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Abstract:   Fast high-precision patient-specific vascular tissue and geometric structure reconstruction is an essential task for vascular
tissue engineering and computer-aided minimally invasive vascular disease diagnosis and surgery. In this paper, we present an effective
vascular geometry reconstruction technique by representing a highly complicated geometric structure of a vascular system as an impli-
cit function. By implicit geometric modelling, we are able to reduce the complexity and level of difficulty of this geometric reconstruc-
tion  task and  turn  it  into a parallel process of  reconstructing a  set of  simple  short  tubular-like vascular  sections,  thanks  to  the easy-
blending nature of implicit geometries on combining implicitly modelled geometric forms. The basic idea behind our technique is to con-
sider this extremely difficult task as a process of team exploration of an unknown environment  like a cave. Based on this  idea, we de-
veloped a parallel vascular modelling  technique,  called Skeleton Marching,  for  fast vascular geometric  reconstruction. With  the pro-
posed technique, we first extract the vascular skeleton system from a given volumetric medical image. A set of sub-regions of a volumet-
ric image containing a vascular segment is then identified by marching along the extracted skeleton tree. A localised segmentation meth-
od is then applied to each of these sub-image blocks to extract a point cloud from the surface of the short simple blood vessel segment
contained in the image block. These small point clouds are then fitted with a set of implicit surfaces in a parallel manner. A high-preci-
sion geometric vascular tree  is then reconstructed by blending together these simple tubular-shaped  implicit surfaces using the shape-
preserving blending operations. Experimental  results  show  the  time  required  for  reconstructing a vascular  system  can be greatly  re-
duced by the proposed parallel technique.

Keywords:   Vascular geometric reconstruction, implicit modelling, parallel computing, high-performance, high-accuracy.

 

1   Introduction

Cardiovascular  diseases  (CVDs)  are  the  number  one

cause of death of human beings globally[1, 2]. It is anticip-

ated,  by  2030,  that  the  death  of  CVDs  will  increase  to

over 23.3 million[3]. Although a large number of CVDs are

preventable, they  are  continually  rising  due  to  inad-

equate  measures  and  the  high  risk  of  traditional

surgeries[4]. In order to overcome this high risk, computer-

aided minimally  invasive  vascular  techniques  were  pro-

posed  to  assist  the  diagnosis  and  surgeries  of  CVDs[5].

One  essential  task  of  computer-aided  minimally  invasive

vascular  techniques  is  the  accurate  reconstruction  of

blood  vessel  geometry  out  of  vascular  images.  However,

blood  vessels  are  of  high  complexity  in  their  geometric

structures, which  makes  the  reconstruction  task  ex-

tremely challenging.

The geometric reconstruction of blood vessels is to re-

build the geometric structures of the vascular wall out of

medical  images.  Mathematically,  existing  techniques  for

this task can be categorised largely  into two groups:  ex-

plicit  modelling  and  implicit  modelling[6],  depending  on

the form of mathematical representation of the extracted

vascular  geometric  shapes.  Explicit  modelling  typically

represents  vascular  surfaces  in  the  form  of  triangle

meshes, which is a preferred approach when the main ob-

jective of  generating  the  vascular  shape  is  for  visualisa-

tion.  However,  explicit  techniques  are  very  inconvenient

for  modelling  geometric  objects  with  complex  branching

structures[7].  In  contrast,  implicit  modelling  represents  a

geometric form  as  a  field  function,  which  allows  impli-

citly represented geometric objects to be easily blended to

generate  more  complicated  geometries.  This  easy-blend-

ing feature of implicit geometric modelling makes it par-

ticularly suitable for vascular modelling[8, 9].

Fast patient-specific high-precision vascular geometric

modelling based  on  the  scanned  volumetric  medical  im-

age datasets is a difficult task. Since a blood vessel is in

general of a tree structure with each of its branches hav-

ing a  thin  tubular  shape,  most  vascular  modelling  tech-

niques  are  vascular  skeleton-based.  The  skeleton  of  a

blood  vessel  is  an  important  geometric  clue  on  vascular
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modelling, which is often represented as the centreline of

a vascular tree. However, there are some vascular model-

ling techniques that are not developed based on vascular

skeletons. Whether skeleton extraction is an essential re-

quirement  for  vascular  modelling  has  been  investigated

and discussed by some researchers[10–12]. In general, exist-

ing  skeleton-free  modelling  techniques,  such  as  marching

cube[13] and  multi-level  partition  of  unity  implicits

(MPUI)[14],  are  difficult  to  use  to  create  a  high-precision

geometric reconstruction. In addition, the surface quality

created with this type of technique is often poor, and an

additional smoothing operation is usually required to fur-

ther  improve  the  smoothness  of  the  extracted  surface,

which inevitably makes the accuracy of the extracted sur-

face unguaranteed.  Compared  with  skeleton-free  tech-

niques, skeleton-based methods are more intuitive and are

straightforward  to  implement.  More  importantly,  by

marching along the skeleton, it is no longer necessary to

check  those  parts  of  a  given  medical  image  that  do  not

contain  any  vascular  vessels.  This  helps  to  improve  the

efficiency and effectiveness of the reconstruction task.

For the  skeleton-based  vascular  reconstruction  tech-

niques, sweep  surface  is  one  of  the  representative  meth-

ods. It intuitively generates a series of cross-sections along

the skeleton by sweeping a surface and progressively ap-

proximates these cross-sections to be a generalised cylin-

der. This is a two-step approximation modelling method.

A  cross-section  is  first  approximated  as  a  generalised

circle, and a series of generalised circles are then approx-

imated to be a generalised cylinder.

