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ABSTRACT

Estimates of quantities needed to plan invasive species control, such as population size, are

always uncertain; this is an issue that can become a problem when mishandled in ecological

science and its communication. The complexities of incorporating uncertainty into sophisticated

decision-support tools may be a barrier to their use by decision-makers, leading to decisions being
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made without due regard to uncertainty and risking mis-placed certainty of predicted outcomes.

We summarise ways in which uncertainty has been incorporated into and used to advise decisions

on the management of invasive non-native species and other problem species, and offer a simple

conceptual model for accommodating and using uncertainty at the planning stage. We also

demonstrate how frequently uncertainty has been mis-used and mis-communicated in the wildlife

management literature. We contend that uncertainty in estimates of natural quantities must be

acknowledged, can inform decisions and can be made to derive decisions, and should not be

ignored if invasive species policy is to be delivered effectively.  Uncertainty must be

communicated thoroughly and correctly by scientists if decision-makers are to understand its

consequences for planning and resourcing control programmes.
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INTRODUCTION

Decisions regarding responses to invasive non-native species (hereafter referred to as invasives) are

fraught with uncertainty. During the early stages of invasion, detection probability is likely to be low

due to the species’ very limited spatial range and low abundance (Mehta et al. 2007), leading to highly

uncertain estimates of these quantities (Wenger & Freeman 2008). As the range expands and the

population grows, the species may be detected more frequently. However, estimates remain uncertain,

as evinced by the broad confidence intervals that typically define population estimates of new



invaders and other low-density populations (Miller et al. 2005), with consequent uncertainty regarding

the effort required to control them (Johnson et al. 2017). Even when widely established and highly

abundant, estimation of a species’ range, population size, and population growth to magnitudes of

accuracy and precision that can be accommodated by traditional approaches to management planning

can be challenging due to large uncertainties associated with limited sampling (Mackenzie 2005). This

is problematic because comprehensive information on populations is required to improve the

likelihood of success of management campaigns against invasives (Simberloff 2003). Policy-makers

often seek certainty and simplicity from those experts chosen to provide policy-relevant evidence

(Hammersely 2013). However, uncertainty in natural quantities, such as range and abundance, which

can be used to inform management decisions can present significant challenges for decision-makers,

because uncertainty makes the prediction of the outcomes, for a given investment, uncertain and

imprecise (Nair & Howlett 2017). In consequence, decision-makers may ignore uncertainty,

dismissing it as an inconvenient impediment to necessary action (Hammersely 2013), choosing

instead to rely on subjective judgement (Regan et al. 2005). Many experts, including applied

ecologists, who may advise decision-makers also have a history of mishandling uncertainty

(Milner-Gulland & Shea 2017), which may compound this problem. A wide range of quantitative

tools has been developed to incorporate uncertainty into decisions, including those pertaining to the

control of invasives, yet uptake of these has typically been very low (Addison et al. 2013). A

substantial number of campaigns against invasives have either failed (Pluess et al. 2012, Capizzi et al.

2020) or cost much more than originally anticipated (see Parkes et al. 2010, Mill et al. 2020), possibly

due to a failure to incorporate uncertainty into management decisions adequately. While

decision-makers may view uncertainty and complexity in estimates of natural quantities as unhelpful

and indicative of the low quality or incredibility of available information (Hammersely 2013), we

contend that the appropriate management of uncertainty can help inform campaigns against invasives

better than if uncertainty was ignored (Funtowicz & Ravetz 1990).



AIMS

In this article, we sought to summarise what uncertainty is with respect to estimates of natural

populations and processes, evaluate how uncertainty has been used and communicated in the wildlife

management literature, and synthesise some simple principles for using and reporting uncertainty

during the planning stage of campaigns against invasives and other wildlife species that people wish

to control. There are many ways in which uncertainty can be incorporated into decision-making; the

list of approaches described below is not exhaustive, and those that are advocated are simply those

that we have found helpful when planning wildlife management programmes and communicating

those plans with decision-makers and other stakeholders.

DEFINING UNCERTAINTY

The many sources of uncertainty in biological systems and models of them have long been recognised

and incorporated into decision-making processes by fisheries scientists (see Hilborn & Walters 1992),

and are increasingly considered within literature on the management of terrestrial vertebrates

(Milner-Gulland & Shea 2017, Nichols 2019). In their seminal review, Regan et al. (2002) classified

two main branches in the taxonomy of uncertainty as it arises in ecology and conservation biology:

epistemic and linguistic uncertainty.

