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Abstract 

This paper briefly reviews three theories concerning elemental and configural approaches to stimulus 

representation in associative learning and presents a new Context-dependent Added Elements Model 

(C-AEM). This model takes an elemental approach to stimulus representation where individual stimuli 

are represented by single units and stimulus compounds activate both those units and configurational 

units corresponding to each conjunction of two or more stimuli. Activity across these units is scaled 

such that each stimulus always contributes the same amount of activity to the system whether they 

are presented in isolation or in compound; the configurational units ‘borrow’ activity from 

representation units for individual stimuli (and from each other). This scaling is affected by the extent 

to which stimuli interact with each other perceptually. Hence, the model is conceptually similar to 

Wagner’s (2003) Replaced Elements Model but lacks features that explicitly code for the absence of 

stimuli (i.e., inhibited elements). Simulations of the model are reported for a range of generalization 

and discrimination learning tasks, conflicting results from which have previously been taken to provide 

support for either configural or elemental theories of learning. 

 

Keywords: Pavlovian conditioning, configural, elemental, generalization, discrimination learning 

 

  



Stimulus Conjunction  2  

The representation of stimulus conjunction in theories of associative learning: A context-

dependent added-elements model 

Pavlov (1927) reported that if a 1 kHz tone was paired with food such that it came to provoke 

a conditioned response (CR), tones of other frequencies would also trigger the CR. Furthermore, the 

strength of the response diminished as the difference in the frequencies of the training and test stimuli 

increased. Models of associative learning have traditionally explained this generalization of 

responding from one stimulus to another by appealing to similarities in the internal representations 

of patterns of stimulation. One approach, exemplified by Spence’s (1936, 1937) theory of 

discrimination learning and by stimulus sampling theory (Atkinson & Estes, 1963; Estes 1950, 1955a, 

1955b) is to assume that the representation of any stimulus situation consists of a number of theoretic 

elements, or micro-features, each of which may become associated with a response. The extent to 

which responding will generalize from one situation to another is determined by the degree of overlap 

between the populations of elements that represent these different stimulus situations. Such 

elemental representational schemes have proved popular and form the basis of a number of 

contemporary models of learning (e.g., Harris, 2006; McLaren & Mackintosh, 2000, 2002).  

Despite the success of elemental models of learning, an alternative, configural, approach to 

stimulus generalization was proposed by Pearce (1987, 1994, 2002) in response to the results of a 

number of experiments examining the influence of similarity on animals’ ability to learn to 

discriminate between different patterns of stimulation. Whereas elemental models assume that 

individual stimulus elements enter into direct associations with the representation of the outcome 

(unconditioned stimulus, US), Pearce’s configural theory supposes that any pattern is represented as 

a whole, and it is this configural representation that enters into an association with the US. 

Generalization occurs within this model because one pattern may partially activate the representation 

of another pattern as a function of their similarity. 
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Other models represent stimuli elementally, with those representations entering into direct 

associations with the US, but they make the additional assumption that when two or more stimuli are 

presented in compound a unique configurational cue is generated. This configurational cue may itself 

enter into associations (Spence, 1952; Wagner & Rescorla, 1972; Brandon, Vogel & Wagner, 2000; 

Wagner, 2003). 

In this article I shall first briefly describe some features of three models that were, over many 

years, a focus of debate between the laboratories of Pearce and Wagner: the Rescorla-Wagner (RW) 

elemental model (Rescorla & Wagner, 1972), Pearce’s (1987, 1994, 2002) Configural Theory and 

Wagner’s (2003) Replaced Elements Model (REM). I shall then describe a new elemental model of 

learning, the Context-dependent Added Elements Model (C-AEM), which is based on the RW model, 

and is computationally much less demanding than REM. Finally, I will review some of the key 

experimental results that provide differential support for elemental and configural theories and 

explore whether C-AEM can reconcile conflicting findings from Pearce’s and Wagner’s laboratories.  

