
A constraint multi-objective evolutionary optimization 

of a state-of-the-art dew point cooler using digital twins

Abstract

This study is pioneered in developing digital twins using Feed-forward Neural Network (FFNN) 

and multi objective evolutionary optimization (MOEO) using Genetic Algorithm (GA) for a 

counter-flow Dew Point Cooler with a novel Guideless Irregular Heat and Mass Exchanger 

(GIDPC). The digital twins, takes the intake air characteristics, i.e., temperature, relative humidity 

as well as main operating and design parameters, i.e., intake air velocity, working air fraction, 

height of HMX, channel gap, and number of layers as the inputs. GIDPC’s cooling capacity, 

coefficient of performance (COP), dew point efficiency, wet-bulb efficiency, supply air temperature 

and surface area of the layers are selected as outputs. The optimum values of aforementioned 

operating and design parameters are identified by the MOEO to maximise the cooling capacity, 

COP, wet-bulb efficiencies and to minimise the surface area of the layers in four identified climates 

within Köppen-Geiger climate classification, namely: tropical rainforest, arid, Mediterranean hot 

summer and hot summer continental climates. The system monthly and annual performances in the 

identified optimum conditions are compared with the base system and the results show the annual 

improvements of up to 72.75% in COP and 23.57% in surface area. In addition, the annual power 
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consumption is reduced by up to 49.41% when the system is designed and operated optimally. It is 

concluded that identifying the optimum conditions for the GIDPC can increase the system 

performance substantially.

Keywords: Dew point cooler; Genetic algorithm; Multi objective evolutionary optimization; Neural network; 

Digital twins

Nomenclature

A area, m
2

Cp specific heat capacity, kJ/(kg°C)

COP coefficient of performance

dp dew point

Dh hydraulic diameter, m

De Eequivalent diameter, m

en Llatent heat, kJ/kg

G Cchannel gap, m

h convection coefficient, W/(m
2°C)

hm mass transfer coefficient, m/s

H channel height, m

hum humidity ratio, kg/kg

i enthalpy, kJ/kg

Le Lewis number

Nu Nusselt number

NL number of layers

P pressure, Pa

Qcooling cooling capacity, W

Q heat transfer, W

Qm mass flow rate, kg/s

Re Reynolds number

RH relative humidity

T temperature, °C

U air velocity, m/s

W electric power, kW

Subscripts

Subscripts

air air

dp dew point

dry dry channel



fan fan

in inlet

out outlet

pump pump

s surface

steam water steam

vap evaporated water

water water

wet wet channel

w wall

wb wet bulb

Greek symbols

Greek symbols

 Tthermal conduction coefficient, kW/(m °C)

 Ssurface wettability factor

φ working air fraction over the intake air

ɛ efficiency

ρ density, kg/m
3

Le Lewis number

Δ difference between two states

λf coefficient of friction resistance

ξ coefficient of local resistance

Abbreviations

Abbreviations

COP cCoefficient of pPerformance

DPCGIDPC gGuideless iIrregular dDew pPoint cCooler

IEC iIndirect eEvaporative cCooling

MVC Mechanical vVapor cCompression

MSE Mean sSquare eError

GA Genetic aAlgorithm

MOEO Multi oObjective eEvolutionary oOptimization

FFNN Feed-fForward nNeural nNetwork

1 Introduction

1.1 Background



To provide comfortable indoor air quality, air conditioners are needed in modern buildings but astronomical 

part of the energy supplied to buildings, i.e., up to 50% [1], is consumed by air conditioner systems. Energy 

intensiveness of the conventional Mechanical Vapor Compression (MVC) air conditioners [2], has led the 

researchers toward an efficient replacement [3]. Evaporative cooling system, with direct evaporative cooling

 (DEC) and Iindirect evaporative cooling (IEC) types, were introduced as an environmentally friendly cooling 

systems in the past decades [2,4,5]. The IECs are more preferred owing to their superiority in keeping the 

humidity within the acceptable levels [6,7]. Necessity of inventing more efficient cooling systems resulted in 

introducing the Dew Point Coolers (DPCs) by a remarkable potential in cooling down the intake air 

temperature to its dew point temperature [8,9]. The M-cycle Heat and Mass Exchanger (HMX) was the core 

initiative of this technology which caused a significant decrease in dew point and wet-bulb temperatures of the 

air in the wet channel leading to up to 30% higher cooling efficiency [10] with two main types: cross flow and 

counter-flow [11].

1.2 Literature review: dew point cooler

The first ever research was done in Coolerado® project in USA [10] where a cross flow DPC reached wet-bulb 

and dew-point efficiencies of 80% and 50%, respectively. Zhao et al. [12] identified that the northern and west 

regions of China were the suitable regions for DPC operation. Riangvilaikul and Kumar [13] experimentally, 

concluded that the wet-bulb and dew point efficiencies of a DPC were in the range of 92–114%, and 58–84%, 

respectively. Bruno [14] investigated the applicability of a DPC prototype in both commercial and residential 

buildings. Jradi et al. [15] achieved wet-bulb efficiencies of 70–117% with supply air flow rate of 300–

1500 m3
.h
−1

 in a cross-flow DPC. Pandelidis et al. [16] studied the effect of the inlet air parameters on 

performance of HMXs in different types of M-Cycle systems. Lin et al. [17] concluded that the saturation 

point of the working air is regardless of the intake air conditions. Xu et al. [18] conducted two studies by 

introducing a novel super performance DPC with 30–60% higher performance. It is also reported that the COP 

of the proposed system can reach 52.5 at the ideal operating condition with working air ratio of 0.36 [19]. In 

an experimental study, Lin et al. [20] found that the performance of the selected cross flow DPC was 

negatively affected by the wet conditions. The exergy flow and efficiency ratio of the cross flow DPC under 

various conditions [21], and the effect of sprayed water in the wet channel of a counter-flow DPC [22] were 

investigated. Other studies [23,24] were also carried out in which the key governing dimensionless numbers 

and correlations for the transient and steady-state characteristics were proposed. Wan et al. [25] selected two 

DPCs with two different air flow configurations and compared cooling effectiveness and product temperature 

of both types. A thermodynamic analysis on a hybrid membrane liquid desiccant dehumidification and DPC 

was done in which the targeted supply air temperature of 20.0–28.0  °C with the humidity ratio less than 

12.0 g/kg were reached [26]. Wan et al. [27] calculated the heat and mass coefficients in a counter-flow DPC 

with the NTU-Le-R method with maximum discrepancies of 6%. Liu et al. [28] reported the wet-bulb 

efficiency and COP improvements of a counter-flow DPC by 29.3% and 34.6% respectively, compared with 

the commercial DPCs. In addition, Liu et al. [29] identified the best operating conditions for the selected 

counter-flow DPC.