Epistemic uncertainty refers to the state of a system, and is due to the limitations of measuring

instruments, natural variability within the system, inadequate sampling, and extrapolation and

interpolation. Thus, epistemic uncertainty encompasses the accuracy and precision of inputs or

measurements, and outputs or estimates (Nichols 2019). It can be characterised by describing

measurement precision and sample size, quantifying measurement variability (see Box), stating and

evaluating the assumptions underpinning calculations, interpolations or extrapolations, and by

bias-correction when appropriate. It can be quantified (e.g. as confidence intervals) or described as a

probability (i.e. of the null hypothesis being incorrect; Regan et al. 2002). The former is perhaps the

most traditional approach employed widely in ecology, whereas uptake of the latter has perhaps been



more recent, increasing particularly with the incorporation of Bayesian statistics into ecological

studies.

Linguistic uncertainty arises from poor communication; language can be unspecific, ambiguous,

vague and context-dependent. Borrowing from Regan et al. (2002), the importance of good

communication for the minimisation of uncertainty is evident when considering the aim of an

invasives control programme. If we wish to eradicate all invasives from an area, we must define

precisely a) what invasives are so that we can determine which species to focus on, and b) what the

area is.

Epistemic and linguistic uncertainty, alone and acting together, can result in model or outcome

uncertainty, whereby the consequences of an action can be quite different to what was predicted due to

complexities within the system (Regan et al 2002, Artelle et al. 2013).

COMMUNICATING UNCERTAINTY

It is important that uncertainty is communicated well by scientists to decision-makers so that

management decisions can be more fully informed, but its reporting in the applied ecology literature is

inconsistent. This failure to report uncertainty correctly is an important additional aspect of linguistic

uncertainty to those described by Regan et al. (2002). Standard statistical terms used to evaluate

different components or characteristics of uncertainty, such as the standard deviation of a sample

mean and the standard error of a parameter estimate, may be reported in ways that are inconsistent

with definitions given in basic statistical text books. To test this statement we evaluated the reporting

of uncertainty in 98 published scientific papers on adaptive wildlife management (see Appendices S1

and S2). Among 65 articles reporting estimates, 17% did not report averages and 35% did not report

measurement variability or estimate uncertainty. Instead of averages, other less useful metrics, such as

minimum count, which does not account for detection probability, were reported. Among 63 of these

articles, 35% should have used an average descriptor other than the mean because data were not

normally distributed or sample sizes were small. Among these 63 articles, 43% reported the correct



descriptor of measurement variability or estimate uncertainty, but only 17% sought to interpret the

effect of estimated uncertainty quantitatively, and 29% qualitatively. Milner-Gulland and Shea (2017)

stated that applied ecologists have often been guilty of ignorance, disregard and hubris in relation to

uncertainty, and our results are consistent with this view. It should be no surprise that policy-makers,

politicians and other decision-makers misunderstand and miscommunicate uncertainty when their

expert advisors are equally guilty. We recommend that applied ecologists should adhere to the

definitions of measures of uncertainty described in standard statistical text books (see Box), and

should use them correctly in all communications.

UNCERTAINTY IN DECISION-MAKING

Many approaches exist for incorporating uncertainty into model outputs in applied ecology (Nichols

2019), and yet its importance for decision-making can be over-looked (Milner-Gulland & Shea 2017).

For example, Wäber et al. (2013) estimated that, despite culling, a mean of 1103 Reeves’ muntjac

Muntiacus reevesi was recruited to an English plantation forest during 2008/2009 and 1287 during

2009/2010. A traditional approach to cull target setting might therefore have recommended removal

of approximately 1100-1300 extra muntjac per year in order to halt population growth and prevent

emigration. However, the 95% confidence interval for estimated recruitment was 21 to 2284 and 238

to 1783 muntjac in each year, respectively. Consequently, and accepting the validity of the

assumptions underpinning the calculations, forest managers would have had to remove somewhere

between these ranges of values to achieve their objective. The immediate problem is understanding

where, within those ranges, the true number of muntjac that needed to be removed lies. The simple

and unsatisfactory answer is that it is impossible to know. However, appropriate handling of estimate

uncertainty can enable such decisions by reducing the risk of objective failure.