Inspired by the sweep surface method, this paper pro-

poses a  skeleton  marching-based  vascular  geometric  re-

construction to produce a high-performance and high-ac-

curacy  geometric  vascular  tree.  Instead  of  using  sweep

surface, a skeleton marching strategy is followed to build

the blood vessel along the skeleton, which not only avoids

the two-step approximation of the sweep surface method,

but also  improves  the  modelling  performance  and accur-

acy. In this method, the skeleton of a blood vessel branch

is firstly  represented  as  a  curve.  This  curve  is  then  di-

vided into many shorter segments with small overlaps at

the ends of the skeleton segments. For each of these short

skeleton segments,  a sub-region of the given medical im-

age  containing  the  skeleton  segment  is  identified  and  a

localised image segmentation technique is applied on this

sub-image region to extract a small point cloud. A series

of  connected small  point  clouds will  be extracted in this

way  along  the  skeleton  of  the  blood  vessel.  Since  these

point clouds are independent of each other, it is possible

to  approximate  them into  a  set  of  implicit  surfaces  in  a

parallel manner. An unbranched blood vessel will be geo-

metrically reconstructed  by  blending  these  implicit  sur-

faces together. In the same way, many unbranched blood

vessels can be reconstructed as implicitly represented ob-

jects  such  that  a  simple  implicit  blending  operation  can

combine them into an entire geometric vascular tree.

This  article  is  an  extension  based  on  the  conference

paper[15]. The proposed technique has been applied to real

medical  images  and  very  satisfactory  results  have  been

achieved.  Experimental  results  show  that  the  proposed

method has a much better performance in vascular recon-

structions.

2   Background

2.1   Implicit geometric reconstruction

f : R3 → R

In the  field  of  geometric  modelling,  an  implicit  geo-

metric model  is  a  mathematical  representation  of  an  at-

tribute of a 3D object in the form of a field function. The

aim  of  implicit  modelling  is  to  find  a  scalar  function

 to  represent  a  required  geometric  shape

either as a surface level set or a solid level set of the func-

tion.  For  simple  geometric  objects  such  as  spheres  and

cylinders,  the  corresponding  implicit  functions  can  be

written out  directly.  However,  finding  an  implicit  func-

tion  to  represent  a  highly  complex  real-world  shape  like

the human brain vascular system is obviously difficult.

The activities of geometric modelling can be generally

grouped into two types: designing a required shape based

on  a  set  of  specified  constraints  and  reconstructing  a

shape from  a  real-world  object.  Compared  with  geomet-

ric design, geometric reconstruction is in general a much

more difficult  task,  especially  when  the  object  to  be  re-

constructed is of a highly complex geometric structure.

Several  implicit  geometric  reconstruction  techniques

have  been  proposed  in  recent  years,  such  as  level  set

method[16], moving least square (MLS) method[17, 18], vari-

ational  implicit  surface  method[19],  adaptively  sampled

distance field method[20], multi-level partition of unity im-

plicits (MPUI) method[14] and radial basis function (RBF)

method[21, 22].  However,  none  of  these  methods  can  be

used directly  for  reconstructing  a  complex  vascular  sys-

tem.

O0={X ∈ R3 :f0(X)≤0} O1={X ∈ R3 : f1(X)≤
0}
f0 : R3 → R f1 : R3 → R

O0 ∩ O1

O0 ∪ O1 O0\O1 O0 O1

g = max(f0, f1)

Fortunately, implicitly modelled geometric objects are

easy to blend to generate more complex geometric shapes.

Let  and 

 be  two implicit  objects  represented by field  functions

 and  respectively.  The  implicit

objects  corresponding  to  the  intersection ,  union

 and  subtraction  of  and  can  be

defined  using  the  maximum  function ,  a

special and the simplest intersection blending operator, in

the following way:


O0 ∩ O1 = {X ∈ R3 : g(f0(X), f1(X)) ≤ 0}

O0 ∪ O1 = {X ∈ R3 : −g(−f0(X),−f1(X)) ≤ 0}

O0\O1 = {X ∈ R3 : g(f0(X),−f1(X)) ≤ 0}.

(1)

g(x, y)

g∩, g∪ g\

For a general blending operation , the blending

operators  and  corresponding to the intersection,

union and subtraction  of  two implicitly  represented geo-
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f0 f1metric shapes with function  and  are defined in the

following way:


intersection : g∩(f0, f1) = g(f0, f1)

union : g∪(f0, f1) = −g(−f0,−f1)

subtraction : g\(f0, f1) = g(f0,−f1).

(2)

g(x, y)

max
g(x, y)

max(x, y)

n = 0, 1, 2, · · · δ > 0

max

Though  there  are  various  simple  ways  to  define  the

blending operation , more advanced blending oper-

ations  are  required  to  blend  implicit  shapes  together

smoothly.  In  this  paper,  the  smooth  function  is

chosen  to  define . It  is  a  smooth  blending  opera-

tion  behaving  like  the  classical  function,  but

can achieve  any  required  continuity  at  the  blending  re-

gion and the range of the blending region is controllable.

Let  be the smoothness degree and  be

the  blending  rang  control  parameter,  the  smooth 

function takes the following form[9]:

maxn,δ(x, y) =
1

2
(x+ y + |x− y|n,δ) (3)

where

|x|n,δ =


|x| , for n = 0

δ

n

∣∣∣nx
δ

∣∣∣
n
, for n = 1, 2, 3, · · ·

(4)

and

|x|n =


|x| , for n = 0

1

2(n+ 1)
[(n− x) |1− x|n−1 +

(n+ x) |1 + x|n−1], for n = 1, 2, 3, · · · .
(5)

maxn,δ(x, y) Cn

g∩n,δ , g∪n,δ g\n,δ

With ,  a  set  of -smooth  shape-pre-

serving  blending  operators  and  can  be

constructed in the following way[9]:
g∩n,δ (f0, f1) = max

n,δ
(f0, f1)

g∪n,δ (f0, f1) = −g∩n,δ (−f0,−f1)
g\n,δ

(f0, f1) = g∩n,δ (f0,−f1)

(6)

δ > 0, n = 0, 1, 2, · · ·where .

δ > 0

Both  sharp  and  smooth  joints  can  be  produced  from

shape-preserving  blending  operators.  With  an  additional

blending range control parameter , they are an ideal

choice for the composition of implicit functions.

f0(x, y) = y − sin(0.5x) f1(x, y) = y−
cos(6x)

C2

δ

f0 f1

Fig. 1 presents the  intersection  blending  between  im-

plicit  functions  and 

 using  the  shape-preserving  blending  operation.

Both  the  two  blending  results  are  continuous,  but  a

smaller  value  gives  narrower  smooth  blending  range

and better preserves the original shapes of  and . The

bulge is also smaller at the places where the two implicit

shapes intersect.