1.3 Artificial Intelligence in DPC, and the identified gap



Over the past decade, Artificial Intelligence (AI) is brought into the DPC technology which has led to 

outstanding results for performance prediction and optimum operation of DPCs. Pandelidis and Anisimov [30] 

used Response Surface Methodology (RSM) for a cross-flow M-cycle heat exchanger. It was concluded that 

performance of the system was mainly affected by supply air mass flow rate, inlet air temperature and relative 

humidity. Sohani et al. [31] used the Group Method of Data Handling-type neural network (GMDH) and Multi 

Objective Optimization (MOO) methods to predict the supply air properties and optimize the performance of a 

cross flow DPC. It was concluded that the COP and cooling capacity were improved by 8.1% and 6.9% 

respectively. Jafarian et al. [32] also used the same method for a counter-flow DPC, which could predict the 

supply air temperature. In addition, using MOO, COP and specific area of the cooler were optimized. Sohani 

et al. [33] compared the performance of the counter-regenerative and cross flow DPCs after identifying their 

optimum operating conditions. As a result, the proper climate for each DPC was introduced. Sohani et al. [34] 

also presented an hourly optimizations method for the DPCs employing the MOO. Pakari and Ghani [35] used 

the regression models to predict the performance of a counter-flow DPC. An optimization based study [36] 

revealed that the optimal channel length and working ratio for the considered DPC were 0.50 m and 0.40 

respectively.

Review of the existing literature revealed that the studies on DPCs have been mostly concentrated on the 

commercial HMXs. However, a novel counter-flow GIDPC has the best performance in terms of COP value 

i.e., 52.5 [18,19]. Xu et al. [18] pioneered in introducing the GIDPC through the numerical and experimental 

studies [19], and Akhlaghi et al. [37] proposed a data-driven model which was based on the Multiple 

Polynomial Regression (MPR). However, to date, no optimization algorithm, considering both operating and 

design parameters, is developed for the GIDPC. Thus, the lack of a robust AI model which can identify the 

optimum operating and design parameters of the GIDPC in diverse climates is identified as an outstanding gap 

for the state-of-the-art DPC. Identification of the dedicated optimum parameters in each climate, will reduce 

the construction cost and improve the GIDPC efficiency in terms of power consumption and cooling 

performance.

Therefore, this study is pioneered in proposing a constraint multi objective evolutionary optimization (MOEO) 

and digital twins for GIDPCs. The digital twins is developed using Feed-forward Neural Network (FFNN) 

method, and the MOEO is developed based on the Genetic Algorithm (GA) to, firstly, predict the performance 

of the system in any random operating condition using a big dataset and, secondly, to identify the optimum 

values of the operating and design parameters in diverse climates. A validated numerical model is used to 

construct a big dataset for training the FFNN model. The input parameters of the dataset include main 

operating parameters, i.e., temperature, relative humidity and velocity of the intake air, and key design 

parameters, i.e., working air fraction, HMX height and channel gap, and number of layers in HMX structure. 

Having developed the digital twins, the MOEO is used to find the optimum operating and design parameters to 

maximise the cooling capacity, COP, wet-bulb efficiency and to minimise the surface area of the layers, as the 

objectives of the MOEO, in four suitable climates for GIDPC operation based on the Koppen–Geiger’s 

classification [38].

The remaining parts are classified as follows: in , the GIDPC and the associated numerical model are 

explained. The digital twins and MOEO methods are included in . Eventually, selection of diverse 
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climate conditions, results and discussions are all provided in .

2 System description (GIDPC)

In this section, a 4-kW counter-flow DPC with guideless irregular HMX (GIDPC) is explained. The GIDPC is 

constituted of a novel corrugated HMX, product and exhaust air fans, water supply/distribution system (which 

comprises a water distributor, a circulating water pump, a water tank). Among which, the HMX is the key 

innovative part of the GIDPC. The schematic drawing of the HMX of the GIDPC is shown in Fig. 1. The 

proposed HMX is constructed by numerous layers which build the wet channels and dry channels for the 

cooling and evaporation processes. The wet channel is constructed by two facing wet surfaces while the dry 

channel is built by the adjacent two dry surfaces. On operation, the intake air enters the dry channel with 

specified temperature and humidity and while passing the dry channel, loses its heat to the adjacent wet 

channels by a remarkable decrease in its temperature. At the end of the dry channel the intake air is divided 

into two parts: working air and supply air. The working air, flows into the adjacent wet channel while the rest 

of it leaves the channel as the supply air. The amount of working air in the wet channel is specified by the 

working air fraction which receives considerable amount of heat transferred from the dry channel and the 

moisture from the surface of the wet channels. By completion of the heat and moisture transition, the working 

air leaves the wet channel as the warm and humified air which is called exhaust air. Compared to the 

traditional flat plate HMX, the guideless irregular HMX has some remarkable advantages. For instance, 

removal of the supporting guides in the channels has led to an astronomical reduction in air flow resistance. 

Moreover, the heat transfer area has increased as a result of the corrugated surfaces. A super performance wet 

material layer used to cover the wet surfaces, i.e., Coolmax-fabric, has provided a higher water absorption 

capacity, higher diffusion area and more evaporation rate. As a result of such high absorption capacity, the 

intermittent water supply scheme has implemented in the water distribution system which can minimize the 

water usage and the water pump power consumption. It was shown that under the standard test condition [19], 

i.e. intake air dry bulb temperature of 37.8  °C and wet bulb temperature of 21.1  °C, the prototype of the 

GIDPC has achieved the wet-bulb efficiency of 114% and the dew point efficiency of 75%. In addition, a 

significant increase was achieved in COP value, i.e., 52.5, by the optimal working air ratio of 0.364, compared 

to the commercial DPC with the same dimensions (52.5 vs. 18).

Section 4
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2.1 Numerical model

The finite element method is employed to treat the traditional mass and energy equations differentially, and the 

Newton iteration is applied to each considered element to pursue the equilibrium state in heat and mass 

transfer phenomena with some simplifying assumptions, i.e., heat transfer between the HMX and surrounding 

was ignored, heat and mass transfer was assumed to occur in steady state, the convective heat transfer in the 

walls of the channels were in vertical direction only, the walls were also considered to be impenetrable, 

thermal resistance of walls was ignored, and air within the channels was considered to be an incompressible 

gas. The numerical model was developed by applying the following equations to each of the selected 

computational elements along the channels  [18] :

The air enthalpy difference between the inlet and outlet of the dry element is equal to the total heat transfer 

between the air flow in the dry element and channel walls as shown in Eq.  (1) .

Heat and mass exchanger (a): heat and mass exchanger structure (b): corrugated surfaces (top view).