Milner Gulland and Shea (2017) and Nichols (2019) summarised a range of methodological options

for minimising and incorporating uncertainty in scientific and modelling exercises, and reviewed a

number of approaches to including uncertainty in management and decision-making. These included

stochastic dynamic programming and partially observable Markov decision processes. We do not



dispute the suitability of the solutions described by these authors, who provided examples of

conservation and wildlife management interventions where they have usefully been employed, but we

do question the extent of their utility. Artelle et al. (2018) found that the hallmarks of quality science

were absent from the majority of 667 wildlife management approaches adopted in North America.

This is likely to be due to the complexity of biological systems and the way in which scientists

describe them, resulting in decision-makers avoiding the use of robust scientific approaches for

decision-making (Addison et al. 2013, Hammersley 2013). Indeed, the approach adopted by the UK

government for the prioritisation of invasives for eradication under uncertainty is intuitive, qualitative

and based on expert opinion (Booy et al. 2017), and does not incorporate quantitative models of

ecological processes. Consequently, while we endorse the recommendations of Addison et al. (2013)

for improving the uptake of ecological models for applied decision-making (see also Richardson et al.

2020, Bertolino et al. 2020), we nevertheless recommend simpler approaches for the inclusion,

reporting and use of uncertainty to address perhaps the most simple and, in our experience, most

frequently asked questions at the outset of invasives control programmes: how should we prioritise

potential invasives prior to their arrival, is a priority species present, how is it distributed, how

abundant is it, how many must be removed to control it and how much will a control programme cost?

These questions, unsurprisingly, relate directly to the established approaches to controlling invasives,

which are, in order of priority: prevention of invasion, rapid response to prevent establishment,

eradication to reverse an invasion, and ongoing control of established populations (Simberloff 2003;

Table 1).

Uncertainty in species prioritisation prior to invasion

In advance of invasion, knowledge of the risks that might be posed to anthropocentric or biodiversity

interests will be limited to that available for a species’ existing range. Consequently, extrapolation of

the likely risks to the country to be invaded will result in uncertainty in outputs for that country. The

requirement for horizon-scanning to enable evaluation of the likely risks posed (Roy et al. 2014) has

led to the use of expert elicitation to populate risk assessments, with uncertainty characterised



subjectively as an uncertainty score (Mumford et al. 2010). This can result in bias and

mis-representation of uncertainty (Kynn 2008), but has been used to prioritise potential invaders

according to the relative risks they may pose (Mumford et al. 2010) and the relative feasibility of

control methods for eradicating them should they invade (Booy et al. 2017).

Uncertainty in species presence and distribution

Once prioritised for action, early detection of an invasive is necessary in order to prevent its

establishment (Simberloff 2003). However, surveys designed to detect an invasion with a high

probability have hitherto been extremely costly, since the invasives are likely to be highly

geographically constrained and at low density during the early stages, leading to the conundrum of

whether to invest more in detection or control (Mehta et al. 2007). The advent of novel detection

techniques such as environmental DNA metabarcoding may reduce these costs substantially (Browett

et al. 2020). Nevertheless, while the detection of a single individual or population may confirm that an

invasion is underway, it does not explain the geographical extent of the invasion, and hence the area

over which control is required. In contrast, the failure to detect an individual or population makes the

conclusion of presence or absence highly uncertain, since surveys may suffer an inadequate detection

probability (Christy et al. 2010). Occupancy estimation and modelling, which adopts the probabilistic

approach to uncertainty characterisation (Mackenzie et al. 2017) can be used to address some of these

problems. The underlying principles of occupancy estimation are that the probability of detecting a

species increases with survey effort, and the detection probability for a single survey can be estimated.

The probability of failing to detect a species, if it is present, decreases as the number of surveys

increases such that, with sufficient surveys, this probability crosses a threshold (traditionally 0.95) that

can be set by the user according to their attitude towards risk. Thus, with sufficient surveys (as defined

by the detection probability and the threshold), failure to detect a species can be interpreted as likely

absence, with a given probability defining the uncertainty. The same approach can be used in multiple

locations to estimate the proportion of sites likely to be occupied and hence the area over which

control may be required (Mackenzie et al. 2017). The concept of occupancy estimation is



straight-forward, and the principle of characterising uncertainty probabilistically is intuitive, and

hence may be easy to convey to decision-makers. However, the calculations are rather more

complicated and so employment of this approach may be best suited to technical specialists.

