though, it is in fact a global problem that affects all
methodologies discussed. However, a methodology devised specifically to rank the contribution of each
parameter’s variance is still needed.

The Mean Value First Order Second Moment (MVFOSM) method is presented herein as an alternative to assess
input-variable sensitivity and to fill that gap. The method was implemented by the authors in the context of a
recent study conducted in four tropical mountain rivers, in Costa Rica where a clear need to estimate bed
load transport rates and evaluate input-variable sensitivity and uncertainty of bed load transport relations
with no data available for validation existed. Selection of the MVFOSM method was based on the following
aspects: (i) it is quick and easy to implement for any transport relation, especially with the aid of symbolic
math packages such as the Symbolic Math toolbox and MuPad [The Mathworks, Inc., 2016a, 2016b], or open
source libraries as SymPy [Meurer et al., 2017] which are widely available; (ii) allows assessing sensitivity for a
single input only or multiple input variables at the same time; (iii) requires only two values for each input vari-
able, namely a mean and a variance which can be estimated from basic knowledge of the river in question
and a one day visit to the site; (iv) as a local sensitivity analysis, it allows evaluating the effect of variations (per-
turbations) about a base state, i.e., the river’s current conditions (slope and grain size distribution), on the vari-
ability of the transport estimates; and (v) in places where there is sufficient information for one or more
variables, but there is still need to better constrain others, the method is able to point out which of the
remaining variables will introduce the largest variability in the transport estimates thus helping with the
design of field campaigns in such a way as to better invest the available resources. The methodology, devel-
oped to assess input-variable sensitivity and to better inform field measurement campaigns to complement
the transport estimates and associated uncertainty is presented next.

2. Methodology

2.1. Mean Value First Order Second Moment (MVFOSM) Method
The MVFOSM method has been used in structural engineering to determine reliability indices [e.g., Elishak-
off et al., 1987] as well as in hydraulics to assess variable sensitivity and error propagation of Manning’s
equation [e.g., Yen et al., 1986; Melching, 1992], and laboratory suspended sediment concentration measure-
ments with acoustic concentration profilers [Admiraal and Garcia, 2000]. Application of this methodology to
sediment transport relations is proposed as a tool to assess the relative importance of specific input varia-
bles in a sediment transport equation.

Given a function f of independent variables xiði51; 2; . . . ; nÞ, i.e., f 5f ðx1; x2; . . . ; xnÞ, the MVFOSM method
can be expressed as shown in equation (1). The method allows to determine the variance of the function
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based on the mean values of the input variables and their standard deviations. It must be noted that the
focus here is not on the variance of the function estimate but on the contribution of each variable to the
overall variance, i.e., the sensitivity of the equation to a specific input variable. This sensitivity is determined
by dividing each addend in equation (1) by the sum, as shown in equation (2). For more details regarding
the method, the reader might refer to Tung et al. [2006] for a thorough description of the theory behind it.
The relevant relations are as follows:

r2
f 5
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r2
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where r2
xi

is the variance of the ith variable; r2
f is the total variance of function f; and Cxi is the contribution

of the ith variable to the total variance.

2.2. Application of the MVFOSM Method to Sediment Transport Relations
The MVFOSM method is applied here to two sediment transport relations, the historical one originally pro-
posed by Schoklitsch [1962] and the more modern one proposed by Recking [2013b]. Both have been found
to produce appropriate results in tropical, mountain rivers in Costa Rica. Although the presentation is lim-
ited to these two transport equations for pedagogical purposes, the proposed analysis can be easily
extended to other transport relations.
2.2.1. MVFOSM Method for the Schoklitsch [1962] Transport Relation
The sediment transport relation of Schoklitsch [1962] was developed from experimental and field data for
channels with slopes of �1% or less [Bathurst, 2007]. It works well in supply-limited mountain rivers and in
rivers where some particle size classes are supply limited [Bathurst et al, 1987; Lopes et al, 2001]. It is given
by equations (3) and (4) where qs ½L2 T21� is the sediment transport rate, S is the channel slope, qw ½L2 T21� is
the specific flow discharge, qc ½L2 T 21� is the specific critical flow discharge (below which no transport
occurs), D40 ½L� is the characteristic particle size for which 40% of the grains in the distribution are smaller,
and R is the submerged specific gravity of the sediment (usually R 5 1.65). The Schoklitsch [1962] equation
reads
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The relation is expressed in dimensionless terms (5) with the use of the Einstein number q�5qs=
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To use the MVFOSM method with the Schoklitsch [1962] relation, (4) must be substituted into (5). The
expanded result is shown in equation (6).
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The derivatives with respect to the independent variables slope (S), characteristic grain size (D40), and spe-
cific discharge (qw) are shown in equations (7)–(9).
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The MVFOSM method relation of the Schoklitsch [1962] bed load transport relation is presented in equation
(10):
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The contribution of each independent variable to the total variance is determined with equations (11)–(13)
shown below.
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2.2.2. MVFOSM Method for the Recking [2013b] Sediment Transport Relation
The transport relation proposed by Recking [2013b] was developed with field data for rivers with slopes
ranging between 0.07% and 5.5.% and median particle sizes between 0.5 and 100 mm. It is shown in equa-
tions (14)–(17) where s�84 is the dimensionless Shields stress based on the characteristic particle size D84 ½L�
for which 84% of the grains in the distribution are smaller, s�m is the dimensionless mobility Shields stress,
D50 ½L� is the characteristic particle size for which 50% of the grains in the distribution are smaller, W ½L� is
the channel width, Rh ½L� is the hydraulic radius, and p is an empirical constant. The Shields stresses in this
relation allow for four different combinations. s�m is given for both sand-bed and gravel bed rivers and s�84

may be computed with the hydraulic radius Rh or the specific discharge qw. The latter option is an empirical
fit proposed by Recking [2013b] who indicates that in equation (15), the relation that uses the specific dis-
charge, s�845s�84ðqwÞ, provides better results than the one that uses the hydraulic radius Rh due to either dif-
ficulties in measuring Rh adequately or due to the fact that in mountain rivers bed load transport may not
always occur over the entire length of the bed within a given cross section.
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The MVFOSM method may be applied to any of the four combinations but here the focus will be in the rela-
tion that uses the specific discharge in gravel bed streams. This relation allows for a more thorough
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presentation and analysis of the potential of the MVFOSM method as compared to the relation for sand-
bed rivers for which the mobility number is a constant (equation (16)).