Wwhere   is specific heat capacity of air,    is the mass flow rate of air in dry channel,    is the air 

temperature in dry channel,    is the temperature of the wall and    is the heat and mass transfer area of 

computational element. The difference of humidity ratio (HR) between the inlet and outlet of the wet element 

is equal to the amount of water evaporated across the wet surface as shown by Eq.  (2) .

where    is the convective mass transfer coefficient between the working air flow and wet channel surface,  

 is density of the air in wet channel, hum
w

 and hum
air,wet

 are the humidity ratio of the working air at the 

wet wall temperature and wet channel air temperature respectively and σ is the wettability of the surface 

material. The convective mass transfer coefficient between the working airflow and wet channel surface is 

expressed as a function of the convective heat transfer coefficient and the Lewis number (  ) 

where n =  1/3. The convective heat transfer coefficient between the airflow and the channel wall mainly 

depends on the flow regime (which is laminar in this study i.e., 52.31  <  Re
dry

  <  1209 and 

5.38 < Re
wet

 < 1131) and can be calculated using Eq.  (3)  as follows:

where    is the Nusselt number which depends on the air flow regime  [18] ,    and    (m) are the thermal 

conductivity and the equivalent diameter respectively.

(1)

(2)

(3)
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The energy balance of air in the wet channel is considered by calculating the difference of air enthalpy 

between the inlet and outlet of a wet element through Eq. (4) which is equal to the sum of the heat transferred 

from the dry to wet elements and the change of airflow enthalpy in the wet element because of the evaporation.

where   is mass flow rate in wet channel and    is the working air fraction over the intake air.

As shown in Eq.  (5) , the amount of water evaporated from the wet element surface is equal to variation of the 

water flow rate between the inlet and outlet of the computational wet element.

Water enthalpy difference between the inlet and outlet of a wet element is caused by heat transfer between the 

water and airflow in the dry/wet channels as well as the latent heat of the evaporated water as expressed in Eq. 

(6) .

(4)

(5)
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where   , is the latent heat of the evaporated water.

Generally, the IECs performance is evaluated by several common formula provided by ASHRAE  [39]  in 

which the cooling capacity and COP are the main performance parameters. The system performance can also 

be evaluated using other metrics such as wet-bulb efficiency and dew point efficiency. The cooling capacity 

can be expressed by Eq.  (7)  as follows:

where    is cooling capacity,    is the specific heat capacity,    is the intake air temperature in dry 

channel,    is the outlet air temperature in the dry channel,    is working air fraction, and    is mass 

flow rate of intake air in dry channel.

COP can be expressed as Eq.  (8)  as follows:

where,    and    are the electrical power consumed by the fan and the pump respectively.

Wet-bulb efficiency evaluates the system capability in reducing the intake air temperature to its wet-bulb 

temperature. Similarly, the dew point efficiency considers the system potential in reducing the intake air 

temperature to its dew point temperature as shown in Eq.  (9) :

(6)

(7)

(8)
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where,    is the wet bulb efficiency and    is the wet-bulb temperature of the intake air in dry channel,  

  is the dew point efficiency and   is the dew point temperature of the intake air in dry channel.

where    is pressure drop,    is coefficient of local resistance,    is coefficient of friction resistance,    is 

hydraulic diameter,    is density and    is the air velocity.

Surface area of the layers is a parameter that is considered to control the cost which can be calculated using the 

Eq.  (11)  as follows:

where    is the surface area,   is the number of layers,    is height of the HMX and w represents the width of 

the surface. In the current GIDPC, the width of the corrugated surface is supposed to have the value of 0.39 

(m)  [19] .

3 Proposed methods: digital twins and multi objective evolutionary 

optimization

This section has two main contribution; I) The digital twins using FFNN is developed to follow the system 

behaviour; II) The MOEO using GA is applied to obtain the optimal operating and design parameters of the 

system in diverse climates.

3.1 Digital twins using Feed-Forward Neural network

(9)

(10)

(11)

Previous Version

Updated Version



Digital Twins can be defined as a digital replication of a physical entity. It can be also combined with the 

Internet of Things (IoT) and/or augmented reality. However, in the simplest case, it would be just a system 

identification for different purposes such as abnormality detection and system optimization [40]. Black box, 

grey box and weight box models are three classes of the system identification known as the main part of digital 

twins. The FFNN is used as a black box and data-driven model to build the digital twins. Neural Networks 

(NNs) are machine learning algorithms which can be used for data-driven prediction, regression and 

classification. NNs are inspired from human brain and are multi-layer networks of neurons which are 

constructed by: an input layer which accepts the input variables, single or numerous hidden layers, and an 

output layer which accepts the output variables.

The architecture of a FFNN, which is a specific type of NN is depicted in Fig. 2 where each neuron within 

each layer is connected to every one of the neurons in the following layer. Initialization process triggers when 

each of the connections is weighted by a random value which will be updated during the training procedure to 

reach the best fit with the lowest possible error values. In addition, there is a bias parameter which is used to 

adjust the output values of the weighted sum of the inputs to the neuron. Bias is a random constant which helps 

the model in a way that it can fit best for the given data.

where    represents the weight connecting the neuron    to neurone    in the next layer, n represents the 

number of the connections, and    is the corresponding bias.

(12)

Fig. 2

Structure of the FFNN.



Activation functions are needed to attach to each neuron and their role is to determine the importance of each 

neuron’s input in prediction of the outputs and to normalize the output of the neurons. Different activation 

functions are compared and it is found that the performance of the network in terms of Mean Square Error 

(MSE) is the best when the activation function is hyperbolic tangent sigmoid for the current GIDPC big 

dataset which performs through the function below:

where    is the activated value of the neuron   .

Randomly selected weights and biases are iteratively optimized through back-propagation process until the 

considered evaluation metric, e.g., the mean square error, is minimised. The back-propagation is an essence 

step in minimising the errors and maximising the model generalization  [41] . The holdout cross-validation is 

used to divide the big dataset into three sources: a training data set (70%), a validation data set (15%), and a 

testing data set (15%). The training data set is used to estimate the network weights, while the validation data 

set is used to monitor the network and calculate the minimum error during the iterations till network is 

stopped. The test data set is unseen data by network and task of the test data set is to decrease the bias and 

generate unbiased estimates for predicting future outcomes and generalizability. The test data set is used at the 

end of the iteration process for evaluating the performance of the model from an independently drawn sample.

A Bayesian Regularization (BR) is used as a regularization method in optimizing the weight and bias values, 

which is the linear combination of Bayesian methods and NN to determine the optimal regularization 

parameters. BR technique implements certain prior distributions on the model parameters as follows  [42] :

where D represents the big data set, i.e., X represents the inputs and Y represents the outputs,    is the 

sum of squared estimation errors, M represents the network structure,    and α are estimated hyper-parameters.  

  is sum of the weights’ squares which intends to decrease the overfitting probability of the model  [43] . 