0Fig. 2 presents an implicit geometry designed by the 

level sets of the implicit function

f(x, y, z) = g∪2,0.5(g∩(g\(x− 0.2, x+ 0.2),

g\(y − 0.2, y + 0.2)), z) (7)

g\ g∩
g∪2,0.5 C2

0.5

where  and  are  sharp  blending  subtraction  and

intersection  operators,  is  the -smooth  shape-

preserving  union  blending  operator  with  blending  range

parameter value .

By  using  blending  operations,  especially  shape-pre-

serving blending  operations,  the  implicit  modelling  tech-

nique can  be  used  to  reconstruct  very  complicated  geo-

metric objects by subdividing a complex geometric shape

into a  set  of  simple  geometric  objects,  which  can  be  re-

constructed  independently  of  each  other.  Our  vascular

modelling technique is developed based on this idea.

2.2   Vascular modelling

Skeleton-based implicit  vascular modelling usually re-

gards  the  task  of  reconstructing  the  entire  tree-struc-

tured vascular system as a set of tasks of reconstructing a

single  branch  and  reconstructing  a  single  branch  can  be

 

-2 -1 0 1 2 3 4

f0=y-sin(0.5x)=0
f1=y-cos(6x)=0
g
∪

=0, n=2, δ=0.1
g
∪

=0, n=2, δ=0.9

g
∩

( f0, f1)=maxn,δ( f0, f1)
g
∪

( f0, f1)=-g
∩

(-f0, -f1)

-1.0

-0.5

0

1.5

1.0

0.5

 
Fig. 1     Shape-preserving blending

 

 

 
Fig. 2     A blending between a square column and a plane

 

 32 International Journal of Automation and Computing 17(1), February 2020

 



performed by  marching  the  skeleton  of  the  branch.  It  is

intuitive to sweep a skeleton-orthogonal surface along the

skeleton to generate a generalised cylinder[23].  The sweep

surface models a blood vessel branch by generating a set

of  cross-sections  along  the  skeleton  of  the  vessel  branch,

where each  cross-section  is  approximated  by  a  general-

ised  circle.  In  order  to  guarantee  the  orthogonality

between the cross-section and the blood vessel, a local co-

ordinate transformation is  introduced as a Frenet frame.

Cross-sections  are  represented  as  2D implicit  generalised

circles and further extruded along the skeleton tangent as

implicit generalised cylinders. These generalised cylinders

are treated  as  an  accurate  representation  of  correspond-

ing blood vessels and then blended together to be a vas-

cular  tree.  Both  Hong[11] and  Kretschmer[12] adopt  this

scenario to reconstruct blood vessels. Hong′s method uses

2D piecewise algebraic spline[24] and shape-preserving im-

plicit  blending  operations[9].  Kretschmer  uses  Catmull-

Rom spline[25] and gradient-based implicit blending[26].

Although the reconstruction accuracy at the cross-sec-

tions are preserved, the sweep surface method has sever-

al  limitations.  Firstly,  there  are  two  extra  operations  of

the sweep surface method: indispensable coordinate trans-

formation for orthogonality between the blood vessel and

the sweep surface,  and unavoidable  points  sorting up on

the  cross-sections  for  the  approximation  of  generalised

circles.  These  operations  reduced the  performance  of  the

modelling. Secondly,  the  sparsity  of  cross-sections  influ-

ences  the  accuracy  of  the  reconstruction.  Data  points

between  two  consecutive  cross-sections  are  ignored.  The

higher  the  density  of  the  cross-sections,  the  better  the

modelling  quality  will  be.  Lastly,  vascular  modelling

based  on  sweep  surface  uses  two-step  approximation.

Cross-sections  are  firstly  approximated  as  a  series  of

closed  splines,  then  these  splines  are  approximated  as  a

generalised cylinder. Modelling performance will  decrease

with this two-step operation.

3   Skeleton marching

In  this  paper,  an  implicit  modelling  technique,  called

Skeleton  Marching,  is  proposed  analogous  to  team  cave

exploration for the geometric reconstruction of blood ves-

sels.  With the proposed method,  the skeleton of  a  blood

vessel is firstly represented as a spline. This spline is di-

vided into several overlapped shorter segments, which as-

sist  a  localised  image  segmentation  technique  to  extract

point  clouds  corresponding  these  segments.  These  small

point  clouds  are  then  fitted  and  blended  into  a  whole

blood  vessel  represented  as  an  implicit  surface.  All  the

locally reconstructed implicit blood vessels are then blen-

ded to represent the geometry of the whole vascular system.

Reconstructing  a  vascular  tree  with  the  skeleton

marching  technique  is  similar  to  exploring  a  cave  with

multiple branching structures by following the cave skel-

eton, and thus can be directly implemented in a parallel

manner,  as  each  branch  and  each  vascular  segment  can

be reconstructed independently of other branches or vas-

cular segments.  The  skeleton  marching  technique  con-

sists of  subdivision  of  the  skeleton,  localised  implicit  re-

construction, localised  implicit  object  and  parallel  com-

puting. Fig. 3 illustrates the process of skeleton marching

technique.

3.1   Subdivision of skeleton

The basic idea of skeleton marching is localisation. It

not only simplifies the modelling complexity but also ac-

celerates the modelling speed. Since a vascular image con-

tains  highly  complicated  blood  vessels  together  with  a

large  amount  of  non-vascular  information,  the  vascular

modelling in global scope cannot, in general, produce sat-

isfactory results for both large and small blood vessels. A

localised  region  marching  on  the  skeleton  of  the  blood

vessel can be used to subdivide a vascular modelling into

small  modellings  for  qualified  reconstruction  results.  A

localised region on the skeleton contains a short segment

of a blood vessel. This segment is going to be reconstruc-

ted as a localised implicit object, which is a small general-

ised  cylinder  whose  position  and  size  are  determined  by

the length and curvature of the skeleton enclosed in it.

In order to subdivide a blood vessel  into shorter vas-

cular  segments  with  a  reasonable  shape,  the  skeleton  of
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Fig. 3     Flowchart of skeleton marching
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this  blood  vessel  is  regarded  as  a  parametric  curve  such

that its  curvature  and  length  can  be  obtained  conveni-

ently for the subdivision.