Application of the MVFOSM method to the Recking [2013b] equation with specific discharge for gravel bed
streams requires substitution of (15) and (16) into (14). The result shown in (18) is then differentiated with
respect to each independent variable (Appendix A) to obtain all relations required to compute the total var-
iance (19) and the contributions of each input variable (20)–(24). Note that equations (19) and (23) assume
that both the channel width and the specific discharge are independent variables although, commonly, the
specific discharge is computed as qw5Q=W where Q ½L3 T21� is the flow discharge. This is true for straight
channels and is considered a good assumption for natural river reaches with riffles but not for pools and
river bends where the specific discharge per unit width, and thus the shear stresses, vary within the cross
section as has been recently observed by Clayton [2012] in a bend of the Colorado River. Here the variables
are assumed to be independent of each other to assess their first-order specific contributions.
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3. Input-Variable Sensitivity Test Case

To assess the input-variable sensitivity of the transport relations, data from the Reventaz�on River in Costa
Rica [Castro, 2004] are used. The coordinates of the site under consideration are 0984903700N and
8384102300W (Figure 1). Table 1 shows the hydraulic variables considered for the example; Figure 2 shows
the average grain size distribution; Table 2 shows the range of characteristic grain sizes; Figures 3a and 3b
show two pictures of the site and Figures 3c and 3d show images taken 200 m upstream of the site of inter-
est where the material available for transport may be observed.

3.1. Input-Variable Sensitivity for the Schoklitsch [1962] Sediment Transport Relation
The Schoklitsch [1962] relation is assessed first, assuming that the standard deviations of all input variables
(rqw , rS, rD40 ) are an equal percentage of their mean value. If no information regarding the variability in
input variables is available, this assumption allows for determining which variable contributes more to the
total variance of the result. Before looking at a scenario where all variables are allowed to deviate from the
mean, three cases are presented for which one variable’s standard deviation, and therefore its variance, is
assumed to be zero and the other two are allowed to vary between zero and the mean value.
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1. Case 1: rqw 50 and 0 < ðrD40=lD40
; rS=lSÞ � 1

Figure 4a shows a contour plot where the colors indicate the contribution of the slope variance CS (11)
with grain size and slope standard deviations ranging between zero and their mean value. The dashed
white line indicates the condition for which both slope and grain size standard deviations are an equal
percentage of the mean value. In such a case, the contribution of the slope to the overall variance is
slightly below 50%. In general, this indicates that both slope and grain size contribute to the overall vari-
ance a similar amount when both variables deviate the same percentage away from the mean.

2. Case 2: rS50 and 0 < ðrqw=lqw
; rD40=lD40

Þ � 1
The contour levels in Figure 4b indicate the contribution of the grain size variance CD40 (12) with specific
discharge and grain size standard deviations ranging between zero and their mean value. The dashed
white line indicates the condition for which both specific discharge and grain size standard deviations
are an equal percentage of the mean value. In such a case, the contribution of the grain size to the over-
all variance is slightly below 70%. The remaining 30% corresponds to the specific discharge alone. There-
fore, the grain size is responsible for a larger percentage of the overall variance.

3. Case 3: rD40 50 and 0 < ðrqw=lqw
; rS=lSÞ � 1

Figure 4c shows the contribution of the slope under the assumption that the grain size has no variance.
The white dashed line indicates that if both specific discharge and slope deviate equal percentages from
their mean value, the slope contributes slightly less than 70% to the total variance. Under such condi-
tions, the specific discharge contributes the remaining 30% to the total variance.

In summary, the slope and the grain size contribute similar amounts to the total variance when the standard
deviations of the variables are assumed to be an equal percentage of the mean value, whereas the specific
discharge contributes less. Table 3 shows the contributions of each variable for a scenario in which all three
variables deviate an equal percentage from the mean. The result confirms the results inferred from the anal-

ysis of the three cases above. The grain size and the
slope contribute the most to the total variance.
Being able to characterize this variance or narrow it
by spending some time in the field conducting
measurements will reduce the overall variance in
the result.

Figure 1. Site location, Reventaz�on River, Costa Rica.

Table 1. Hydraulic Variables, Reventaz�on River, Costa Rica

Variable Q ðm3=sÞ W ðmÞ qw ðm2=sÞ S ð%Þ

Value 180 27 6.7 1.3
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In the case of the Schoklitsch [1962] relation, simple inspection of (6) suggests these results given that in the
first term, both the grain size and the slope have exponents of 1.5 whereas the specific discharge has an expo-
nent of one, and the second term is comparatively small. The contributions of each term might not be as clear
though when the variances of all three variables are different. In the case of the Reventaz�on River in Costa
Rica, at the site of interest the reach is relatively straight. Therefore, the specific discharge can be assumed to
have little to no variance within the cross section. Information regarding the slopes is not readily available but
for this analysis, it was assumed that its standard deviation is 10% of the mean for the flow conditions pre-
sented in Table 1. This kind of variability has been observed in the Cordon River, in Italy, during floods [D’Agos-
tino and Lenzi, 1999]. Since the Reventaz�on and Cordon are relatively similar mountain streams, the 10%
deviation is taken as a good first-order estimate in the absence of more data. The grain sizes shown in Table 2
suggest that the standard deviation for D40 can be assumed to be 30% of the mean value since under a nor-
mal distribution assumption, 99.7% of the possible values lie within three standard distributions. Using these
values, contributions are calculated and the results are shown in Table 4. The variation in the grain size con-
tributes more than 90% to the total variance of the transport estimate and being able to quantify its true vari-
ability in the field is very important in order to assess the variability of the transport estimates.