Density function is used for updating the weights according to Bayes’ rule. The posterior distribution of w 

given α, β, D, and M can be written as:

where    is likelihood function of w,    is the prior distribution of weights under M, which is 

the probability of observing the data given w and    is a normalization factor or evidence for 

(13)

(14)
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hyperparameters  and .

In this study, as listed in Table 1, main operating and design parameters i.e., temperature, relative humidity and 

velocity of the intake air, working air fraction, HMX height and channel gap, and number of layers in HMX 

structure are all considered as input parameters. Additionally, main performance parameters i.e., supply air 

temperature, cooling capacity, COP, dew point efficiency, wet-bulb efficiency and surface area of the layers are 

considered as output parameters. The big data set is created using the newly defined operating ranges based on 

the literature [32,37] and with a purpose of covering wider ranges, by the validated numerical model [18].

3.2 Multi objective evolutionary optimization using genetic algorithm

Generally, optimization techniques are classified into four main categories  [44] : constrained, multimodal, multi 

objective and combinatorial. It can also be categorised into classical and metaheuristic optimization  [45] . In 

this study, the constrained multi-objective evolutionary optimization (MOEO) using Genetic Algorithm (GA) 

known as one of the random-based Evolutionary Algorithms (EAs) is selected as an optimization tool. 

Optimization which will help to reach the maximum potential of the GIDPC by identifying the optimum 

values of operating and design parameters and it can deal with system nonlinearity and ignores the local 

Table 1

Big Dataset specifications.

Type of parameters input parameters Minimum Maximum

Operating parameters

   (°C) 25 45

   (–) 0.10 0.80

   (m/s) 0.30 3.30

φ (–) 0.10 0.90

Design parameters

H (m) 0.80 3.00

G (m) 0.004 0.008

NL  (–) 100 200

Number of data points

Dataset breakdown

Training Validation Testing

78,125 70% 15% 15%

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.



minimums of the problem. Optimization is done in MATLAB and its correctness was validated in different 

studies [46,47]. The convergence of the MOEO is investigated through the cost versus number of iterations.

The cooling capacity, COP, wet-bulb efficiency and surface area of the layers are selected as objectives as they 

inherently consider the economic and engineering characteristics of the system simultaneously. The reason for 

selecting the cooling capacity and COP is to maximise the cooling performance and minimise the power 

consumption of the system simultaneously. Although the cooling capacity is included in the COP calculations 

but considering the COP only, will lead to irrational results as the focus may be only on reducing the power 

consumption only. Moreover, maximising the wet-bulb efficiency minimises the supply air temperature of the 

GIDPC. Eventually, minimising the surface area of the layers will lead to lower production cost. Considering a 

single objective can result in irrational solutions by ignoring crucial trade-offs in identifying the optimum 

values. For instance, the cooling capacity of a DPC can be improved by increasing the length of the channels 

whereas longer channels can lead to lower COP and higher pressure drop (more fan power) [48]. Thus, a multi 

objective optimization is necessary to find the best optimum balance between the objectives.

The optimization function is defined by fitness function and the constraint function. The trained FFNN, is the 

fitness function to be optimized which sets the variables of the problem and the optimization objectives. The 

constraint function implements the parameters defined ranges as restrictions on the fitness function.

In the present optimization method, the input parameters are assumed as genotype and output parameters are 

considered as phenotype. Out of seven input parameters listed in Table 1, the temperature and relative 

humidity of the intake air vary by climates but the remaining five input parameters are chosen as decision 

variables. Hence, for each specific climate, a MOEO is performed, which will result a unique optimum design 

for that climate.

In each generation, selection functions pick the most valuable genes which are chosen as the parents of the 

next generation and then the multi point crossing over procedure is performed on them. Among these, the 

random genes are added to the population as mutation functions and this procedure is repeated until ultimate 

criteria are established. Different conditions can be set to stop this process which was reaching the maximum 

iterations of 200 in this study. The flowchart of the optimization process is shown in Fig. 3. In addition, 

configured settings and parameters for the proposed optimization are summarized in Table 2. The trial-and-

error is the most common way to select the listed parameters. However, the plot of cost versus iterations, 

system’s nonlinearity, number of inputs were the main factors in selecting these parameters. The cost function 

in this study is considered as follows:

where   and    are predefined based on the climates,    is the weights for each objective, R  , 

RCOP,  , and    are used to normalize the output values or objectives.

(16)



Fig. 3

Detailed illustration of the methods discussed in section 3.

Table 2

Genetic Algorithm settings.

Type of parameter Rate or type of consideration

Population Size 40

Iteration or Decades 200

Percentage of Mutations 35%

Type of Mutations Random Number Generation

Percentage of Crossover 50%

Type of Crossover 2 Point Crossing Over

Percentage of Recombination 15%

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.



4 Results and discussions

4.1 Selected climates

According to the Koppen–Geiger’s climate classification  [38]  and considering the defined ranges, out of seven 

existed climates, warm periods of four different climates i.e., Tropical rainforest climate, Arid, Mediterranean 

hot summer and Hot summer continental are identified as suitable regions for the DPC operation. One 

representative city for each climate is selected and, in each city, the warm months for the GIDPC operation are 

identified. The criteria for selection of the operating months is the common defined ranges of the temperature 

and relative humidity of the intake air (see  Table 1 ). The four suitable classifications and their representative 

climates and cities as well as the operating months are all shown in  Fig. 4 . In addition, the monthly 

temperature and relative humidity of the representative cities  [49]  and the corresponding average values of the 

operating months are summarized in Table 3 .

Type of Selection Random Selection

Fig. 4

Selected climates and their representative cities.

Table 3

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 



4.2 Feed-forward neural network configuration

NN is mainly configured by two main hyperparameters that defines the structure the network, i.e., the number 

of layers and the number of neurons in each hidden layer. The most common method to spot the preeminent 

values of these hyperparameters for a specific problem is via calibration by a robust test harness. Therefore, 

several models with different hyperparameters are constructed until the desired accurate model identified. The 

model reconstruction stopped when no significant improvement in accuracy metrics i.e., MSE and coefficient 

of determination (  ) is seen:

Monthly and average weather data of each city  [49] .