The Rescorla-Wagner Model 

According to Rescorla & Wagner (1972), the magnitude of the CR provoked by a conditioned 

stimulus (CS) is determined by the strength of an associative link between internal representations of 

the CS and a US. When the CS is paired with a US the strength of this association (the associative 

strength of the CS) is updated, with the change in the associative strength being determined by the 

extent to which the US is surprising, or unexpected. Equation 1 shows how the change in the 

associative strength, V, of stimulus A is determined by the sum of associative strengths of all stimuli 

present on the conditioning trial, ΣV, the maximum associative strength supported by the US, λ, and 

learning rate parameters, αA and β, associated with the CS and the US, respectively. λ is typically 

assigned some arbitrary positive value (frequently 1) when the US is present and is set to zero when 

the US is absent. The learning rate parameters take some value between zero and 1. 
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 ( )A AV V   = −  (1)   

A consequence of conditioning with a stimulus compound is that each individual stimulus may 

accrue associative strength. It follows from Equation 1, however, that following simple conditioning 

the asymptotic associative strength of any element of a compound is determined by two factors: the 

number of other stimuli in the compound, and the relative values of the learning rate parameter, α, 

associated with each stimulus. The asymptotic associative strength of stimulus A when paired with a 

US in compound with other CSs is given by Equation 2. 

 A
AV





=


 (2) 

The use of the combined error term (λ – ΣV) in Equation 1 sets the RW model apart from the 

linear operator rule of Bush & Mosteller (1955) and allows the RW model to account for learning 

phenomena such as cue competition effects (e.g., blocking, overshadowing, over-expectation, super-

conditioning) and the development of conditioned inhibition. There are, however, certain 

discrimination learning tasks which pose considerable problems for the RW model. These include 

patterning and conditional discrimination tasks which have no linear solution. Saavedra (1975) trained 

rabbits on a biconditional discrimination involving four compound stimuli. Compounds AC and BD 

were each paired with an intra-orbital electric shock, whereas compounds AD and BC were presented 

in the absence of this US. Because each of the individual cues, A, B, C, and D, occurred equally often 

on reinforced and non-reinforced trials, the RW model, as characterized above, would predict that 

each cue should gain a moderate amount of associative strength and all four compounds should 

provoke a CR of similar magnitude. That Saavedra’s rabbits came to respond in the presence of AC and 

BD but learnt to withhold responding to AD and BC cannot be explained by this purely elemental 

model of learning.  

One solution to this problem is to assume that the relationships between components of 

specific combinations of stimuli may give rise to unique configurational cues (e.g., Spence, 1952; 
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Wagner, 1971; Wagner & Rescorla, 1972). Hence, we may recast Saavedra’s discrimination task as 

ACw+ BDx+ ADyø BCzø, where + and ø denote the presentation or omission of the US, and w, x, y, and 

z are the configurational cues generated by the compounds AC, BD, AD, and BC, respectively. If we 

allow these configurational cues to gain associative strength in the same way as normal stimuli, then 

the RW model can solve the biconditional discrimination with the stimuli A, B, C, and D acquiring 

relatively little associative strength. The configurational cues w and x, which are generated by the 

reinforced patterns AC and BD, are predicted to become moderately excitatory, whereas y and z which 

are generated by the non-reinforced patterns AD and BC should become moderately inhibitory1. 

Pearce’s Configural Theory 

Pearce (1987, 1994, 2002) proposed an alternative model of associative learning based on the 

principle that animals learn about the relationship between entire configurations of stimuli and the 

outcome. Pearce presented his model within a connectionist framework, consisting of an input 

network, a layer of configural units, and finally a layer of US units. When a pattern of stimulation is 

presented to the network, each stimulus within it activates a corresponding unit within the input 

network and activation of these units is fed forward to the units in the configural layer. The 

connections within the input network, and those between it and the configural layer, are weighted 

such that when any pattern– whether it consists of a single stimulus or of several stimuli – is presented 

to the network it will fully activate a single configural unit which has been recruited to represent that 

pattern specifically. That configural unit can then enter in an association with a US unit. Following a 

conditioning trial with pattern j, the associative strength of configural unit j, Ej, will be modified 

according to a learning rule similar to that employed by the RW model. The increment in associative 

strength, ΔEj, is dependent upon learning rate parameters α and β which reflect the conditionability 

of the configural unit and properties of the US, respectively, and Vj which is the overall level of 

activation of the US unit when pattern  j is presented. The learning rule is shown in Equation 3. 
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 ( )j jE V  = −  (3) 