3.2. Input-Variable Sensitivity for the Recking [2013b] Transport Relation Using the Specific
Discharge and Gravel Bed River Combination
Input-variable sensitivity assessment of the Recking [2013b] transport relation is first conducted by assum-
ing that all variables deviate from the mean an equal percentage. Table 5 shows the contributions of each
variable to the total variance for this scenario. The results indicate that the three most important variables

in this equation are qw, D84, and S with the
grain size being the one with the largest contri-
bution. The channel width and the grain size
D50 contribute very little to the total variance.

Following the approach used to evaluate the
sensitivity of each variable in the Schoklitsch
[1962] relation, the three variables that contrib-
ute the most to the overall variance (qw ;D84; S)

Figure 2. Grain size distribution, Reventaz�on River, Costa Rica.

Table 2. Grain Size Ranges Measured by Castro [2004] for the Char-
acteristic Diameters Required in the Bed Load Transport Equations

Range of Values

Diameter (mm) Min. Mean Max.

D84 52 192 276
D50 27 52 119
D40 22 39 92
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will be paired up assuming that the variable that was left out has zero variance and the other two are
allowed to vary between zero and their mean value.

1. Case 1: rqw 50 and 0 < ðrD84=lD84
; rS=lSÞ � 1 Figure 4d shows the contribution of the slope to the

total variance under the assumption that the specific discharge has no variance. The white dashed line
indicates the condition for which both slope and D84 deviate an equal percentage from their mean value.
It indicates that under such conditions, the slope contributes less than 40% to the total variance and the
remaining 60% corresponds to the contribution of D84.

2. Case 2: rS50 and 0 < ðrqw=lqw
; rD84=lD84

Þ � 1 The contribution of D84 (20) to the total variance under
the assumption that the slope variance is zero is shown in Figure 4e. In such conditions, CD84 566% when
both specific discharge and grain size deviate an equal percentage from their mean value. The remaining
34% corresponds to the contribution of the specific discharge.

3. Case 3: rD84 50 and 0 < ðrqw=lqw
; rS=lSÞ � 1 This case is shown in Figure 4f where D84 is assumed to

have zero variance and the variances of the specific discharge and slope range between zero and their
mean value. The white dashed line indicates that when both qw and S deviate an equal percentage from
their mean value the slope contributes 55% to the total variance and the specific discharge 45%.

In summary, D84 is the input variable which contributes the most to the overall variance of the Recking
[2013b] transport relation in gravel bed rivers when the specific discharge is used instead of the hydraulic
radius to estimate the dimensionless shear stress s�84. When assessed against both slope and specific dis-
charge it contributed more than 60% to the total variance.

In the case of the Reventaz�on River, most of the variance comes from the grain sizes as shown in Table 2.
Table 6 shows the contributions of each variable to the total variance for the site. The variance of the chan-
nel width is not considered because it is relatively constant for the hydraulic conditions presented by Castro
[2004] (Table 1). For the other variables, the variances are equal to those used to assess input-variable sensi-
tivity of the Schoklitsch [1962] relation. As in that relation, a grain size is the variable that contributes more
to the total variance. Here D84 is responsible for 90% of the variance and D50 contributes only 4% to the

Figure 3. Reventaz�on River in Costa Rica. Images looking downstream-upstream (a, b) at the site of interest and (c, d) 200 m upstream,
respectively.
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total variance. The results obtained for the Recking [2013b] relation are not easily inferred by simple inspec-
tion of (18) as could be done with the Schoklitsch [1962] relation (6). The grain size for which 84% of the dis-
tribution is smaller appears both in the numerator and denominator with different exponents. The slope
also appears in the numerator and denominator as a factor and as an exponent. The use of the MVFOSM
allows assessing the sensitivity of the equation to each input variable.

3.3. Comparison of the MVFOSM Method With Results From Monte Carlo Simulations
One thousand Monte Carlo simulations were conducted to determine the variability of the Einstein dimen-
sionless number obtained with the Schoklitsch [1962] and Recking [2013b] sediment transport relations

Figure 4. Contribution of input-variable variance to total variance of the (a–c) Schoklitsch [1962] and (d–f) Recking [2013b] sediment trans-
port relations. Colors represent the contribution of the input variable on the horizontal axis (also indicated above the colorbar). The com-
plement values are equal to the contribution of the variable on the vertical axis. (a) CS for 0 < ðrD40=lD40

; rS=lSÞ � 1 and rqw 50; (b) CD40

for 0 < ðrqw =lqw
; rD40=lD40

Þ � 1 and rqw 50; (c) CS for 0 < ðrqw =lqw
; rS=lSÞ � 1 and rD40 50; (d) CS for 0 < ðrD84=lD84

; rS=lSÞ � 1 and
rqw 50; (e) CD84 for 0 < ðrqw =lqw

; rD84=lD84
Þ � 1 and rqw 50; and (f) CS for 0 < ðrqw =lqw

; rS=lSÞ � 1 and rD84 50.
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under different input-variable varia-
bilities. Specific discharge, charac-
teristic grain size (D40 and D84,
respectively) and slope were consid-
ered for the analysis. First, each vari-
able was allowed to have a standard
deviation equal to 10%, 20%, and
30% of the mean while the other
two had zero variability. Second, all

variables were allowed to deviate 10%, 20%, and 30% simultaneously from the mean. In the first set of sim-
ulations, it was assumed that the input variables had normal probability distributions whereas in the second
set, the assumption was that they have lognormal probability distributions. The standard deviations of the
result (rq� ) for all combinations were computed and the percent variation of the result (rq�=lq� ) was deter-
mined. For the set of simulations with the lognormal distributions, the mean and standard deviation values
used were those of the equivalent normal distribution. Results for the Schoklitsch [1962] are shown in Table
7 and results for the Recking [2013b] are shown in Table 8.