γ : (α, β)→ R3

Suppose  a  3D  curve  is  represented  as  a  parametric

function ,  then  the  skeleton  of  a  blood

vessel can be represented as a parametric curve[27]

γ(t) = (x(t), y(t), z(t)), t ∈ (α, β). (8)

γThe curvature of the curve  is given by

κ =
∥γ̇ × γ̈∥
∥γ̇∥3 . (9)

γ(t0)The  length  of  the  curve  started  from  point  is

given by

s(t) =

∫ t

t0

∥γ̇(u)∥du. (10)

With the curvature and length, a long and curvy skel-

eton can  be  subdivided  into  shorter  and  less  curvy  seg-

ments  such that  the corresponded vascular  segments  are

in  simple  shapes.  The  neighboured  segments  share  an

overlapped part which is used for maintaining the fitting

accuracy during  the  blending  process  after  these  seg-

ments are reconstructed as localised implicit objects.

segk = (αk, βk)

L K

This  subdivision  is  delineated  in  Algorithm  1,  which

generates  a  set  of  knot  pairs .  One  knot

pair marks the two ends of a skeleton segment. The shape

of  this  segment  is  controlled  by  and  such  that  the

curve  of  the  segment  is  neither  too  long  nor  too  curvy.

Consequently the localised region surrounding the skelet-

on  segment  is  simple  enough.  The  data  points  in  this

small region can be easily extracted and reconstructed to

be a localised implicit object.

L K and  are two empirical values. They are depend-

ent  on  the  choice  of  the  surface  fitting  discussed  in  the

next section. This paper uses the RBF surface fitting with

ellipsoid  constraint,  which  will  give  redundancies  if  the

objective shape is long and curvy. However, thanks to the

shape-preserving blending  operations  in  (6),  the  recon-

struction accuracy  will  not  be  influenced.  The  perform-

ance is not affected either since parallel computing is in-

sensitive on the fluctuation of the dataset when it is big

enough.

Algorithm 1. Division of an unbranched skeleton

LParameter: : threshold of length

K　　　　　　 : threshold of curvature

C = {γ(⊔) : ⊔ ∈ (α, β)}input: curve: 

α = t0 < t1 < · · · < tn = β　　　  knots: 

segk = (αk, βk)output: knot pair: 

k ← 0;

ti+1 ̸= βwhile  do

i← 0　　　 ;

j ← i+ 1　　　 ;

len← s(tj)− s(ti)　　　 ;

cur ← |κ(tj)− κ(ti)|　　　 ;

len > L cur > K　　　if  or  then

segk ← (ti, tj)　　　　　　 ;

k ← k + 1　　　　　　 ;

i← j　　　　　　 ;

j ← i+ 1　　　　　　 ;

　　　else

j ← j + 1　　　　　　 ;

　　　end

end

αk segk
segk−1

In order to smoothly blend the neighbouring localised

implicit objects together, Algorithm 1 is designed in such

a manner that the start endpoint  of knot pair  is

in  the  middle  of  knot  pair . This  overlapped  re-

gion  is  long  enough  to  avoid  unwanted  bulges  when

blending.

αk αk+2

Fig. 4 gives an example of this subdivision. A medical

volume containing a blood vessel is rendered in Fig. 4(a).

This blood vessel is very curvy and is expected to be sub-

divided into shorter and less curvy segments. In Fig. 4(b),

a  skeleton  is  shown  as  a  curve  inside  the  blood  vessel.

Nine  markup  knots  are  located  with  Algorithm  1,  each

markup knot  is  paired with  such that  two con-

secutive  segments  share  a  common  part.  These  nine

markup points produce seven segments shown in Fig. 5.

3.2   Localised implicit reconstruction

Subdivision of  the vascular  skeleton simplifies  the re-

construction  of  a  blood  vessel  by  breaking  down  a  big

modelling  task  into  many  small  sub-tasks.  Due  to  the

simplicity of  each  local  vascular  shape,  the  localised  re-

construction of the region surrounded a skeleton segment

is simple, accurate and efficient.

A skeleton segment is a short curve inside a localised

blood  vessel.  The  shape  of  the  blood  vessel  segment  is

small and simple such that the point data of the vascular

segment can be collected with many different image seg-

mentation algorithms. In this paper, the implicit deform-

able  model  segmentation  algorithm[28] is chosen  to  ex-

tract the data points out of a short blood vessel. This seg-

mentation method evolves a level set inside a blood ves-

 

(a) A curvy blood vessel (b) Markup knots on the skeleton
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Fig. 4     Subdivision of a vascular skeleton
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sel  from its  start  point  to  the  endpoint  and  collects  the

surface points of the blood vessel on the go. For a small

blood vessel segment, this algorithm gives efficient and ef-

fective segmentation results.

Fig. 6 presents  localised segmentation results  of  seven

vascular  segments  from the  curvy  blood  vessel  in Fig. 4.
Each  segmentation  result  is  a  scatter  point  cloud.  From

Figs. 6(a) to 6(g),  meshes  are  rendered  with  the  data

points  for  better  observation.  All  the  data  points  shown

with different colours are given in Fig. 6(h).

The  localised  segmentation  collects  the  surface  point

clouds  of  the  small  blood  vessels  corresponding  to  the

skeleton  segments.  Each  point  cloud  is  a  small  dataset

with a  capsule-like  shape  and  is  expected  to  be  recon-

structed as a surface. Because of the simplicity of the un-

derlying  geometry  represented  by  the  small  dataset,  an

uncomplicated surface fitting algorithm is preferred.

As shown in Fig. 6, the localised segmentation result is

always a closed point  cloud without holes  and self-inter-

sections.  Although  some  of  them  have  curvy  parts,  the

general  shape  is  always  a  capsule  or  deformed  ellipsoid.

Under  such  conditions,  the  direct  RBF  surface  fitting

with ellipsoid  constraints  is  selected to  reconstruct  these

localised blood vessel segments, which is a high-accuracy

surface fitting method designed for small datasets[22].