The value of Vj is not necessarily the same as the associative strength of configural unit j, since 

generalization between patterns means that other configural units may also be partially activated by 

pattern j, and these units may in turn excite US units. For example, if a network has been exposed to 

patterns A and AB, then when stimulus A is presented, the configural unit for pattern AB will also be 

partially activated due to the similarity of pattern AB to A. The extent to which these other, partially 

activated configural units contribute to the overall activation of the US unit is determined by the level 

of activation of each configural unit and the strength of its association with the US unit. Accordingly, 

the activation of the US unit is given by Equation 4. Here, n is the total number of configural units in 

the network, and Sj,i is the similarity of pattern j to pattern i. 

 ,

1,

n

j j j i i

i i j

V E S E
= 

= +   (4) 

Finally, the similarity of two patterns i and j is a function of the number of features they have 

in common Nc, and the total number of features in the two patterns, Ni and Nj. This relationship is 

shown in Equation 5, which allows similarity to vary in the range 0 to 1. 
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 Kinder and Lachnit (2003, see also Pearce, Esber, George & Haselgrove, 2008) suggested that 

this similarity function may be modified to include a parameter reflecting the discriminability of the 

individual stimuli that constitute patterns. First, Equation 5 may be re-written as Equation 6. Next, the 

exponent on the right-hand side of the equation is replaced with the discriminability parameter, d. 

The modified similarity function is given in Equation 7. Increasing the value of the d results in a 

sharpening of gradients of generalization around patterns, and decreasing its value flattens those 

gradients. 
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Wagner’s Replaced Elements Model 

There are a number of situations in which the RW model and Configural Theory make 

contrasting predictions, but where the predictions of each model are supported by empirical evidence. 

Myers, Vogel, Shin and Wagner (2001, p.41) commented that “Pearce and his associates have 

consistently found support for predictions of the Pearce (1987) model that challenge the Rescorla and 

Wagner (1972) model. We have just as consistently obtained results which support the predictions of 

the Rescorla-Wagner model and challenge the Pearce model.” Wagner (2003) attempted to reconcile 

these different patterns of results by appealing to differences in the stimuli employed in experiments 

conducted within his own, and Pearce’s laboratories. Wagner’s experiments that found support for 

the RW model involved rabbits eyeblink conditioning with stimuli drawn from different modalities, 

whereas Pearce’s experiments that support Configural Theory have involved pigeon autoshaping with 

only visual cues.  

Wagner and Brandon (Brandon & Wagner, 1998; Wagner & Brandon, 2001; Wagner, 2003) 

suggested that any stimulus is represented as a collection of hypothetical elements, or micro-features. 

Some elements are context independent and are activated whenever the stimulus is presented. The 

activation of other elements, however, is determined by the context in which the stimulus is 

presented. These context dependent elements may be sensitive to the conjunction of certain stimuli 

(that is, they act as configurational cues), or they may be active only when the stimulus is presented 

by itself, but not when it is presented in compound with another stimulus (inhibited elements). Hence, 

if we consider the elements that represent one stimulus (A) that may be presented by itself or in 
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compound with a single other stimulus (B), then three distinct populations of elements may be 

identified: context independent elements (Ai) that are activated whenever stimulus A is presented; 

context-dependent added elements (Ab) that are activated only when A is presented in compound 

with B; and context-dependent inhibited elements (A~b) that are activated when A is presented alone 

and never when it is presented in compound with B. When A is presented in compound with B, activity 

of the added elements, Ab, can be said to replace the activity of the inhibited elements, A~b. The 

proportion of a stimulus’ elements that are replaced when it is presented in compound with another 

is determined by the parameter r, and the proportion of elements that are activated whenever the 

stimulus is presented (i.e., the context independent elements, Ai) is given by s = (1 – r).  