The percent variation (column 3 in Tables 7 and 8) obtained with the MVFOSM method and the Monte Carlo
simulations are, in most cases, very similar. This indicates that the hierarchy of input-variable contributions
to the overall variability of the transport estimates obtained with the MVFOSM method is valid. Regarding
the values themselves, in the case of the Schoklitsch [1962] relation, the absolute differences between
Monte Carlo with normal probability distributions (MCnorm) and the MVFOSM method are less than 5%
except for three cases: (1) the case in which D40 has a variation from the mean (rD40=lD40

) equal to 30%; and
the cases in which all variables have percent variations from mean equal to (2) 20% and (3) 30%. In the case
of Monte Carlo with lognormal probability distributions (MClog), all cases have absolute differences below
2.5%. In the case of the Recking [2013b] relation, the absolute differences between MCnorm and MVFOSM
are less than 5% for four cases. Three are the same as with the Schoklitsch [1962] relation and the additional
one is the case for which the characteristic grain size has a variation from the mean (rD84=lD84

) equal to
20%. All absolute differences between the percent variations of MClog and MVFOSM are below 5%.

In regard to the hierarchy of input-variable sensitivity, the MVFOSM method suggests that in the case of the
Schoklitsch [1962] relation, D40 and S were the most important variables, with the characteristic diameter
slightly more important in the case of the example presented here. Results obtained with Monte Carlo simu-
lations confirm the result. Taking, for example, the case for which each variable has a variation from mean
of 10%, MVFOSM ranks the contribution of each variable to overall variance in the same way as the Monte
Carlo cases (see Table 7). Variability of the Einstein number associated with D40, S, and qw are
ð16:9; 17:8; 17:0Þ; ð16:4; 16:3; 16:6Þ, and ð11:3; 11:2; 11:3Þ respectively. In the case of the Recking [2013b]
relation, results of Monte Carlo simulations also confirm input-variable hierarchy determined with MVFOSM,
namely D84 is more important than S which in turn is more important than qw. Although these results are
not tabulated, the Monte Carlo analysis also confirmed that the variability in the Einstein number associated
with D50 and W are very small (for rD50=lD50

510%; rq�=lq�55% and for rW=lW 510%; rq�=lq�53% for
both normal and lognormal distributions).

4. Discussion

The MVFOSM method presented here provides an estimate of the relative importance that each input vari-
able has in a sediment transport equation. The method is a first-order estimate of sensitivity which uses the

first two moments (mean and
standard deviation) and ass-
umes that (i) the input variables
are independent of each other
and follow a normal distribution
and (ii) to determine the contri-
bution of each input variable,
the transport relation may be

Table 3. Contributions of Each Input Variable in the Schoklitsch [1962] Equation to
the Total Variance Under the Assumption That All Variables Deviate an Equal Per-
centage From Their Mean Value

Input
Variable Mean lxi

Variation
rxi =lxi

(%)
Standard

Deviation rxi Variance r2
xi

Contribution
Cxi (%)

qw m2/s 6.7 10 0.67 0.45 18.5
D40 mm 39 10 3.9 15.2 41.7
S % 1.30 10 0.13 1.69E-6 39.7

Table 4. Contributions of Each Input Variable in the Schoklitsch [1962] Equation to the
Total Variance for Specific Conditions in the Reventaz�on River, Costa Rica

Input
Variable Mean lxi

Variation
rxi =lxi

(%)
Standard

Deviation rxi Variance r2
xi

Contribution
Cxi (%)

qw m2/s 6.7 0 0.00 0.00 0.0
D40 mm 39 30 11.7 136.9 90.4
S % 1.30 10 0.13 1.69E-6 9.6
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linearized around a base value given by
the river’s characteristics. The following
sections explore the effects of such
assumptions on the results of the
MVFOSM method in order to assess its
applicability and limitations.

4.1. Probability Distribution Choice
and Effect of Linearization
of Transport Relations
The use of a normal distribution with the
MVFOSM is acceptable insofar the stan-

dard deviations are not so high as to cause input-variable values that are unrealistic. For example, cases in
which the possible values associated with the input variables yield negative values will fall in this category.
The cases in Tables 7 and 8 where there is no agreement between the MCnorm and the MVFOSM results are
due to unrealistic variables in the Monte Carlo simulations. These were corrected with the use of lognormal
distributions which are representative of hydraulic variables [Parker, 2008] and have the advantage of
always being positive. The fact that the percent variations of the MVFOSM method results compared very
well with the MClog results also indicates the reliability of the method but care should be taken when con-
ducting analyses with large variations (>20–30%) of the input variables about mean values. The MVFOSM is
a local sensitivity analysis method and as such, only perturbations about a base state should be considered.
Large variations are not recommended due to the following two aspects: (1) unrealistic input variables could
end up being implicitly considered and (2) sediment transport relations are nonlinear but, the MVFOSM
method use of Taylor series expansion about the mean, assumes that the behavior is locally linear.