Uncertainty in species abundance

Where eradication or ongoing management of populations are the selected approaches, estimates of

management effort are usually required (McCann & Garcelon 2008); for medium to large mammals,

these often require estimates of the number of animals to be removed and the proportion of the

population that this target represents. Numerous methods for abundance estimation are available (for

carnivores, see Wilson & Delahay 2001), but particularly for an eradication campaign during a single

year, total population size should be estimated, since it equates to the number that must be removed in

advance of the birthing season.

Regardless of the method chosen, and in addition to the assumptions on which calculations are based,

uncertainty in population size can be quantified probabilistically or as a range of values. The

probabilistic approach can be followed to evaluate whether uncertainty is tolerable. For example, if a

requirement is to be 90% certain that a species’ population is above a certain size, then a probability

of 0.9 or more that the population estimate is correct, or conversely, a probability of 0.1 or less that it

is incorrect, is sufficient to evaluate whether a policy objective is likely to be met. However, this

approach cannot inform us how to use the uncertainty to set targets. To use uncertainty to reduce the

risk of failing to achieve a management objective for invasives at the planning stage, uncertainty is

best described as the confidence interval defining the estimated outputs (see below).

Uncertainty in cost of species control

Arguably, the most important component of an invasives management plan is an estimate of the likely

financial cost of control, since this facilitates evaluation of the cost-effectiveness of the options



available (Buhle et al. 2004). The costs of control relate to the size of the population, the species’ life

history (particularly as it relates to the population growth rate), the proportion of the population

removed per unit effort and the cost per unit effort (Buhle et al. 2004, Ward & Lees 2011).

Uncertainty in the number to remove

Assuming that doing nothing is not an option if the objective is control of an invasive, the remaining

options are to prevent population growth and spread, to reduce the population size, or to eradicate the

species. The containment or eradication of an invasive (or any species) requires the removal of at least

the number of females that is recruited to the population each year (Fryxell et al. 2014). For animals,

the number to be removed has been calculated as the product of female population size at a point in

time and female recruitment rate (the number of female offspring produced per female during the

season), assuming that the mean of each of these values (the thin dashed lines A and B respectively in

Fig. 1) offers an approximate estimate of the minimum number that must be taken (Buckland et al.

1996, Wäber et al. 2013). However, this approach suffers a high risk of failure because it ignores

uncertainty in parameter estimates. Estimates of both quantities are uncertain, characterised as

confidence intervals (the range between the thick dashed lines either side of A and B, Fig. 1). Line C

is midway among the combined uncertainties; products of population size and recruitment rate point

estimates along this line are equal to the value derived from the means of these variables (point d).

Assuming an unbiased distribution of values around the mean, it should be clear that very nearly 50%

of credible values of the number of females recruited lie to the left of line C, nearly 50% lie to the

right of it and very few lie along it. Removal of the mean number of females recruited as a

management objective has an approximately 50% chance of being too few, and a vanishingly small

chance of being correct. Consequently, to be confident of removing at least the number of females

recruited to the population, minimum cull targets should be set conceptually at point e, the product of

the upper confidence limits of female population size and female recruitment rate estimates. The

degree of confidence that must be afforded to the calculation of this value, i.e. the proportion of values

likely to be contained within the interval, must be determined by the decision-maker’s acceptance of



the risk of failing to at least prevent population growth. For example, using 80% confidence intervals,

and assuming an unbiased distribution, 10% of credible values will be to the left of the lower limit,

and 10% will be to the right of the upper limit. Thus, risk-accepting decision-makers may choose a

smaller confidence interval and risk-averse decision-makers may choose a larger one. This approach

does not guarantee that the population will decline if the target is achieved, but, as long as the

assumptions underpinning the calculations are correct, it substantially reduces the risk of

under-culling from 50:50.

The opposite application of this approach is for the sustainable harvesting of a species. To ensure that

populations persist, the maximum number of females that should be harvested is conceptually set at

point f, i.e. the product of the lower confidence limits of female population size and female

recruitment rate. This should ensure that no more than the number of females recruited to the

population is removed during a single harvesting season (see Artelle et al. 2013).