Month

Miami Doha Rome Beijing

T(°C) RH(–) T(°C) RH(–) T(°C) RH(–) T(°C) RH(–)

January 24 0.74 22 0.72 12 0.76 2.50 0.44

February 24 0.73 23 0.70 13 0.76 5 0.44

March 26 0.70 27 0.62 15 0.75 12 0.44

April 28 0.69 33 0.52 18 0.75 20 0.45

May 29 0.71 39 0.43 22.90 0.75 26 0.53

June 30 0.72 42 0.41 26 0.74 30 0.60

July 31 0.72 42 0.50 27.90 0.73 31 0.75

August 30.50 0.72 40.50 0.54 28.10 0.75 30 0.78

September 30.40 0.75 39.50 0.62 27 0.75 27 0.69

October 28.50 0.76 36 0.63 22.90 0.76 19.90 0.60

November 26 0.72 29.90 0.66 17 0.79 20 0.58

December 23.90 0.74 25 0.71 12 0.79 5 0.50

Average in operating months 28.82 0.72 35.39 0.56 27.25 0.74 28.80 0.67

view the Proof.
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where, Y represents the real value of the considered output,    represents its predicted value by FNNN and N 

represents the number of operating conditions.

As listed in  Table 4 , ten different configurations are compared in terms of MSE and R
2
 values.

Due to the relatively high number of operating conditions in the big dataset, i.e., 78125, firstly, the FFNN 

model with a single hidden layer and 10 neurons is configured. The MSE value has revealed that more robust 

configuration is needed in order to reduce the MSE and increase the accuracy of the network. Thus, the 

network complexity is increased gradually by increasing the number of hidden layers and neurons till no 

significant improvement observed in the MSE value. Model number 9 with 2 hidden layers, and 45 neurons in 

each hidden layer is selected as the final network since it is accurate enough with MSE value of 0.04 to stop 

the robust test harness. However, one more model with a slight improvement, i.e., model number 10, is 

(18)

Table 4

Comparison of different NN models.

Model Number of layers Neurons No in 1st layer Neurons No in 2nd layer MSE R2

1 1 10 NA 1483.89 0.98

2 1 20 NA 182.21 0.99

3 1 30 NA 112.33 0.99

4 2 30 10 12.86 1

5 2 30 20 6.74 1

6 2 40 30 2.39 1

7 2 40 40 1.19 1

8 2 45 40 0.9 1

9* 2 45 45 0.04 1

10 2 50 45 0.03 1

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.



constructed to compare it with the selected model. It can be seen that, although the model was improved, i.e., 

with MSE of 0.03, but no significant accuracy added to the network. Hence, the model No. 9 is selected for the 

performance prediction of the GIDPC and GA optimization.

4.3 FFNN model validation: comparison of the supply air temperature

The developed NN model is validated by the numerical model which was validated experimentally by a 4-kW 

GIDPC. Although the FFNN model is inherently validated by being trained and validated through the big 

dataset which was constructed by the numerical model but to illustrate this validation, the predicted 

temperature of the supply air is compared between the FFNN and numerical models. The idea of selecting the 

temperature of the supply air, as the comparison parameter for the validation, is based on the key role of this 

factor in system performance evaluation. Supply air temperature is directly considered in performance 

parameters calculations, e.g., cooling capacity, and its value is influenced by other key parameters such as 

intake air parameters, working air fraction and HMX dimensions [39].

Therefore, the supply air temperature predicted by the models are compared in each climate and the results are 

shown in Fig. 5. The comparison is done over the identified operating months by holding the key parameters 

unchanged, i.e., the air velocity, air working fraction, HMX height, channel gap and number of layers were 

kept at 3 (m/s), 0.44, 1 (m), 0.005 (m) and 160 respectively which are also defined as the base system 

parameters. The results revealed that the predictions made by two models are in good agreement in which the 

maximum discrepancies between the numerical and FFNN models in Miami, Doha, Rome and Beijing are 

recorded as 0.32 °C, 0.77 °C, 0.21 °C and 0.54 °C respectively.

Fig. 5

Comparison of the supply air temperature of the base system by numerical and digital twins models in operating months.



4.4 Optimization results

Average climate data, which were listed in Table 3, are taken to operate the MOEO in order to identify the 

optimum decision variables in each city. The reason for taking the average data instead of monthly data is 

because a single GIDPC unit with optimum operating and design parameters will be introduced for each 

representative city. The MOEO is operated for different weight values, which have the total value of one, in 

order to choose the best possible cost function. In this study, the priority is to choose the best approach in 

which the majority of the objectives can hold better values than the base system. Therefore, the results, as 

listed in Tables 5–8, revealed that out of five considered weight distributions (i.e., equal weights for each 

objective, and dominant weights for each of the four considered objectives), the equally distributed weights 

(i.e., 0.25) are the most desired condition for optimising the GIDPC performance in which the COP and 

surface area values are significantly improved and the cooling capacity and wet bulb efficiency are almost 

same as the base system. But, considering the cooling capacity as the dominant objective (W1 = 0.85), results 

in significantly lower COP and higher surface area values. Considering the COP as the dominant objective 

(W2 = 0.85), has caused in low cooling capacity and wet bulb efficiency. Taking the wet bulb efficiency as the 

dominant objective (W3 = 0.85), has led to significantly low COP and cooling capacity values. Although 

considering the surface area as the dominant weight (W4 = 0.85) gives desired values for COP and efficiency 

but compared to the equal weights, the cooling capacity is substantially lower. Consequently, the equally 

distributed weights are chosen as the best solution for optimising the system performance. However, the 

cooling capacity and efficiency values are sacrificed due to the improved COP and surface area values.

Table 5

Identified optimum parameters in Miami.

City Design Weights Decision variables Objectives

Miami

W1 W2 W3 W4   (m/s)   (–) H (m) G (m) NL  (–)         

0.25* 0.25* 0.25* 0.25* 2.00 0.21 0.80 0.006 159.82 1046.60 30.42 0.83 50.57

0.85 0.05 0.05 0.05 2.93 0.23 2.78 0.007 159.97 2176.29 10.68 0.89 126.86

0.05 0.85 0.05 0.05 2.00 0.16 0.81 0.007 100.28 744.27 35.36 0.69 31.81

0.05 0.05 0.85 0.05 2.00 0.28 1.27 0.004 100.09 670.28 16.48 1.47 50.04

0.05 0.05 0.05 0.85 2.00 0.21 0.82 0.006 100.15 721.09 32.23 0.86 31.87

Base system 3.00 0.44 1.00 0.005 160.00 1112.92 9.39 1.01 62.49

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.



Table 6

Identified optimum parameters in Doha.