4.2. Variable Independence
The relation for the MVFOSM method presented in (1) assumes that the variables in question are indepen-
dent of each other. The assumption is made for the purpose of the analysis but it does not mean that in
nature they are not related. The relationship between the variables is usually presented with Lane’s balance
diagram [Lane, 1955; Rosgen, 1996] where the product of the sediment load and the sediment size is pro-
portional to the product of the stream slope and the stream discharge (qs3D / S3qw ). For instance, the
expression for the critical flow discharge in the Schoklitsch [1962] formula (4) includes the diameter and the
slope. The Schoklitsch [1962] formula is indeed a version of the Lane relationship. Considering the relation
between variables would require use of the variation of the MVFOSM method presented in (25) which
includes the covariance between variables. Determination of this covariance is something that cannot be
achieved under the data constraints that justified the implementation of the MVFOSM method for transport
relations in the first place.

r2
f 5
Xn

i51

Xn

j51

@f
@xi

@f
@xj

Cov xi; xj
� �

(25)

4.3. Site or Transport Relation Dependence of the MVFOSM Method
Alluvial rivers tend to a state of dynamic equilibrium by adjusting roughness, planform shape, cross-
sectional morphology, and bed slope [Nanson and Huang, 2017]. Quasi-universal relations describing the
bankfull geometry of sand-bed and single-thread gravel bed rivers have been developed by Wilkerson and

Parker [2011] and Parker et al.
[2007], respectively. These quasi-
universal relations and tendency to
dynamic equilibrium might suggest
that the MVFOSM method would
produce similar results for a given
transport relation at different sites.
However, this remains a hypothesis
to be confirmed by conducting the
analysis at different sites and with

Table 5. Contributions of Each Input Variable in the Recking [2013b] Equa-
tion to the Total Variance Under the Assumption That All Variables Deviate
an Equal Percentage From Their Mean Value

Input
Variable Mean lxi

Variation
rxi =lxi

(%)
Standard

Deviation rxi Variance r2
xi

Contribution
Cxi (%)

qw m2/s 6.7 10 0.67 0.45 23.3
D84 mm 192 10 19.2 368.6 45.4
D50 mm 52 10 5.20 27.0 2.0
S % 1.30 10 0.13 1.69E-6 28.5
W m 27 10 2.70 7.29 0.8

Table 6. Contributions of Each Input Variable in the Recking [2013b] Equation to
the Total Variance for Specific Conditions in the Reventaz�on River, Costa Rica

Input
Variable Mean lxi

Variation
rxi =lxi

(%)
Standard

Deviation rxi Variance r2
xi

Contribution
Cxi (%)

qw m2/s 6.7 0 0.00 0.00 0.0
D84 mm 192 30 57.6 3317.8 89.8
D50 mm 52 30 15.6 243.4 4.0
S % 1.30 10 0.13 1.69E-6 6.3
W m 27 0 0.00 0.0 0.0
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different transport relations. In the absence of such analyses, the MVFOSM method is considered site
dependent. The relations used herein were chosen both for pedagogical purposes and their tested applica-
bility in the tropical mountain rivers in Costa Rica. However, a next step would include bed load,
suspended-load, and total-load transport relations developed for sand-bed rivers. It must be noted that
even if the method is found to be transport relation dependent, it will always be useful at a given site if
data are available. Data availability will allow assessing the specific contribution of each input variable to
the overall variation under the specific conditions encountered at any given site.

4.4. Use of the MVFOSM Method Where Data Are Available
Use of the MVFOSM method where data are available and both the mean and standard deviations can be
readily calculated, is only recommended to quantify the percent contribution of each input variable to the
overall variance. Results for standard deviations obtained with MVFOSM do not compare to those obtained
with Monte Carlo simulations (column 2 in Tables 7 and 8), likely due to the effect of linearizing the trans-
port relation and neglecting all higher order terms. Similar methods involving second order terms and third

Table 7. Comparison of Einstein Number q�5qs=
ffiffiffiffiffiffiffiffiffiffiffiffi
gRD3

40

p� �
Standard Deviations and Percent Variations Obtained for the Schoklitsch

[1962] Relation With the Mean Value First Order Second Moment Method and Monte Carlo Simulations Using Normal and Lognormal
Probability Distributions for Different Input-Variable Variability Conditionsa

Variation From
Mean (%) rxi =lxi

ðqw ;D40; SÞ
Standard Deviation

rq� (MVFOSMb, MCc
norm , MCd

log)
Percent Variation (%)

rq�=lq� (MVFOSMb, MCc
norm , MCd

log)

(10, 0, 0) (3.04E-2, 2.68E-1, 2.70E-1) (11.3, 11.2, 11.3)
(0, 10, 0) (4.55E-2, 2.73E-1, 2.68E-1) (16.9, 17.8, 17.0)
(0, 0, 10) (4.42E-2, 2.69E-1, 2.73E-1) (16.4, 16.3, 16.6)
(20, 0, 0) (6.06E-2, 2.69E-1, 2.79E-1) (22.5, 21.5, 23.3)
(0, 20, 0) (9.08E-2, 2.88E-1, 2.73E-1) (33.7, 37.4, 33.4)
(0, 0, 20) (8.85E-2, 2.73E-1, 2.88E-1) (32.9, 31.5, 33.4)
(30, 0, 0) (9.08E-2, 2.69E-1, 2.93E-1) (33.7, 33.2, 34.1)
(0, 30, 0) (1.36E-1, 3.30E-1, 2.67E-1) (50.6, 83.8, 52.7)
(0, 0, 30) (1.33E-1, 2.78E-1, 3.14E-1) (49.3, 45.4, 47.0)
(10, 10, 10) (7.02E-2, 2.75E-1, 2.76E-1) (26.1, 26.2, 26.3)
(20, 20, 20) (1.40E-1, 2.93E-1, 2.96E-1) (52.2, 58.4, 52.4)
(30, 30, 30) (2.11E-1, 3.49E-1, 3.53E-1) (78.2, 97.8, 80.6)

aMean Einstein number and sediment transport per unit width values are lq�5 2.69E-1 and lqs
5 8.34E-3 m2/s. Note that D40 is used

for the conversion.
bMVFOSM, Mean Value First Order Second Moment Method.
cMCnorm, Monte Carlo with normal probability distributions.
dMClog, Monte Carlo with lognormal probability distributions.