Elements are binary; they are either active or inactive, and each may enter into an association 

with a representation of the US. Changes in the associative strength of active elements are governed 

by the same rule as for the RW model, given in Equation 1. There are three additional assumptions of 

the model that are important in determining the precise predictions of REM. First, if stimulus A may 

be presented in compound with two or more other stimuli (e.g., B and/or C), then replacement of A 

elements by B and C is statistically independent. That is, some of the elements of A that are context 

independent with respect to B may be context dependent with respect to C, and vice versa. This 

principle is captured by equations 8a-8d, presented by Wagner (2003), where Pa is the proportion of 

elements common to stimulus A and a compound of A with stimuli B, C, ....N. When A is presented in 

compound with B, a proportion (rb) of A’s representational elements will be inhibited, meaning that 

the two patterns share (1 – rb)  = sb elements. Addition of stimulus C to the compound (ABC), will 

further inhibit a proportion of all A elements active in compound AB (including Ab added elements). 

Hence, the proportion of A elements common to A and a compound containing A may be determined 

by multiplying together the s values of all of the stimuli presented with A. 

( ) (1 )b bPa A AB r s = − =
    (8a) 
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( ) (1 )c cPa A AC r s = − =
    (8b) 

( ) (1 )(1 )b c b cPa A ABC r r s s  = − − =
   (8c) 

1

1

( ... )
n

k

k

Pa A A N s
−

=

 =
    (8d) 

Second, replacement is not random. It is always the same representational elements of A that 

are replaced in the context of B, always the same elements are activated independently of the context 

B, and always the same elements that are content-dependently activated in the presence of B.  

Third, the degree to which elements of stimulus A are replaced when it is presented in 

compound with stimulus B (and hence, the parameters rb and sb) is determined, to some extent at 

least, by perceptual properties of A and B. Stimuli which belong to the same modality are assumed to 

interact with each other at a perceptual and representational level to a greater extent than stimuli 

which belong to different modalities. 

If we accept that replacement is greater for stimuli within the same modality than for stimuli 

taken from different modalities, REM can account for some of the conflicting results of experiments 

conducted in Pearce’s and Wagner’s laboratories (such as simple and differential summation). The 

same is not the case, however, for complex negative patterning discriminations of the form A+ B+ C+ 

AB+ AC+ BC+ ABCø. REM is also computationally quite complex. As the number of stimuli which may 

be presented in combination increases, there is an exponential explosion in the number of ways that 

they may interact and, consequently, the number of distinct populations of representational elements 

that must be considered. Because each additional stimulus may interact with existing populations of 

representation elements in three ways (context independent, context dependently activated, or 

context dependently inhibited), this expansion in populations may be derived from trinomial theorem 

(see Appendix A). For any system consisting of n stimuli, n3n-1 distinct populations of elements may be 
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identified. Hence, the number of populations of elements required to model systems in which 1, 2, 3, 

4, or 5 stimuli may interact is 1, 6, 27, 108, and 405, respectively. 

To address these two issues with REM I present a simplified model of stimulus interaction. 

The model is inspired by REM but based more closely on the principles of Wagner & Rescorla’s (1972) 

configurational cue model. It has the twin benefits of being capable of explaining a wider range of 

experimental findings and of being computationally significantly less demanding than REM. 

A Context Dependent Added Elements Model 

The model incorporates features of Wagner and Rescorla’s (1972) configurational cue 

extension to the RW model and of Wagner’s (2003) REM. This Context-dependent Added Elements 

Model (C-AEM) is based on the assumptions that a) whenever two or more stimuli are presented in 

compound they generate unique configurational cues, and b) the relative activation of elemental 

stimulus representations and the configurational cues varies as a function of a parameter, r, which 

reflects the degree to which representations of the stimuli interact with each other. C-AEM departs 

from REM in two fundamental aspects. First, it does not invoke the notion of inhibited elements and, 

hence, replacement. Second, it is based on unitary representations of stimuli and of configurational 

cues. C-AEM is conceptually similar to (but not the same as) a version of REM in which replacement of 

elements is determined randomly without having to make assumptions about the nature of the 

population from which a random selection of added elements is sampled. 