City Design Weights Decision variables Objectives

Doha

W1 W2 W3 W4   (m/s)   (–) H (m) G (m) NL  (–)         

0.25* 0.25* 0.25* 0.25* 2.00 0.25 0.81 0.005 159.92 1972.96 51.88 0.99 51.13

0.85 0.05 0.05 0.05 2.75 0.22 2.25 0.007 159.95 3711.33 25.20 0.85 143.01

0.05 0.85 0.05 0.05 2.00 0.16 0.80 0.007 105.28 1437.84 64.73 0.67 32.33

0.05 0.05 0.85 0.05 2.01 0.28 1.43 0.004 100.27 1206.68 26.26 1.38 57.23

0.05 0.05 0.05 0.85 2.00 0.204 0.83 0.005 100.21 1267.19 53.08 0.94 31.94

Base system 3.00 0.44 1.00 0.005 160.00 2205.4 18.58 1.01 62.50

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.

Table 7

Identified optimum parameters in Rome.

City Design Weights Decision variables Objectives

Rome

W1 W2 W3 W4   (m/s)   (–) H (m) G (m) NL  (–)         

0.25* 0.25* 0.25* 0.25* 2.00 0.21 0.82 0.006 159.82 928.37 26.58 0.84 51.65

0.85 0.05 0.05 0.05 2.70 0.24 2.66 0.007 159.84 1804.46 10.88 0.91 169.82

0.05 0.85 0.05 0.05 2.00 0.17 0.80 0.007 100.04 656.83 31.30 0.70 31.77

0.05 0.05 0.85 0.05 2.00 0.28 1.24 0.004 100.11 599.08 15.17 1.43 48.64

0.05 0.05 0.05 0.85 2.00 0.20 0.80 0.006 101.74 644.07 29.12 0.84 31.89

Base system 3.00 0.44 1.00 0.005 160.00 836.63 7.24 1.00 62.50

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.



4.4.1 Optimum intake air velocity

The intake air velocity is a factor which has a remarkable impact on system performance as it directly effects 

the cooling capacity, and rate of heat and mass transfer within the HMX. A higher velocity is associated with 

larger pressure drop which results in more power consumption and consequently less COP values which are 

not desirable in optimization and performance evaluation of DPCs. Thus, calibrating the air velocity is 

challenging, as investigated by Xu et al.  [18] , and a robust trade-off considering the effect of several 

parameters was required to identify the optimum value in each climate. The GA algorithms revealed that the 

optimum air velocity is almost 2 (m/s) in all climates which is lower than the velocity in the base system which 

was 3 (m/s). Tendency of the GA to give a lower value for the air velocity was somehow expected as the 

higher COP values are aimed. Hence, it can be concluded that a trade-off by GA has concluded that the lower 

range of the intake air velocity is weighted more than the maximum allowable value of 3.3 (m/s).

4.4.2 Optimum working air ratio

The working air ratio is defined as the ratio of the exhaust air to the total intake air. Higher working air ratio 

will lead to less supply air flow and consequently more temperature drop will occur in intake air which flows 

inside the HMX dry channels. As a result, at a very high working air ratio, the dew point efficiency will 

increase but it will lead to lower COP and cooling capacity values. In addition, the low supply air flow will 

remain as an unfavourable issue. Thus, similar to the air velocity, calibrating the working air ratio is another 

important challenge in DPC operation which requires a trade-off between the other involved parameters in 

Table 8

Identified optimum parameters in Beijing.

City Design Weights Decision variables Objectives

Beijing

W1 W2 W3 W4   (m/s)   (–) H (m) G (m) NL  (–)         

0.25* 0.25* 0.25* 0.25* 2.00 0.23 0.84 0.006 159.85 1234.23 34.20 0.85 52.76

0.85 0.05 0.05 0.05 2.72 0.24 2.54 0.007 159.93 2375.10 14.66 0.89 161.32

0.05 0.85 0.05 0.05 2.00 0.17 0.80 0.007 100.5 858.34 40.52 0.67 31.80

0.05 0.05 0.85 0.05 2.00 0.30 1.36 0.004 100.13 771.09 17.52 1.42 54.24

0.05 0.05 0.05 0.85 2.00 0.22 0.80 0.005 102.32 827.28 36.35 0.86 31.92

Base system 3.00 0.44 1.00 0.005 160.00 1372.83 11.80 0.98 62.51

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 

view the Proof.



different climates. The working air fraction in the base system is taken as 0.44 which was based on the 

experimental study of the M30 (Coolerado USA) DPC [10]. GA algorithm revealed that the optimum working 

air ratio is ranging from 0.21 to 0.25 which are less than 0.44 in operating condition of the base system. It 

means that less working air and more supply air compared to the base system operation condition leads to 

better system performance. The optimum working air ratio holds almost the same value of 0.21 in Miami and 

Rome where it is 0.25 in Doha and 0.23 in Beijing.

4.4.3 Optimum HMX height

Higher HMX height normally results in better DPC performance [18] in terms of cooling capacity by 

providing more heat transfer area in the HMX sheets but on the contrary it leads to higher pressure drop along 

the heat exchanger, higher fan power, larger surface area and higher construction costs simultaneously [50]. 

Therefore, GA needed a trade-off to recognize the optimum height values. The identified optimum HMX 

height is identified to be in the range of 0.80–0.84 (m) which are lower than the base value of 1 m. It is 

identified that the DPC had the best performance with the minimum height value of 0.80 (m) in Miami and by 

the maximum height of 0.84 (m) in Beijing. The optimum HMX height in Doha and Rome were detected as 

0.81 (m) and 0.82 (m) respectively. As a result, it can be seen that the optimum values are less than the 

maximum constraint which was 3 (m), less than the base system value which was 1 (m), and tend to hold a 

lower band value of the range.

4.4.4 Optimum channel gap and number of layers

The smaller channel gap will cause higher pressure drop and consequently will result in higher fan power and 

lower COP values. To the contrary, the larger channel gap will lead to higher mass flow rate and higher 

cooling capacity. Similarly, more layers can be considered as an important factor in increasing the pressure 

drop, surface area and construction cost. In addition, an increase of these parameters will lead to more 

evaporation area and more heat transfer from dry channel to wet channel. Therefore, like previous decision 

variables, a careful trade-off is needed to identify the optimum values in each climate. GA algorithm revealed 

that the optimum values are higher than the base system with channel gap of 0.005 (m) and number of layers 

of 160. The optimum value of channel gap is in the narrow range of 0.005–0.006 (m). Similarly, optimum 

values of the number of layers are almost same in all cities i.e., 159–160. The channel gap multiplied by the 

number of layers gives the width of the HMX that was 0.8 (m) in the base system but it varies in the range of 

0.79–0.95 (m) in the optimum conditions. Hence, it is concluded that similar to the height of the system, the 

lower values of channel gap and number of layers are desired as they lead to a substantial decrease in surface 

area of the layers.