Table 8. Comparison of Einstein Number q�5qs=
ffiffiffiffiffiffiffiffiffiffiffiffi
gRD3

40

p� �
Standard Deviations and Percent Variations Obtained for the Recking

[2013b] Relation With the Mean Value First Order Second Moment Method and Monte Carlo Simulations Using Normal and Lognormal
Probability Distributions for Different Input-Variable Variability Conditionsa

Variation From Mean (%)
rxi =lxi

ðqw ;D84; SÞ
Standard Deviation

rq� (MVFOSMb, MCc
norm , MCd

log)
Percent Variation

rq�=lq� (MVFOSMb, MCc
norm , MCd

log)

(10, 0, 0) (1.48E-3, 9.20E-3, 9.29E-3) (16.0, 15.8, 15.5)
(0, 10, 0) (2.06E-3, 9.44E-3, 9.27E-3) (22.3, 24.2, 22.1)
(0, 0, 10) (1.63E-3, 9.24E-3, 9.46E-3) (17.7, 18.0, 17.0)
(20, 0, 0) (2.96E-3, 9.18E-3, 9.72E-3) (32.0, 31.5, 31.6)
(0, 20, 0) (4.12E-3, 1.07E-2, 9.40E-3) (44.7, 57.0, 44.4)
(0, 0, 20) (3.27E-3, 9.26E-3, 9.92E-3) (35.4, 34.8, 35.5)
(30, 0, 0) (4.43E-3, 9.28E-3, 1.05E-2) (48.1, 45.0, 45.5)
(0, 30, 0) (6.18E-3, 1.50E-2, 9.93E-3) (67.0, 133.4, 71.6)
(0, 0, 30) (4.90E-3, 9.55E-3, 1.10E-2) (53.1, 52.0, 51.1)
(10, 10, 10) (3.02E-3, 9.42E-3, 9.57E-3) (32.7, 33.4, 32.9)
(20, 20, 20) (6.03E-3, 1.10E-2, 1.15E-2) (65.4, 74.7, 70.4)
(30, 30, 30) (9.05E-3, 1.60E-2, 1.23E-2) (98.1, 161.4, 97.5

aMean Einstein number and sediment transport per unit width values are lq�5 9.23E-3 and lqs
5 3.12E-3 m2/s. Note that D84 is used

for the conversion.
bMVFOSM, Mean Value First Order Second Moment Method.
cMCnorm, Monte Carlo with normal probability distributions.
dMClog, Monte Carlo with lognormal probability distributions.
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and fourth moments have been developed for structural engineering applications [Kriegesmann, 2012;
Hong et al., 1999] and could potentially be adapted to the case of sediment transport relations. In the
absence of such approaches, the authors recommend that the MVFOSM presented herein be used to assess
input-variable sensitivity only.

5. Conclusions

A simple, quick-to-implement method for assessing input-variable sensitivity of sediment transport relations
has been presented and the results obtained were confirmed with the help of Monte Carlo simulations to
assess the reliability of the method. The value of the MVFOSM method for determining which variables of a
given sediment transport formula are most important to measure due to the effect they have on the overall
variance of the transport estimates has been shown. The importance of the method is twofold since it not
only indicates to which variable a given transport relation is most sensitive but also highlights the importance
of conducting adequate and representative measurements in the field. In the case of the sediment transport
relations tested, precise knowledge of sediment size distribution is more important than knowledge of other
input variables. The methodology proposed can be easily extended to other sediment transport formulations.

Appendix A

The derivatives for the Recking [2013b] transport equation are presented in this section due to the extent of
the relations.

@q�

@D84
52

14a2:5
3

a2
2

ða221Þ 4
D84

1

a5
D84

D50

� �21

D50
1

296a1p2:6ðgSÞpð3p21Þ
a6q2p

w

0
BBB@

1
CCCA

2
6664

3
7775

2
35a1:5

3

a2
a3

1
D84

1
74a1p2:6ðgSÞpð3p21Þ

q2p
w a6

� �	 


a15D3p22
84

a25

D4
84R4a4

6
D84

D50

� �a5

a4

S4
11

a35
S

D84Ra6

a45 5S10:06ð Þ4

a5517:6
ffiffiffi
S
p

26

a65
2

W
1

74D3p21
84 p2:6ðgSÞp

q2p
w

(A1)

@q�

@S
52

14b2:5
3

b2
2

ðb221Þ 20
ð5S10:06Þ2

4
S

1

8:8 ln
D84

D50

� �

S1=2
1

296b7b1gp3:6

b6q2p
w

0
BB@

1
CCA

2
664

3
775

1
35b1:5

3

b2

b3

S
12

74b7p3:6gSb1

q2p
w b6

� �	 


b15ðgSÞp21

b25
D4

84R4b4
6b5b4

S4
11

b35
S

D84Rb6

Water Resources Research 10.1002/2016WR020249

FERN�ANDEZ AND GARCIA MVFOSM METHOD FOR SED. TRANS. FORMULAE 8117



b45
D84

D50

� �17:6
ffiffi
S
p

26

b55 5S10:06ð Þ4

b65
2

W
1

74b7p2:6ðgSÞp

q2p
w

b75D3p21
84

(A2)

@q�

@qw
5

c6p3:6ðgSÞp S
D84Rc3

� �1:5

c1c2c3

5180S
D84Rc3

1

8288ðc221Þ S
D84Rc3

� �

c2

2
664

3
775

c15q2p21
W

c25
D4

84R4c4
3c4c5

S4
11

c35
2

W
1

74c6p2:6ðgSÞp

q2p
w

c45
D84

D50

� �17:6
ffiffi
S
p

26

c55 5S10:06ð Þ4

c65D3p21
84

(A3)