The representational structure of a stimulus compound in C-AEM is the same as that in the 

RW model if it is assumed that a configurational cue for each combination of stimuli within that 

compound is generated. Hence, stimulus A will activate a single unit (a); the compound AB will activate 

units that represent stimuli A and B (a, b) and their conjunction (ab); the compound ABC will activate 

units a, b, c, ab, ac, bc, and abc. Unlike the RW model, however, the activity level of units is context 

dependently scaled such that total activity in the system is always equal to the sum of the intensities 
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of the individual cues present. For example, if we assume that the intensities of all stimuli are 

individually equal to 1, then when the compound ABC is presented, the combined activity in units a, 

b, c, ab, ac, bc, and abc will equal 3. In this manner, each stimulus contributes the same absolute 

amount of activity to the system whether it is presented alone or in compound.  

It is not just the intensity of a stimulus that influences the activation level of a unit, but also 

the context in which that stimulus is presented. Stimuli will interact with each other perceptually, and 

the extent of this interaction is reflected by the parameter r. For simplicity, discussion here will be 

restricted to an ideal system in which the intensity of all stimuli is the same and equal to 1, and all 

stimuli within a system interact with all others to the same degree, r. When a single stimulus, A, is 

presented it will activate a single unit, a. In this case, the activation of unit a, γa, will be equal to the 

intensity of the stimulus, IA, which is 1. When A is presented in compound with a second stimulus, B, 

three units will be activated: a, b, and ab. Now, the activation of unit a will be reduced by the extent 

to which the two stimuli interact, r. Hence, γa = (1 – r). Stimulus A also contributes to the activation of 

the ab configurational unit and its contribution to γab is equal to the reduction in activation of unit a, 

r. The interaction between stimuli A and B is reciprocal, and so the activation of unit b, γb, is also given 

by (1 – r). Similarly, B contributes r to the activation of unit ab, so that γab = 2r. In effect, units a and b 

lend some of their activation strength to the configurational unit ab. It should be apparent that the 

figures given here for the activation level of each unit correspond to the proportion of elements within 

the populations Ai, Bi, and the combination of Ab and Ba, in Wagner’s REM model. The critical 

difference is that there are no units that specifically represent the absence of other stimuli when a 

stimulus is presented alone (i.e. A~b or B~a). Instead, the units that represent the individual stimuli, a 

and b, will be more active when the stimuli are presented alone than when they are presented in 

compound. 

The situation is slightly more complicated when three stimuli are presented in compound, but 

follows the same principle of statistically independent interaction as REM. That is, in compound ABC, 
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γa is reduced by interaction from both B and C and γa = (1 – r)(1 – r) = (1 – r)2. Stimulus A still contributes 

r to the activation of unit ab (as does B), but activity in ab is itself reduced by the interaction with 

stimulus C. Now, γab = r(1 – r) + r(1 – r) = 2r(1 – r). Finally, activation will propagate to a unit that 

represents the configuration of all three stimuli, abc. Activation of this unit is γabc = 3r2. 

The activity in any unit is given by Equation 9 where k is the number of stimuli contributing to 

the activation of that unit, and n is the total number of stimuli present. A more general version of 

Equation 9 is given in Appendix B, which allows γ to be calculated when the intensities of stimuli are 

not all equal and when stimuli interact with each other to different extents. 

1(1 )n k kk r r − −= −      (9) 

The number of units that receive activation from k stimuli is given by the binomial coefficient 

shown in equation 10. For example, in a system with three stimuli (A, B, and C), three units will each 

receive activation from a single stimulus (a, b, and c), and another three units will each receive 

activation from two stimuli (ab, ac, and bc). In the former case n = 3 and k = 1, so Equation 10 gives us 

3!/1!(3-1)! = 3!/2! = 3. In the latter case, n = 3 and k = 1, and Equation 10 gives 3! = 2!(3-1)! = 3!/2! = 

3. A single unit (abc) will receive activation from all three stimuli (3!/3!(3-3)! = 1). It follows from 

Equations 9 and 10 that the total activity across all units can be calculated by Equation 11, and equals 

n.  