4.5 System operation in optimum conditions

The identified optimum operating and design parameters revealed that remarkable improvements have 

occurred in COP and surface area values but other performance parameters i.e., cooling capacity, dew point 

and wet-bulb efficiencies, and supply air temperature are almost remained unchanged as all shown in Figs. 6–

11. The main reason for this behaviour lies in the fact that the changes in the main operating and design 

parameters i.e., reduction in working air fraction and air velocity and height of the HMX have sacrificed the 



unchanged performance parameters. However, they have caused a remarkable improvement in COP and 

surface area which will lead to significant reduction in power consumption and production cost. Detailed 

discussion on the system behaviour is firstly presented by studying the monthly performance of the system 

under identified optimum conditions in each region, and secondly, the optimization effect on annual 

performance of the system is investigated.

Fig. 6



Monthly COP improvement; (a): Miami; (b): Doha; (c): Rome; (d): Beijing.

Fig. 7



Surface are improvement comparison between the base and optimised conditions.

Fig. 8

Monthly cooling capacity comparison between the base and optimised conditions.

Fig. 9



Monthly supply air temperature comparison between the base and optimised conditions.

Fig. 10

Monthly dew point efficiency comparison between the base and optimised conditions.

Fig. 11



4.5.1 Monthly investigation

Due to the relatively stable weather conditions in Miami, i.e., the temperature is in the narrow range of 26–

31 °C and the relative humidity is in the range of 0.69–0.76, it is expected to have a similar performance in all 

operating months. The monthly COP under the base and optimum conditions for Miami are shown in  Fig. 6 (a) 

in which the COP of the base system was varied from 8.01 in October to 10.34 in April, whereas under the 

optimum conditions the COP ranges from 26.42 in October to 32.67 in April. Similarly, as shown in  Fig. 7 , the 

surface area has decreased in the optimum condition. The surface area of the base system was 62.49  m
2
 

whereas it has reduced by 23.57% to 50.57 (m
2
) in the optimum condition. This is mainly because of the 

significant reduction in height of the HMX which was 3 (m) in the base condition and has got the lower value 

of 0.80 (m) in the optimum system. However, the cooling capacity, wet-bulb and dew point efficiencies and 

supply air temperature are almost unchanged.  Fig. 8  shows the cooling capacity of the system in both base and 

optimised conditions in which it was in the similar ranges of 0.95–1.22 kW and 0.90–1.12 kW in the base and 

optimised conditions respectively. Similarly, as seen in  Fig. 9 , the supply air temperature of the base and 

optimum conditions is in the close ranges of 21.86–26.62 °C and 22.64–27.25 °C respectively. Consequently, 

the similar behaviour can be seen for the wet-bulb and dew point efficiencies where, as seen in  Figs. 10 and 11 

, the dew point and wet-bulb efficiencies have decreased of up to 11.94% and 11.45% respectively. Although a 

remarkable improvement has been recorded after the optimization but due to the humid conditions in all 

operating months, the negative effects of high relative humidity  [18,51]  keeps the cooling capacity and COP at 

lower values. For instance, the maximum values of cooling capacity and COP were recorded in April since it 

holds the lowest relative humidity. However, the minimum values were recorded in October where it is 

identified as the wettest month.

Because of the wide temperature and relative humidity ranges in Doha during the operating months, i.e., the 

temperature varies between 25 °C in December to 42 °C in June and July and the relative humidity is in the 

Monthly wet-bulb efficiency comparison between the base and optimized conditions.



range of 0.41–0.71, unstable performance for GIDPC was recorded over the operating months. For instance, as 

shown in Fig.  6(b), the COP ranged from 9 in December to 27.25 in June. The reason for unsatisfying 

behaviour in December is that the GIDPC was operated in temperature of 25  °C in which a low cooling 

capacity was expected. In addition, the wet condition of this month was another reason for unsatisfying 

performance. Contrarily, the warmest and driest condition in June is the main reason for the best GIDPC 

performance in Doha. However, the system performance is remarkably improved under the identified optimum 

conditions where the best performance of the system was recorded in June by the improved cooling capacity of 

76.05. Similarly, it is ascertained that the poor performance of GIDPC in an unfavourable condition 

(December) can also be improved significantly where the optimized COP were recorded as 23.97. In addition, 

as seen in Fig. 7, the surface area in Doha has decreased by 22.22% and holds the optimum value of 51.88 

(m
2
). However, Fig. 8 shows the cooling capacity of the system in Doha has slightly decreased where the 

maximum decrease of 0.34 kW has occurred in June. Similarly, as seen in Fig. 9, the maximum difference 

between the supply air temperature of the base and optimum conditions in Doha is 0.25 °C which has led to 

the similar behaviour for the wet-bulb and dew point efficiencies in Doha, as seen in Figs. 10 and 11, where 

the dew point and wet-bulb efficiencies have decreased of up to 4.41% and 7.03% respectively. Thus, it can be 

concluded that in Arid climate the DPC can perform ideally in all operating months under the optimum 

conditions.

Rome, as the representative of the Mediterranean hot summer climate, have a relatively cold and wet climate 

over the operating months where the temperature and relative humidity are in the narrow ranges of 26–28 °C 

and 0.73–0.75 respectively. Thus, it was expected to observe an unsatisfactory and similar performance in all 

months where the COP, as seen in Fig. 6(c), varies from 8.09 in September to 8.91 in July. These performances 

were expected as the September has the minimum and July has the maximum values of relative humidity. Due 

to the wet conditions in Rome, it is expected to have more improvement if the intake air is pre-treated by a 

dehumidifier which will lead to lower humidity levels and higher cooling capacity and COP values. In 

addition, as seen in Fig. 7, a remarkable decrease of 21.01% in surface area is recorded. But similar to the 

other cities, as seen in Figs. 8 and 9, the cooling capacity and supply air temperature in Rome are almost 

unchanged where the maximum difference between the base and optimised conditions of the cooling capacity 

and supply air temperature in Rome are 0.078 kW and 0.63 °C respectively. Similarly, maximum decrease of 

0.08 and 0.12 are seen in dew point and wet-bulb efficiencies as seen in Figs. 10 and 11.