@q�

@W
5

S
D84Rd2

� �1:5

W2d1d2

70S
D84Rd2

1

112ðd221Þ S
D84Rd2

� �

d1

2
664

3
775

d15

D4
84R4d4

2
D84

D50

� �17:6
ffiffi
S
p

26

ð5S10:06Þ4

S4
11

d25
D84

D50

� �17:6
ffiffi
S
p

26

(A4)

@q�

@D50
5

14D5
84R4e4

1
D84

D50

� �17:6
ffiffi
S
p

27

17:6
ffiffiffi
S
p

26
� � S

D84Re1

� �2:5

D2
50S4 D4

84R4e4
1

� � D84

D50

� �17:6
ffiffi
S
p

26e2

S4
11

0
BBB@

1
CCCA

2

e15
2

W
1

74D3p21
84 p2:6ðgSÞp

q2p
w

e25 5S10:06ð Þ4

(A5)

References

Admiraal, D. M., and M. H. Garcia (2000), Laboratory measurement of suspended sediment concentration using an Acoustic Concentration
Profiler (ACP), Exp. Fluids, 28, 116–127.

Bathurst, J. C. (2007), Effect of coarse surface layer on bed-load transport, J. Hydraul. Eng., 133(11), 1192–1205.

Bathurst, J. C., G. J. L. Leeks, and M. D. Newson (1987), Discussion of bed load transport measurements by the vortex-tube trap on Virgilio
Creek, Italy, in Sediment Transport in Gravel-Bed Rivers, edited by C.R. Thorne, J.C. Bathurst, and R.D. Hey, John Wiley, Chichester, U. K.

Castro, C. (2004), Evaluaci�on de una metodolog�ıa de arrastre de sedimento por el fondo en los r�ıos de Costa Rica, Licentiate [in Spanish], Univ.
de Costa Rica, San Jos�e, Costa Rica.

Acknowledgments
The authors thank Cristina Wahrmann
and the ‘‘Instituto Costarricense de
Electricidad’’ (Costa Rican Institute of
Electricity) whose concerns about the
variability of the sediment transport
estimates due to input-variable
variability in the Costa Rican rivers
motivated the development of this
methodology. The authors also thank
the anonymous reviewers whose
comments to the original draft
contributed to improve the
manuscript. All data used are listed in
the tables.

Water Resources Research 10.1002/2016WR020249

FERN�ANDEZ AND GARCIA MVFOSM METHOD FOR SED. TRANS. FORMULAE 8118



Chang, C., J. Yang, and Y. Tung (1993), Sensitivity and uncertainty analysis of a sediment transport model: A global approach, Stochastic
Hydrol. Hydraul., 7, 299–314.

Cienciala, P., and M. A. Hassan (2016), Sampling variability in estimates of flow characteristics in coarse-bed channels: Effects of sample
size, Water Resour. Res., 52, 1–24, doi:10.1002/2015WR017259.

Clayton, J. A. (2012), Spatial variations in excess shear stress in a gravel-bed river bend, Phys. Geogr., 33(1), 68–85, doi:10.2747/0272-
3643.33.1.68.

D’Agostino, V., and M. A. Lenzi (1999), Bedload transport in the instrumented catchment of the Rio Cordon Part II: Analysis of the bedload
rate, Catena, 36, 191–204.

Elishakoff, I., S. van Manen, P. G. Vermeulen, and J. Arbocz (1987), First-order second-moment analysis of the buckling of shells with ran-
dom imperfections, Am. Inst. Aeronaut. Astronaut., 25(8), 1113–1117.

Garcia, M. (2008), Sedimentation Engineering (Manual 110): Processes, Management, Modeling, and Practice, 1132 pp., Am. Soc. of Civ. Eng.,
Reston, Va.

Gomez, B., and M. Church (1989), An assessment of bed load sediment transport formulae for gravel bed rivers, Water Resour. Res., 25(6),
1161–1186, doi:10.1029/WR025i006p01161.

Hong, Y. J., J. Xing, and J. B. Wang (1999), A second-order third-moment method for calculating the reliability of fatigue, Int. J. Pressure Ves-
sels Piping, 76(8), 567–570.

Judi Sani, S., E. Merufinia, and S. Nouri (2015), Evaluation of hydrodynamic and sediment transport equations and parameter sensitivity
analysis using the SRH_2D model, Sci. J., 36, 10.

Kriegesmann, B. (2012), Probabilistic Design of Thin-Walled Fiber Composite Structures, Mitteilungen des Instituts f€ur Statik und Dynamik der
Leibniz Universit€at Hannover 15/2012, 171 pp., Gottfried Wilhelm Leibniz Univ. Hannover, Hannover, Germany.

Lane, E. W. (1955), The Importance of Fluvial Morphology in Hydraulic Engineering, Am. Soc. Civ. Eng. Proc., 81, paper 745, 1–17.
Lopes, V. L., W. R. Osterkamp, and M. Bravo-Espinosa (2001), Evaluation of selected bedload equations under transport- and supply-limited

conditions, in Proceedings of the 7th Federal Interagency Sedimentation Conference(I), pp. I-192–I-195, U.S. Geol. Surv., Reston, Va.
Melching, C. (1992), An improved first-order reliability approach for assessing uncertainties in hydrological modeling, J. Hydrol., 132, 157–

177.
Meurer, A., et al. (2017), SymPy: Symbolic computing in Python, PeerJ Comput. Sci., 3, e103. [Available at https://doi.org/10.7717/peerj-cs.