Estimate uncertainties cannot simply be multiplied in the way implied by this concept since it will

lead to over-estimation of uncertainty, instead they must be combined into a single estimate. This can

be achieved by a number of methods (Nichols 2019) including Monte Carlo simulation: a single value

is drawn at random from the confidence interval of female population size, and multiplied by a single

value drawn at random from the confidence interval of the female recruitment rate, and the process is

repeated a large number of times. The mean and standard deviation of the large number of outputs are

used to calculate the confidence interval in the normal way. The upper limit of this interval

corresponds to point e and the lower limit to point f on Fig. 1.

Johnson et al. (2017) developed a multi-step modelling approach to estimate the effort and hence costs

of invasive non-native tegu lizard Salvator merianae control in Florida, USA.  Demographic rates

were summarised by repeatedly sampling point estimates derived by expert elicitation, to build

population matrices that were scenario-tested for the likely cost and effectiveness of different control

strategies. Scenario planning is an informative way of planning control campaigns against invasives at

the outset, when planners are information-poor, and can help improve prioritisation of parameters for

uncertainty reduction (Peterson et al. 2003). Moreover, the utility of this approach can be



complemented by including consideration of uncertainty, not just when deriving parameter estimates,

but when interpreting model outputs too.

An example is provided by the ongoing control of feral wild boar Sus scrofa in western England, for

which the objective has been the prevention of population growth. Boar density, total abundance and

population growth rate have been estimated annually since 2013, in order to advise single-year cull

targets to prevent population growth (Table 2). A cull of 56.5% of the population was estimated to be

required to prevent growth during 2015 and 2016 (Gill & Ferryman 2015, Gill & Waeber 2016). The

method for calculating this cull target was not reported, but targets can be calculated from the average

of the estimated female recruitment rate and female population size during each year. As argued

above, we suggest that this approach has a high risk of under-culling during a given year, and hence

might have contributed to the sustained trend of population growth.

Following the approach that we have advocated (Fig. 1), and accepting all assumptions underpinning

calculations of wild boar population size, structure and productivity as correct, we combined estimates

of female population sizes (values in Table 2 divided by two, to reflect the reasonable assumption of a

1:1 sex ratio; Keuling et al. 2003) with estimates of female recruitment rates (which were not reported

for this population, and hence were summarised from other European populations as varying from

0.85 to 1.63; Bieber & Ruff 2005). Assuming a uniform distribution for both parameters, and with

1000 iterations in the Monte Carlo simulation, we estimate that female cull targets should have been

much higher. During 2014, the number of females recruited was between 560 and 585 (95%

confidence interval), so a risk-averse minimum cull target would have been 585 female wild boar.

During 2015, recruitment of 657-680 required a minimum target of 680, and during 2016 and 2018,

recruitment of 1040-1073 during both years required a minimum target of 1073. Of course, these

values might be biased high or low if the assumption of a 1:1 sex ratio was incorrect or if any of the

other assumptions underpinning the calculations were violated. These cull targets either exceed or are

very close to the lower confidence limit of the population size estimate, and so might be impossible or

extremely challenging to achieve. Achievement of our revised target during 2014 might have caused



the eradication of the population. This would not be a problem if sufficient resources had been made

available to remove those numbers from a population of invasives; it may in fact have been a benefit.

Uncertainty in the costs of removal

Estimating the costs of control according to worst-case scenarios should ensure that management

campaigns are not under-resourced. In a modelling study of a range of hypothetical population sizes,

Ward and Lees (2011) estimated that the eradication of populations of 200 Reeves’ muntjac from

Scotland, should they become established (which they are not, despite being widely established in

England and Wales; Ward 2005), was likely to cost an average of GB£24050, but might cost as much

as GB£60625, and advocated budgeting according to the latter figure. While this might be viewed as

inefficient and risking resource not be available for other campaigns, it is likely to be more

cost-effective than budgeting on averages, which, all else being equal, should result in their main

objective not being met approximately 50% of the time, and may require additional resource to

respond to population growth during subsequent years (see Parkes et al. 2010; Mill et al 2020).

Indeed, under-resourcing has been one of the main factors associated with the failure of invasives

control in New Zealand (Brown et al. 2015). However, risks associated with this approach include

forecasting such high estimated costs that decision-makers decide that doing nothing or some lesser

intervention is preferable, undermining the morale of operatives controlling populations of invasives

as they toil towards an unattainable target.