The direct  RBF  surface  fitting  with  ellipsoid  con-

straints  is  based  on  an  assumption  that  the  RBF-based

surface  fitting problem can be regarded as  a  blending of

two implicit surfaces: a surface fitted by radial basis func-

tions and a surface modelled by a low degree polynomial.
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Fig. 5     Subdivided skeleton segments
 

 

(a) 308 points (b) 384 points

(c) 574 points (d) 568 points

(e) 568 points (f) 352 points

(g) 303 points (h) 3057 points
 

Fig. 6     Localised segmentations of a survy blood vessel
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Since the implicit surface of a radial basis function is al-

ways a  blobby  model,  a  shape-closed  polynomial  con-

straint, such as an ellipsoid, is an ideal choice to deform

the blob to be the desired shape.

P = {Pi}ni=1

P f(X)

Given a set of points  from a surface, the

direct RBF fitting with ellipsoid constraint is to fit points

set  as an implicit function :

f(X) =

n∑
i=1

γiϕi(∥X − Pi∥) +
m∑

j=1

βjψj(X) (11)

ϕ
∑m

j=1 βjψj(X)

X = (x, y, z)

f(Pi) = 0, i = 1, 2, · · · , n
f(X) = 0

where  is a radial basis function and  is a

polynomial always representing an ellipsoid, 

is a general point. Assume , then

 can be expressed in the following matrix form:[
Φ Ψ

ΨT 0

] [
γ

β

]
=

[
0

0

]
(12)

where

Φ = [ϕ1, ϕ2, · · · , ϕn]

Ψ = [ψ1, ψ2, · · · , ψm]

γ = [γ1, γ2, · · · , γn]T

β = [β1, β2, · · · , βm]T. (13)

∑m
j=1 βjψj(X)

The solution to (12) can be obtained by solving an ei-

gensytem subject to the condition that  al-

ways  represents  an  ellipsoid.  A  full  explanation  of  (11)

and (12) can be found in [22].

The direct  RBF  surface  fitting  with  ellipsoid  con-

straint  is  especially  suitable  for  the  reconstruction  of

small  datasets  like  the  localised  segmentation  results

shown in Fig. 6. As a one-step fitting algorithm based on

the solution of the eigensystem in (12), this direct fitting

does  not  require  additional  information  such  as  surface

normals and extra fitting layers. The fitting is fast when

the dataset is small. In addition, because of the ellipsoid

constraint, this method always gives bounded fitting res-

ults  which  is  the  expected  shape  of  a  vascular  segment.

As the fitting results are expressed as implicit functions,

it is  easier  to  combine  the  reconstructed  vascular  seg-

ments together  using  implicit  blending  operations.  Fur-

thermore, since each closed vascular segment has a simple

shape,  the  corresponding  implicit  shape  has  a  simple

form, whose  computational  cost  can  be  dramatically  re-

duced. This will be discussed in the next section. Last but

not  least,  this  method  is  a  high-accuracy  surface  fitting

method  when  the  shape  of  the  datasets  are  simple.  The

fitting errors are very small and negligible[22].

Fig. 7 presents localised modelling results of the curvy

blood vessel corresponding to the segmentation results of

Fig. 6.  Both  the  reconstructed  surfaces  and  the  data

points are rendered. The whole curvy blood vessel is giv-

en in Fig. 7(h). It is the blended result of the implicit ob-

jects  shown  in  other  seven  subfigures.  Although  the

C2

n = 2

δ = 0.2 δ = 0.2

blending  smoothness  can  be  any  degree  by  using  the

shape-preserving blending operators in (6), a  smooth-

ness  is  sufficient  for  the  purpose  of  geometric  modelling.

In this paper the smoothness degree is set to  with a

smoothness span controller , where  is from

an empirical validation.

Table 1 gives the distance errors of the localised mod-

elling  results  of  the  seven  subfigures  from Figs. 7(a) to

7(g).  The  distance  is  measured  from  each  data  point  to

the reconstructed surface. The distance error is evaluated

by the standard deviation of all  the distances of a local-

ised reconstruction result. It is shown that the errors are

so small  that the data points  can be regarded as on the

surface.

3.3   Localised implicit object

O0,O1, · · · ,On

f0, f1, · · · , fn U ⊂ R3

Oi

The localised  reconstruction  process  of  vascular  seg-

ments generates  a  group  of  bounded  small  implicit  ob-

jects , which are defined by a set of impli-

cit functions  in an image space . Al-

though  each  individual  implicit  object  takes  only  a

 

(a) Segment 0 (b) Segment 1

(c) Segment 2 (d) Segment 3

(e) Segment 4 (f) Segment 5

(g) Segment 6 (h) Blending result
 

Fig. 7     Localised reconstruction of a curvy blood vessel
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Ui ⊂ U
fi U

Ui

Oi

small region , the evaluation of the corresponding

implicit function  is crossing the whole image space .

Its  evaluation  is  expected  to  be  limited  inside  as  the

implicit object  is only a locally defined implicit object.

O∗ = {X ∈ U∗ : f(X) ≤ 0}
f

U∗ U
U∗ ⊂ U {X ∈ U∗ : f(X) ≤ 0} =

{X ∈ U : f(X) ≤ 0} U ⊂ R3

Definition  1.  (Localised  implicit  object) An im-

plicit  object  defined  by  an

implicit function  is said to be a localised implicit object

if there exists a subset  of , such that it is a bounded

object defined in , and that 

, where .

Oi

Ui ⊂ U
Oj Uj ⊂ U

U

A localised  implicit  object  is a  set  defined  in  do-

main  and is expected to be blended with another

localised  implicit  object  defined  in .  However,

these two implicit objects cannot be blended together dir-

ectly  because  the  domains  of  the  corresponding  implicit

functions are different. In order to achieve this blending,

their  domains have to be extended to the origin domain

. The truncated implicit function is used to do this ex-

tension.

f̄ : R3 → R
f

U∗ ⊂ R3

O∗ = {X ∈ U∗ : f̄(X) ≤ 0}

Definition  2.  (Truncated  implicit  function) A

field function  is said to be a truncated impli-

cit function (TIF) of an implicit function  if there exists

a  sub-domain , such  that  the  implicit  solid  ob-

ject  is a localised implicit ob-

ject.

f U∗

f U∗

For  a  normal  implicit  function ,  let  be the  do-

main on which it is truncated, then the truncated impli-

cit  function  on  can  be  expressed  in  the  following

form:

f̄(X) =

{
f(X), X ∈ U∗

c≫ 1, otherwise
(14)

cwhere  is a sufficient large constant.