103.]
Nanson, G. C., and H. Q. Huang (2017), Self-adjustment in rivers: Evidence for least action as the primary control of alluvial-channel form

and process, Earth Surf. Processes Landforms, 42, 575–594.
Ni~no, Y., and M. H. Garcia (1994), Gravel saltation II: Modeling, Water Resour. Res., 30(6), 1915–1924.
Ni~no, Y., and M. H. Garcia (1998), Using Lagrangian particle saltation observations for bedload sediment transport modeling, Hydrol. Pro-

cesses, 12, 1197–1218.
Osidele, O. O., W. Zeng, and M. B. Beck (2003), Coping with uncertainty: A case study in sediment transport and nutrient load analysis, J.

Water Resour. Plann. Manage., 129(4), 345–355, doi:10.1061/(ASCE)0733-9496(2003)129:4(345).
Parker, G. (2008), Transport of gravel and sediment mixtures, in Sedimentation Engineering (Manual 110): Processes, Management, Modeling,

and Practice, chap. 3, pp. 165–251, Am. Soc. of Civ. Eng., Reston, Va.
Parker, G., P. R. Wilcock, C. Paola, W. E. Dietrich, and J. Pitlick (2007), Physical basis for quasi-universal relations describing bankfull hydraulic

geometry of single-thread gravel bed rivers, J. Geophys. Res., 112, F04005, doi:10.1029/2006JF000549.
Recking, A. (2013a), An analysis of nonlinearity effects on bed load transport prediction, J. Geophys. Res. Earth Surf., 118, 1264–1281, doi:

10.1002/jgrf.20090.
Recking, A. (2013b), Simple method for calculating reach-averaged bed-load transport, J. Hydraul. Eng., 139(1), 70–75, doi:10.1061/

(ASCE)HY.1943-7900.0000653.
Recking, A., F. Li�ebault, C. Peteuil, and T. Jolimet (2012), Testing bedload transport equations with consideration of time scales, Earth Surf.

Processes Landforms, 37(7), 774–789, doi:10.1002/esp.3213.
Rosgen, D. (1996), Applied Fluvial Morphology, Wildland Hydrol. Books, Pagosa Springs, Colo.
Ruark, M. D., J. D. Niemann, M. Asce, B. P. Greimann, M. Asce, M. Arabi, and M. Asce (2011), Method for assessing impacts of parameter

uncertainty in sediment transport modeling applications, J. Hydraul. Eng., 137(6), 623–636, doi:10.1061/(ASCE)HY.1943-7900.0000343.
Sabatine, S. M., J. D. Niemann, M. Asce, B. P. Greimann, and M. Asce (2015), Evaluation of parameter and model uncertainty in simple appli-

cations of a 1D sediment transport model, J. Hydraul. Eng., 141(5), 1–13.
Schmelter, M. L., M. B. Hooten, and D. K. Stevens (2011), Bayesian sediment transport model for unisize bed load, Water Resour. Res., 47,

W11514, doi:10.1029/2011WR010754.
Schmelter, M. L., S. O. Erwin, and P. R. Wilcock (2012), Geomorphology accounting for uncertainty in cumulative sediment transport using

Bayesian statistics, Geomorphology, 175–176, 1–13, doi:10.1016/j.geomorph.2012.06.012.
Schoklitsch, A. (1962), Handbuch des Wasserbaus [in German], 3rd ed., Springer, Wien, Germany.
The Mathworks, Inc. (2016a), Symbolic Math Toolbox, Natick, Mass.
The Mathworks, Inc. (2016b), MuPad, Natick, Mass.
Tung, Y., B. Yen, and C. Melching (2006), Hydrosystems Engineering Reliability Assessment and Risk Analysis, McGraw-Hill, New York.
Wilcock, P., J. Pitlick, and Y. Cui (2009), Sediment transport primer: Estimating bed-material transport in gravel-bed rivers, Gen. Tech. Rep.

RMRS-GTR-226, 78 pp., U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colo. [Available at
https://qcnr.usu.edu/courses/sed_files/reaadings/Wilcock_et_al_Primer_GTR_226.pdf.]

Wilcock, P. R. (2010), Sediment transport in stream restoration: Rolling the dice, in 2nd Joint Federal Interagency Conference, pp. 1–2, Las
Vegas, Nev. [Available at https://acwi.gov/sos/pubs/2ndJFIC/Contents/3D_Wilcock_9th_FISC_ExpAbstract.pdf.]

Wilkerson, G. V., and G. Parker (2011), Physical basis for quasi-universal relationships describing bankfull hydraulic geometry of sand-bed
rivers., J. Hydraul. Eng., 7(1), 739–753.

Yen, B., S. Cheng, and C. Melching (1986), First-order reliability analysis, in Stochastic and Risk Analysis in Hydraulic Engineering, pp. 1–36,
Water Resour. Publ., Littleton, Colo.

Water Resources Research 10.1002/2016WR020249

FERN�ANDEZ AND GARCIA MVFOSM METHOD FOR SED. TRANS. FORMULAE 8119

http://doi.org/10.1002/2015WR017259
http://doi.org/10.2747/0272-3643.33.1.68
http://doi.org/10.2747/0272-3643.33.1.68
http://doi.org/10.1029/WR025i006p01161
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
http://doi.org/10.1061/(ASCE)0733-9496(2003)129:4(345)
http://doi.org/10.1029/2006JF000549
http://doi.org/10.1002/jgrf.20090
http://doi.org/10.1061/(ASCE)HY.1943-7900.0000653
http://doi.org/10.1061/(ASCE)HY.1943-7900.0000653
http://doi.org/10.1002/esp.3213
http://doi.org/10.1061/(ASCE)HY.1943-7900.0000343
http://doi.org/10.1029/2011WR010754
http://doi.org/10.1016/j.geomorph.2012.06.012
https://qcnr.usu.edu/courses/sed_files/reaadings/Wilcock_et_al_Primer_GTR_226.pdf
https://acwi.gov/sos/pubs/2ndJFIC/Contents/3D_Wilcock_9th_FISC_ExpAbstract.pdf

	l
	l
	l
	l
	l
	l