SOLUTIONS TO UNCERTAINTY FOR THE CONTROL OF INVASIVES

Solutions to the issue of uncertainty in ecological science and decision-making have been summarised

by several authors (including Regan et al. 2002, Milner-Gulland & Shea 2017, Nichols 2019), but

have rarely been adopted for the control of invasives. We should accept that all of our estimates and

hence predicted management outcomes are, under nearly all circumstances and particularly at the start



of a management campaign, highly uncertain, and should respond accordingly. This requires working

with uncertainty at all levels:

1) Researchers who estimate quantities should calculate, interpret and communicate uncertainty

as fully and as simply as possible, and always accurately, so that decision-makers can respond

appropriately.

2) Decision-makers should understand uncertainty, how to ensure it is included in

decision-making processes, and how to work with it or use it to define desirable (and

undesirable) outcomes.

3) Managers should incorporate uncertainty into management objectives, including targets, and

should communicate this uncertainty to operatives, in order to manage expectations with

regards to delivery.

4) Finally, operatives need to understand what uncertainty is and what its implications are for

management, so that they can help managers evaluate outcomes, and so that they can manage

their own expectations with regards to target achievement.

There is no single approach for incorporating uncertainty into decision-making that is universally

applicable to all stages of the invasion process, and different approaches may be demanded to inform

effective action at each stage. We advocate the following:

1) Prior to invasions, existing information can be used to inform risk assessments (Mumford et

al. 2010) and risk management evaluations (Booy et al 2017), and uncertainty should be

semi-quantified into confidence scores by expert opinion in order to prioritise potential

invasives for eradication. These processes have been specifically designed to facilitate

decision-making by non-specialists.

2) When an invasion is suspected, or if confirmation of the likely absence of a potential invader

is required, occupancy estimation can be used to quantify the probability of absence and

likely geographic range of the invasive, with uncertainty estimated probabilistically

(Mackenzie et al. 2017). The principles of this approach are intuitive, but the complexities of



its deployment mean that its use is probably best-suited to specialists who advise

decision-makers.

3) To inform plans to eradicate an invasive, estimates of population size and geographical range

will be required to estimate the management effort required and hence the total cost of

control. We recommend a precautionary approach such that the upper limits of population size

and range are used to estimate costs, with the limits defined by the decision-maker’s attitude

to risk.

4) For the ongoing control of established invasives, we recommend combining the upper limits

of estimated female population size and female recruitment rate to derive minimum female

cull targets, with limits defined by the decision-maker’s attitude to risk. This precautionary

approach is simple and intuitive, but it risks over-budgeting and hence culling more than is

strictly necessary to prevent population growth or spread.

CONCLUSION

There has been a tendency for applied ecologists to mis-handle uncertainty when advocating or

planning management action, and uncertainty has rarely been incorporated adequately into

management campaigns against invasives. It is clear that point estimates, including averages of

estimates, are very nearly always wrong, and using average point estimates to set management

objectives for the control of invasives poses a high risk of failure. It is also clear that the approach that

we recommend for using uncertainty to plan campaigns against invasives assumes the worst case, and

hence is likely to produce targets that might be unattainable. Nevertheless, we argue that this approach

offers a helpful first step for planning management campaigns, because it should ensure that sufficient

resource is available at the outset to deliver the management objective. However, funding sources are

always finite (Mill et al. 2020), and pressure is likely to be exerted on campaign managers to find cost

savings as campaigns progress (Carrion et al. 2011); such cost savings could be driven by reducing the

uncertainty of the scale of the problem being addressed (Milner-Gulland & Shea 2017). Uncertainty

can be reduced by collecting information on management inputs and outcomes as a campaign

progresses, such that estimates of resource requirements and hence definitions of objectives can be



refined. The cyclical process of setting objectives, predicting outcomes, delivering management

action, simultaneously undertaking monitoring, evaluating inputs and outputs, learning about the

system under management and hence refining objectives and actions sequentially is termed adaptive

natural resource management (Williams 2011). This approach has been adopted by many people

intending to manage invasives, with varying degrees of diligence (Richardson et al. 2020). The

concept of acknowledging and using uncertainty that we advocate for decision-making, applied to the

principles of incorporating uncertainty into estimates of natural quantities summarised by Regan et al.

(2002) and Nichols (2019) offers the ability to set clear, unambiguous, evidence-based management

targets at the very start of campaigns against invasives, and at every stage at which new information

arises and hence at which uncertainty is reduced.
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Table 1. Some major sources of uncertainty and ways in which they can be incorporated into decisions regarding the control of invasive non-native species

during each stage of the invasion process.