With the truncated implicit function, a group of local-

ised implicit objects can be quickly evaluated inside their

localised defining domains and blended together in a global

domain. It dramatically improves the performance of the

geometric reconstruction process when the number of the

localised implicit objects is large and their sizes are small.

f(x, y) = (0.5x2 − 1)2 + 2y2 − 1.2 0

Z(f) = {f(x, y) = 0}
{X :

f(X) ≤ 0} Z(f)

f

Z(f)

Fig. 8 demonstrates how  the  truncated  implicit  func-

tion  works.  In Fig. 8(a),  isocontours  of  implicit  function

 are  shown  and  the 

level set  is marked. Since an impli-

cit  object  is  an  interior  implicit  solid  object 

, the evaluation outside  can be neglected.

In Fig. 8(b), the implicit function  has been truncated to

be inside a sub-domain enclosing  such that the un-

wanted evaluation outside this sub-domain is eliminated.

Ui

Oi

Ui

However, since an implicit function in general cannot

explicitly represent an implicit surface, there is no direct

way  to  generate  points  or  surfaces  of  an  implicit

function[7].  In  order  to  locate  the  sub-domain  of  the

localised  implicit  object ,  the  location  of  the  localised

segmentation will be used as a substitution. Consider the

small size  of  the  localised  segmentation,  a  minimum cu-

bic bounding box is chosen to be the sub-domain .

Fig. 9 shows the  differences  between  a  globalised  im-

plicit  object  and  a  localised  implicit  object  with  their

minimum bounding  box.  The  branched  blood  vessel  has

been divided into 41 simple vascular subsections and their

data points on the vascular walls, which are rendered as

blue points, have been extracted by the implicit deform-

able model segmentation method[28].  The red capsule-like

objects in the two subfigures are reconstructed small vas-

cular sections.  Although  the  two  objects  are  geometric-

ally identical, they are generated from different domains.

The fitting of Fig. 9(a) uses the global domain and costs

 

Table 1    Distance error of the localised implicit reconstruction

Localised
reconstruction

Number of
points

Standard
derivation (ms)

(a) 308 ×10−10
2.466 77

(b) 384 ×10−10
1.561 89

(c) 574 ×10−9
1.495 56

(d) 568 ×10−9
1.725 21

(e) 568 ×10−10
2.898 05

(f) 352 ×10−10
4.962 90

(g) 303 ×10−10
1.318 24
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Fig. 8     Isocontours of an implicit function
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35.34 s on a CPU. In contrast, Fig. 9(b) costs 4.89 s inside

a  localised  domain.  The domains  are  marked with  a  red

frame box. The whole data points are rendered in the fig-

ures to show the size of the global domain.

Table 2 compares the fitting speeds of the blood ves-

sel  segments  in Fig. 7.  The  globalised  fitting  costs  much

more time than the localised fitting since the localised fit-

ting  uses  truncated  implicit  function  such  that  only  the

sub-domain  of  the  localised  implicit  object  is  evaluated

and the fitting is much faster.

Fig. 10 compares the fitting speed of each blood vessel

segment. The speed remains at a low level of the global-

ised fitting  using  the  normal  implicit  function.  On aver-

age nine points are fitted per second. In contrast, the fit-

ting speed of using the localised implicit function is about

ten times faster, and the speed grows when the number of

points increases.

By  using  the  truncated  implicit  function,  the  fitting

speed of  the  localised  implicit  object  is  dramatically  im-

proved  at  the  algorithmic  level.  Since  the  fitting  of  one

localised implicit object is independent of the others, the

fitting efficiency can be further improved by using paral-

lel computing techniques.

3.4   Parallel computing

The  subdivision  of  the  vascular  skeleton  turns  a  big

modelling task into many small subtasks, each of them is

regarded as a localised reconstruction and generates a loc-

alised  implicit  object.  A  notable  feature  of  the  localised

implicit objects is that they can be built independently of

the  others,  thus,  localised  implicit  reconstructions  work

well with parallel computing techniques.

Parallel computing is a technique that improves com-

putational efficiency  by  using  multiple  processing  ele-

ments  simultaneously  to  solve  a  problem.[29].  There  are

several  different  types  of  parallel  computing,  but  only

data parallelism is used in this research.

Data  parallelism  distributes  the  data  across  multiple

processors  for  parallel  computing.  It  has  received  much

attention  with  the  fast  development  of  general-purpose

computing  on  graphics  processing  units  (GPGPU).  The

massive  parallel  processors  and  memories  on  a  GPGPU

are able  to  process  complicated  tasks  in  a  parallel  man-

ner and  significantly  improve  the  computational  effi-

ciency[30].

P = {Pi}ni=1

Data  parallelism  has  been  used  on  the  RBF  fitting

with  ellipsoid  constraint  to  improve  the  performance  of

the vascular reconstruction. For a point cloud 

from the  localised  segmentation,  the  implicit  function  in

(12)  is  expressed  and  distributed  over  the  GPGPU as  a

kernel  of  parallel  computing.  The  solution  is  transferred

back to  the  host  programme  on  CPU  for  further  pro-

cessing.

Table 3 compares the fitting time of the blood vessel

segments based on Table 2. In this table, Columns 3 and

4 show the globalised fitting time on CPU and GPU. The

fitting speed  of  data  points  on  GPU is  significantly  im-

proved.  Columns  5  and  6  give  the  localised  fitting  on

CPU and GPU, but as  can be observed,  the fitting per-

formance  on  GPU  is  not  improved,  instead,  it  is  even

slower.  This  is  because  the  localised  implicit  objects  of

the blood vessel segments are too small to be accelerated.

Data transformation between CPU and GPU slows down

the acceleration. The fitting speed comparison is given in

Fig. 11. The experiments are remotely running on an high

performance  computer  (HPC)  with  an  Intel(R)  Xeon(R)

 

Table 2    CPU time for fitting of blood vessel segments (s)

Segment Point number Globalised fitting Localised fitting

0 308 34.76 5.16

1 384 42.45 5.21

2 574 60.61 6.25

3 568 62.24 5.71

4 568 61.03 5.73

5 352 38.45 5.13

6 303 35.34 4.89
 

 

(a) Globalised object (b) Localised object
 
Fig. 9     Globalised implicit object and localised implicit object
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Fig. 10     CPU fitting comparison of blood vessel segments
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CPU E5–2680 and a Nvidia Tesla K40M GPU.