!

!( )!

n n

k k n k

 
= 

−       (10) 

1

1

(1 )
n

n k k

total

k

n
k r r

k
 − −

=

 
= − 

 


     (11) 

 Learning within C-AEM proceeds in a manner similar to both RW and REM, but learning is 

scaled by the activation of each unit. When a stimulus, or stimulus compound, is presented, the 
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change in the associative strength, V, of a particular representational unit is given by Equation 12 

where α and β are learning rate parameters associated with the unit and the US, respectively and λ is 

the magnitude of the US. Vnet is the expected outcome and is determined by the sum of the products 

of the activation of each unit and the strength of its association with the US as shown in Equation 13. 

The activation of a unit affects both its contribution to prediction of the US (Vnet), and how much is 

learnt about that unit following a conditioning trial. 

( )netV V  = −      (12) 

netV V=       (13) 

C-AEM is computationally a much simpler model than REM whilst retaining the key principle 

of stimulus interaction. As the number of stimuli that may be presented in compound increases, there 

is an exponential growth in the number of discrete populations of elements within REM. This growth 

follows the function n3n-1. The growth of representational units within C-AEM is also exponential, but 

at a much slower rate. The expansion in C-AEM may be derived from binomial theorem (see Appendix 

C). In a system comprising n stimuli, (2n – 1) units may be activated. Hence, where REM requires 1, 6, 

27, 108, and 405 populations of elements to represent systems consisting of 1, 2, 3, 4 and 5 stimuli, 

respectively, C-AEM requires just 1, 3, 7, 15, and 31 units. 

Due to the similarity of C-AEM to REM and the RW model, the two models make similar 

predictions in a variety of situations. The differences between the models do, however, result in 

deviations between their predictions in some situations where REM is unable to account for all of the 

experimental data. To test the predictions of C-AEM and compare them against those made by REM, 

the RW model, and Configural Theory, a series of computer simulations was conducted.  
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Application of the Models to Empirical Data 

 Simulations are presented here of Configural Theory, REM and C-AEM for a selection of 

situations in which the RW model and Configural Theory make different predictions, and where there 

is empirical support for the predictions of each. This is not intended to be a comprehensive review of 

the capabilities of any of the models. Indeed, all of the models considered here make use of a summed 

error term in their learning rules, which makes it difficult for them to account for changes in the 

associative strength of stimuli that differ in their associative history when they are conditioned in 

compound (Rescorla, 2000). Rather, the discussion here is limited to some effects of similarity and 

generalization which inspired the development of REM, and a closely related patterning discrimination 

task. 

Unless otherwise stated, parameter values were as follows. α was set at .05 for all stimuli and 

configurational cues for the RW model, all configural units for Configural Theory, all populations of 

elements for REM, and all representational units for C-AEM. For simulations of all models, λ was equal 

to 1 and β was .05 when the US was present, and λ was zero and β was .025 when the US was absent2. 

For REM and C-AEM, all r values were equal and for C-AEM the intensity parameter, I, was set to 1 

meaning that Equation 9 could be used to calculate unit activations. For simulations of Configural 

Theory, d = 2. Where a salient contextual cue was included in the simulation, it was treated in the 

same manner as a stimulus, with α = .05 and I = 1. 