Beijing as the representative of hot summer continental climate, has wet conditions over the operating months 

except in May where the relative humidity is 0.56 but it ranges from 0.6 in June to 0.78 in August. The 

temperature also varies from 26 °C in May to 31 °C in July. Based on these values, it can be estimated that the 

GIDPC will have impermanent performance over the operating months. As can be seen from Fig. 6(d), the 

COP of the optimum system varies from 24.71 in August to 44.13 in May. The reason for this performance lies 

in the fact that the wettest condition in August has led to the system’s poor performance, and, as expected, the 

driest condition in May has caused the system to demonstrate its full potential. However, the optimization has 

increased the system performance substantially where the maximum increase of 28.94 in COP has occurred in 

June. This means that although July holds the warmest temperature value, i.e., 31 °C, but the base system was 

not designed properly to demonstrate the full potential of the GIDPC in this month. However, the best 

performance of the system was recorded in May with the COP value of 44.13. Contrarily, despite remarkable 



improvement in system performance, the poorest performance of the system remained in August where the 

COP is 24.71. In addition, as seen in Fig. 7, the surface area in Beijing has decreased by from 62.75 (m
2
) to 

52.76 (m
2
) after the optimisation. As seen in Figs. 8 and 9, the cooling capacity and supply air temperature in 

Beijing are almost unchanged where the maximum difference between the base and optimised conditions of 

the cooling capacity and supply air temperature in Rome are 0.23 kW and 1.26  °C respectively. Similarly, 

maximum decrease of 0.05 and 0.12 are seen in dew point and wet-bulb efficiencies in Beijing, as seen in Figs. 

10 and 11.

4.5.2 Annual investigation

Having analysed the monthly effects of optimization, it is needed to take the annual figures into account to 

figure out whether it is worth to have a unique design for the GIDPC in different climates. Thus, the average 

cooling capacity and COP of the base system and optimum systems in operating months are compared as 

shown in Fig. 12. In addition. the annual average values of the cooling capacity, supply air temperature, dew 

point and wet-bulb efficiencies as well as power saving of the GIDPC in optimum conditions which are mainly 

due to the improved COP and surface area values, are summarized in Table 9. The annual figures are the 

average values of the monthly values of the performance parameters in each city.

Fig. 12

Annual improvement of COP in all climates.

Table 9

i The table layout displayed in this section is not how it will appear in the final version. The representation below is 

solely purposed for providing corrections to the table. To preview the actual presentation of the table, please 



In Miami, the annual COP of the base system in nine months of operation was 7.24 while it has increased to 

26.58 after the optimization. Considering the slight difference between the annual cooling capacity of the base 

and optimum system i.e., 0.07 kW, and according to the COP equation (Eq.  (8) ), the optimization has resulted 

in 43.63% less power consumption. In addition, the difference between the annual supply air temperature, wet-

bulb and dew point efficiencies in Miami are 0.67  °C, 0.12 and 0.08 respectively. Similarly, in Doha, the 

system has operated all along the year except two cold months i.e., January and February. Owing to the 

relatively warm and dry conditions in Doha, i.e., an average temperature of 35.39 °C and relative humidity of 

0.56, the base system performance was better than other climates where the annual COP of the base system 

was 17.62. However, under the optimized conditions, the annual COP has increased to 51.88. Considering the 

annual cooling difference between the base and optimised systems i.e., 0.23 kW, power saving of 49.41% is 

recorded. In addition, the difference between the annual supply air temperature, wet-bulb and dew point 

efficiencies in Doha are 0.72 °C, 0.16 and 0.07 respectively. But the system has got the worst performance in 

Rome where the average temperature and relative humidity of the operating months were 27.25 °C and 0.74 

respectively. However, the optimization has resulted in 72.75% more COP. The optimisation leads to 45.12% 

less power consumption over the year. The difference between the annual supply air temperature, wet-bulb and 

dew point efficiencies in Rome are 0.6  °C, 0.12 and 0.08 respectively. In Beijing, the base system annual 

cooling capacity and COP over the operating months was 11.24 where it has increased to average value of 

34.20 respectively. In addition, considering the slight difference in the annual cooling capacity (0.09 kW), 

power saving of 47.33% achieved in Beijing. Similar to the other cities, slight decrease can be seen in annual 

values of supply air temperature, wet-bulb and dew point efficiencies.

5 Conclusion

A constraint multi objective evolutionary optimization using digital twins was developed for the state-of-the-

art counter flow dew point evaporative cooler with an innovative guideless irregular heat and mass exchanger 

(GIDPC). The digital twins was based on the Feed-forward Neural Network (FFNN) and the Multi Objective 

Evolutionary Optimization (MOEO) was based on Genetic Algorithm (GA) methods. Lack of a robust 

Artificial Intelligence (AI) model and also a necessity of identifying the optimum operating and design 

Annual performance of the system in optimum and base conditions

Representative 

city

Cooling capacity 

(kW)

Supply air 

temperature (°C)

Wet-bulb point 

efficiency (–)

Dew point 

efficiency (–) Power saving 

(%)

base optimised base optimised base optimised base optimised

Miami 1.11 1.04 24.68 25.35 1.01 0.89 0.74 0.66 43.63

Doha 2.20 1.97 27.36 28.08 1.00 0.94 0.76 0.73 49.41

Rome 0.98 0.92 23.57 24.17 1.02 0.90 0.73 0.65 45.12

Beijing 1.32 1.23 23.90 24.63 1.01 0.89 0.72 0.67 47.33

view the Proof.



parameters for GIDPCs were the identified gap through the detailed literature review which is now filled by 

this study. The digital twins is trained by a comprehensive dataset created by a validated numerical model for a 

4-kW GIDPC, and the main optimum operating and design parameters in diverse climates were found. The 

developed hybrid model was then implemented to demonstrate the monthly and annual GIDPC improvements 

in all climates. The main outcomes of this study are summarized as follows:

• Out of several weather classifications in Köppen-Geiger climate classifications, four suitable 

climates i.e., Tropical rainforest climate (Miami), Arid (Doha), Mediterranean hot summer 

(Rome) and Hot summer continental (Beijing), for the GIDPC operation were detected and the 

system in the selected warm operating months operation was investigated.

• The FFNN model with fours layers were selected as the predictive tool. The input layer which 

contained seven operating and design parameters, two hidden layers with 45 neurons in each 

and one output layer which contained five performance parameters of the GIDPC.

• The supply air temperature by FFNN and numerical model was compared to examine the 

performance of the FFNN model. The results revealed that the predictions made by two models 

are in good agreement in which the maximum discrepancies between the numerical and NN 

models in Miami, Doha, Rome and Beijing were 0.32  °C, 0.77  °C, 0.21  °C and 0.54  °C 

respectively.

• The optimum values of the considered parameters were identified by MOEO for different 

weight values in which the equally distributed weight values are chosen for the GIDPC 

performance optimisation.

• The optimum velocity was 2 (m/s) in all climates. Moreover, the working air ratio was in the 

range of 0.21–0.25, the height and channel gap were in the ranges of 0.80–0.84, 0.005–0.006 

respectively while the number of layers holds the same value of 160 in all cities.

• The system operation in the identified optimum conditions revealed that the main 

improvements are observed in COP and surface area while other performance parameters were 

almost same. Annual average improvements of up to 72.75% in COP and 23.57% in surface 

area values are occurred. Consequently, 43.69–47.33% power saving was recorded when the 

system is designed and operated considering the optimum values.
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