Besides  the  data  parallelism  of  the  modelling  on  one

implicit object,  multiple  localised modellings can be pro-

cessed concurrently. This is also regarded as task parallel-

ism. Localised  implicits  and  localised  modelling  are  de-

signed  for  this  purpose.  Because  the  calculation  of  one

localised implicit object is independent of the others, dif-

ferent  localised  implicits  can be  configured into  different

streams  for  concurrent  computing.  Futhermore,  higher

parallelism  can  be  achieved  when  multiple  GPU devices

are available.

4   Experimental results and discussions

A skeleton marching algorithm is proposed in this pa-

per using the localised implicit objects for the reconstruc-

tion  of  blood  vessels.  The  segmentation,  surface  fitting

and parallel  computing  of  a  single  localised  implicit  ob-

ject have been discussed to illustrate the proposed meth-

od. However, it is worth stressing that this method is de-

signed for the reconstruction of vascular trees rather than

simple  blood  vessel  segments.  This  section  discusses  the

advantages and limitations of  the proposed method with

further experiment results.

4.1   Experimental results

4.1.1   Unbranched blood vessel

A short curvy blood vessel has been reconstructed us-

13

ti ti+2

ing the proposed method when discussing skeleton march-

ing.  This  section  presents  the  reconstruction  of  another

unbranched  blood  vessel  in Fig. 12. The  volume  render-

ing of this blood vessel is shown in Fig. 12(a). Its skelet-

on  is  represented  as  a  cubic  Hermite  spline  and 

ordered  knots  have  been  positioned  on  it  using

Algorithm 1.  Spline  segments  are  divided in  such a  way

that knot  is paired with . Each segment overlaps its

neighbours, this is to make sure that the adjacent locally

fitted implicits are blended smoothly. Fig. 12(b) gives the

localised  segmentation  of  each  spline  segment.  Random

colours distinguish different point clouds where small and

simple shapes can be observed. Fig. 12(c) shows the local-

ised  reconstruction  result  of  one  point  cloud. Fig. 12(d)

presents the blending result  of  all  modelling results  with

point clouds rendering. The shape-preserving blending op-

eration is used[9]. Fig. 12(e) shows the reconstructed blood

vessel without point clouds.
4.1.2   Branched blood vessel

Fig. 13 shows  a  branched  blood  vessel  reconstructed

with  the  proposed  method. Figs. 13(a) to 13(c) give  the

point  clouds,  point  clouds  on  the  blood  vessel  wall  and

the blood vessel wall as implicit surface, respectively.

This  branched  blood  vessel  consists  of  59  segments

from 7 smaller single blood vessels. Each segment corres-

ponds to a small point cloud extracted with localised seg-

mentation.  Small  and  simple-shaped  implicit  objects  are

fitted from these point clouds and then blended together

to  create  the  final  result.  The  segmentation  and  surface

fitting  of  one  point  cloud  has  no  relation  to  the  others

and therefore is parallel-friendly. The underlying implicit

function of the surface fitting is represented as the trun-

cated  implicit  function  in  (13)  which  makes  the  fitting

very fast.
4.1.3   Blood vessel tree

The reconstruction of a blood vessel tree is similar to

the  reconstruction  of  branched  blood  vessels. Fig. 14

presents a  reconstructed  blood  vessel  tree  with  294  seg-

ments from 58 unbranched blood vessels. The original im-

age  is  rendered  as  a  volume  in Fig. 14(a).  In Fig. 14(b),

the  point  clouds  of  the  294  segments  are  rendered  with

random colours. In Fig. 14(c), both the points and the re-

constructed surface  are  rendered. Fig. 14(d) gives the  re-

constructed vascular tree without the points.

The flowchart in Fig. 15 illustrates this reconstruction.

Localised  segmentation  is  applied  on  short  blood  vessel

segments  guided  by  skeleton  segments,  then  localised

modelling fits  the  segmentation  results  with  small  local-

ised implicits. Implicit blending operation combines them

together  to  get  the  final  vascular  tree.  Compared  with

Fig. 3, this chart emphasises the parallel  computing used

in the Skeleton Marching technique.

Parallel computing plays an important role in the pro-

posed reconstruction method. For a single localised mod-

elling on one point cloud, data parallelism aims at the ac-

celeration of  the  RBF  fitting.  Multiple  localised  model-

 

Table 3    Fitting time of blood vessel segments (s)

Segment Points number
Globalised Fitting Localised Fitting

CPU GPU CPU GPU

0 308 34.76 5.48 5.16 5.47

1 384 42.45 6.00 5.21 5.49

2 574 60.61 7.12 6.25 6.10

3 568 62.24 7.01 5.71 6.15

4 568 61.03 7.12 5.73 6.15

5 352 38.45 5.66 5.13 5.72

6 303 35.34 5.57 4.89 5.41
 

 

Seg 0 Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6
Segment number

0

20

40

60

80

100

Sp
ee

d 
(p

oi
nt

s/
s)

Fitting time of blood vessel segments (s)

Globalised fitting, CPU
Globalised fitting, GPU

Localised fitting, CPU
Localised fitting, GPU

 
Fig. 11     Fitting speed comparison of blood vessel segments
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lings  are  accelerated  by  task  parallelism.  This  two-step

parallel computing  greatly  improves  the  modelling  per-

formance.
4.1.4   Parallel computing

Table  4 compares  the  performances  of  reconstructing

blood vessel(s)  on CPU and GPU with globalised fitting

and  localised  fitting.  Datasets  A,  B  and  C  in  the  first

column correspond to the reconstructed blood vessel(s) in

Figs. 12(c), 12(e) and 13(c),  respectively,  each  of  them

contains  316  data  points,  4 196  data  points  and  17 503

data points.