Stage Input uncertainties Output uncertainties References
Source How to incorporate How to report How to use

Prior to
invasion

List of risks.
Factors contributing
to likelihood and
severity of risk.
Feasibility of control.

Synthesis of existing
information.

Risk score.

Qualitative assessment of
confidence in risk score.

Prioritisation of species by risk and
feasibility of control.
Identification of areas for further research
to reduce uncertainty.

Mumford et al. 2010
Booy et al. 2017

Suspected
invasion

Presence/absence. Occupancy analysis of
surveillance data.

Presence (if detected) or
probability of absence.

Confirmation of presence.
Acceptance of absence probability.
Confirmation of requirement for further
surveillance if probability of absence is
below the acceptable threshold.

Mackenzie et al. 2017

Confirmed
invasion
(early)

Distribution.

Population size.

Number to remove.

Occupancy analysis of
surveillance data.

Sampling error (mean
and standard deviation
of sample).
Combine abundance
with recruitment rate.

Proportion of locations
likely to be occupied with a
given probability.
Confidence interval of
population size estimate.

Confidence interval of
number of recruits.

Map likely distribution to prioritise
surveillance and control.

Assume worst case: population defined
by upper confidence limits.

Set cull target according to worst case:
Minimum target = upper limit of number
of recruits.

Mackenzie et al. 2017

Ward & Lees 2011

Established
population

Population size.

Number to remove.

Sampling error (mean
and standard deviation
of sample).
Combine abundance
with recruitment rate.

Confidence interval of
population size estimate.

Confidence interval of
number of recruits.

Assume worst case: population defined
by upper confidence limit.

Set cull target according to worst case:
Minimum target = upper limit of number
of recruits.

Ward & Lees 2011



Table 2. Feral wild boar population size estimates, cull targets and cull returns for the Forest of Dean,

western England.

Year Mean
population

estimate

95%
confidence

interval

Advised cull
target

Cull
achieved

Sources

2014 819 506-1325 361 Gill 2014 *
2015 1081 696-1486 460 543 Gill & Ferryman

2015, Gill &
Waeber 2016 *

2016 1562 1095-2296 712 492 Gill & Waeber
2016 *

2017 477 *
2018 1635 1200-2228 Gill & Waeber

2018

* In 2014-2017, sources also included:

https://www.forestryengland.uk/article/more-information-about-wild-boar



Fig. 1. Conceptual model of female cull target setting given estimates of female population size and

female recruitment rate. A is the mean of the female population size estimate, B is the mean of the

female recruitment rate estimate. Heavy dashed lines are the confidence limits of these estimates. Line

C describes products of values for population size and recruitment rate that yield the same value as the

product of the means (d). Point e is the intersection of upper confidence limits, which conceptually

defines the lowest cull target to be sufficiently confident that at least the number of females recruited

to the population will be removed, if it is achieved. Point f is the intersection of the lower confidence

limits, which conceptually defines the highest cull target to be sufficiently confident that no more than

the number of females recruited to the population will be removed, if it is achieved.



Box. Measures of quantities and uncertainty

Box. Measures of quantities and uncertainty

Fowler et al. (1998), in their standard undergraduate text book on statistics for biologists, describe the
following measures of uncertainty that have commonly been used in applied ecology for normally
distributed data. Our interpretation is included in italics:

Arithmetic mean or mean – the sum of a set of observations divided by the number of observations.

Standard deviation – a measure of the degree of variability within a sample.

Standard error – the standard deviation of a set of sample means. The standard error is an indication
of how close the sample mean is likely to be to the population mean. Thus, the standard error is an
appropriate measure of uncertainty of an estimated parameter, but should not be used to describe
variability in a sample.

Relative standard error (also known as the relative standard deviation, relative standard
uncertainty or coefficient of variation) – the ratio of the standard deviation to the mean.

Confidence interval – The likely interval for the true population mean. If all possible 95% confidence
intervals are calculated from un-biased samples taken from a population, the true value of the mean
will be within the interval of 95% of them (Neyman 1937).

The corresponding values reported for non-normally distributed data are the median and some
proportion of the range (typically the 2.5th and 97.5th percentiles, or the full range of values
measured).
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