Fig. 16 gives  a  comparison  of  the  modelling  speed  of

the  three  examples  in Table  4.  The  first  bar  shows  the

globalised fitting speed on the CPU remaining at a stable

level. The second bar reflects the rapid growth of global-

ised fitting speed on the GPU when the number of data

points increases.  In  contrast,  the  modelling  speed  differ-

ences  between  the  localised  fitting  over  the  CPU  and

GPU are not that significant. The performance of the loc-

alised fitting on GPU is even worse than the CPU coun-

terpart  when  the  dataset  is  small,  but  its  advantage  is

emerging  with  the  increasing  of  the  size  of  the  dataset.

This is  because  the  localised  fitting  is  less  computation-

ally intensive as the dataset is small.  In general, parallel

computing  gives  limited  improvement  for  non-computa-

tional intensive tasks.
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Fig. 12     Reconstruction of an unbranched blood vessel. (a) Volume rendering; (b) Segmentation results; (c) Localised reconstruction;
(d) Blending result with data points; (e) Reconstructed blood vessel.
 

 

(a) (b) (c)
 
Fig. 13     Reconstruction  of  a  branched  blood  vessel.  (a)
Segmentation results; (b) Reconstructed blood vessel with data
points; (c) Reconstructed blood vessel without data points. (The
reader  is referred to the web version of this article  for a clearer
view.)
 

 

(a) (b)

(c) (d)
 
Fig. 14     Reconstruction  of  blood  vessel  tree.  (a)Volume
rendering;  (b)  Segmentation  results;  (c)  Reconstructed  blood
vessel tree with data points; (d) Reconstructed blood vessel tree
without data points. (The reader is referred to the web version of
this article for a clearer view.)
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4.2   Discussions

The  skeleton  marching-based  vascular  reconstruction

is a  high-accuracy  and  high-performance  vascular  recon-

struction  method.  Compared  with  the  sweep  surface

method,  it  has  several  distinctive  advantages  in  blood

vessel reconstruction:

1) No coordinate transformation is required. Each vas-

cular  segment  is  reconstructed  to  be  a  localised  implicit

object  inside  the  image  space.  This  reconstruction  does

not need the Frenet coordinate.

2)  The  dataset  of  each  localised  reconstruction  does

not need to be sorted out. The reconstruction of a vascu-

lar segment is a surface fitting on an unorganised dataset.

The coordinates of the data points are the only prerequis-

ite of this fitting.

3)  All  data  points  are  considered  by  the  proposed

method.  The reconstruction of  a  blood vessel  segment is

based on a 3D point cloud rather than a fraction of sur-

face points. No data point is neglected.

4)  The  fitting  of  a  localised  implicit  object  is  a  one-

step  fitting.  The  data  points  of  a  vascular  segment  are

directly  reconstructed  as  an  implicit  object.  No  post-fit-

ting operation is required.

5) The proposed method is a high-performance vascu-

lar reconstruction technique. On the one hand, the local-

ised implicit object limits the evaluation of each vascular

segment  reconstruction  inside  a  small  region  such  that

the fitting efficiency is dramatically improved because of

the  significantly  recused fitting  size.  On the  other  hand,

the  proposed  method  is  parallel  computing-friendly.  All

localised implicit objects can be reconstructed in a paral-

lel manner to save more computational cost.

6)  This  vascular  reconstruction  technique  is  of  high

accuracy. First, the direct RBF fitting with ellipsoid con-

straint is a high-accuracy surface fitting method. Various

shapes  can  be  accurately  represented.  In  addition,  the

blended shape  of  the  localised  implicit  objects  can  pre-

serve the original shapes as much as possible by using the

shape-preserving  implicit  blending  operations.  Both  the

degree of smoothness and the blending range can be flex-

ibly controlled to adjust the blending results.

The  main  drawback  of  the  proposed  method  is  the

overuse of  data points.  In order  to  blend the neighbour-

ing vascular  segments  together,  each  segment  has  over-

lapped regions with its neighbours and the data points in

these regions will be processed twice. This overuse of data

points guarantees the smoothness and accuracy of blend-

ing results but slightly decreases the modelling efficiency.

However,  the  size  of  the  overlapped  region  is  controlled

by  the  length  and  curvature  of  the  vascular  segments

such that this  negative issue can be suppressed as much

as  possible.  This  overuse  can  be  observed  in Fig. 6(h).

The  size  of  the  overlapped  regions  is  to  be  optimised  in

the future work.

5   Conclusions

The skeleton-based  vascular  modelling  is  the  main-

stream approach in accurate reconstruction of blood ves-

sels out of medical images. Among the existing skeleton-

based  vascular  modelling  techniques,  the  sweep  surface

method  allows  high-accuracy  modelling  results  at  the

cross-sections but it is far less accurate at reconstructing

the parts  between  two  consecutive  sweep  surfaces.  Fur-

thermore,  it  is  a  two-step  approximation  technique,

whose performance  can  drop  significantly  with  the  in-

crease of  the  number  of  cross-sections  considered.  In  or-

der to avoid this problem and improve the performance of

geometric  vascular  modelling,  this  paper  proposes  the

skeleton marching-based vascular reconstruction to give a

 

Table 4    Fitting time of blood vessels (s)

Example Point number
Globalised Fitting Localised Fitting

CPU GPU CPU GPU

A 316 36.70 5.79 5.40 5.61

B 4 196 437.02 25.12 15.30 12.09

C 17 503 1 823.99 93.48 52.25 35.24
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Fig. 15     Flowchart of vascular modelling
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Fig. 16     Fitting speed comparison of blood vessels
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one-step and parallel computing-friendly geometric recon-

struction of the blood vessels.

With the proposed technique, a vascular tree is firstly

divided  along  the  vascular  skeleton  into  short  simple

blood vessel sections and a small simple point cloud is ex-

tracted from  each  of  these  vessel  sections  using  a  seg-

mentation technique. Then a set of simple implicit shapes

are  reconstructed  in  a  parallel  manner  using  these  point

clouds. A high-accuracy vascular tree is finally generated

by blending  these  localised  implicit  objects  together  us-

ing shape-preserving blending operations. Compared with

the CPU-intensive implementations, much less time is re-

quired using  the  proposed  parallel  implicit  fitting  tech-

nique.  The  proposed  method  can  be  used  to  reconstruct

scene  from scanned  “3D information”  similar  to  the  “P-

RM method” proposed in [31].
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