Overshadowing and external inhibition 

Pavlov (1927) described an experiment in which two stimuli were paired, in compound, with 

a US. When each stimulus was presented by itself following this training, a weaker CR was provoked 

than when they were presented together. This overshadowing effect is readily predicted by the RW 

model and the prediction is easily derived from Equation 2. Compound training will have the effect of 

increasing Σα and thus reducing the asymptotic value of VA to something lower than λ. Furthermore, 

a more salient stimulus will overshadow conditioning to a less salient stimulus to a greater extent than 
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the more salient stimulus will be overshadowed by the less salient one (see Miles & Jenkins, 1973; 

Kamin, 1969). Again, this effect is predicted by Equation 2: since the learning rate parameter α reflects 

the salience of a stimulus, the addition of a highly salient stimulus will have a greater impact on the 

value of (αA / Σα) than will the addition of a less salient stimulus. The RW model, however, does not 

predict external inhibition. Pavlov (1927) also observed that if some additional stimulation such as a 

change in the illumination of the experimental room, or a loud noise from outside, coincided with the 

presentation of an established CS, the magnitude of the CR was diminished. Similarly, when a stimulus 

is presented in compound for the first time in blocking experiments, the CR is sometimes smaller than 

on the preceding conditioning trial when it was presented alone (e.g., Kamin, 1969). Presenting an 

additional (neutral) stimulus in combination with an established CS should not affect responding to 

that CS according to the RW model since the associative strength of the compound is simply the sum 

of the associative strengths of its components. 

Configural theory provides a ready explanation for generalization decrements. If an animal 

has received conditioning with the compound AB, then presentation of stimulus A alone will activate 

the AB configural unit only to the extent that A is similar to AB. Since the similarity of these two 

patterns is less than 1 (according to Equation 5, SAB,A = .5), the  unit will receive less activation in 

response to the presentation of A alone than to the presentation of compound AB. A symmetrical 

effect is predicted when compound AB is presented following conditioning to stimulus A; activation of 

the A configural unit by compound AB is similarly determined by the similarity of AB to A. Varying the 

discriminability parameter, d, will affect the similarity of patterns, but for all values Configural Theory 

predicts symmetrical effects of overshadowing and external inhibition. 

Brandon, Vogel and Wagner (2000) observed neither the patterns of results predicted by the 

RW model or by Configural Theory. They trained three groups of rabbits using eye-blink conditioning. 

For the first group, stimulus A was paired with a paraorbital electrical shock. A second group was 

trained with compound AB, and the third with compound ABC. Following conditioning, animals in all 
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three groups received test trials with A alone, and with the compounds AB, and ABC. Both 

overshadowing and external inhibition were observed; either adding or removing features from each 

training pattern resulted in a reduction in the conditioned response. These effects were not 

symmetrical; removing a feature from the training pattern had a greater impact on responding than 

adding a feature. 

Brandon et al’s (2000) results are consistent with the predictions of REM. When conditioning 

is conducted with compound AB, four populations of elements will acquire associative strength. These 

are context-independent Ai and Bi elements and context-dependent Ab and Ba elements. The relative 

size of these populations is (1 – r), (1 – r), r and r, for Ai, Bi, Ab, and Ba, respectively. When A is presented 

by itself, it will activate context-independent Ai elements and context-dependent A~b elements. Hence, 

only the Ai elements are activated by both compound AB and stimulus A alone. The proportion of AB’s 

elements that are also activated by A is ½(1 – r) because none of B’s elements are activated by stimulus 

A. Conversely, whenever a feature is added to a pattern, it will result in the replacement of a fixed 

proportion, r, of the elements activated by that pattern. The elements of A that are also activated by 

compound AB are again the context-independent Ai elements, and the portion of A’s elements that 

are activated by compound AB is (1 – r). Generalization between AB and ABC follows similar rules. 

Generalization of associative strength from AB to ABC will again be equal to (1 – r); addition of a 

stimulus results in replacement of a fixed proportion of the total elements of the original pattern. 

Generalization of associative strength from ABC to AB is, however, predicted to be ⅔(1 – r) because 

only two of the three stimuli compound ABC are also present in compound AB. In all cases removal of 

a feature is expected to have a greater effect than the addition of a feature. 

The predictions that C-AEM makes concerning the relative size of the effects of 

overshadowing and external inhibition are not as straightforward as those of REM. Rather, they 

depend on the number of features in the training and testing patterns. C-AEM makes the same 

predictions as REM about external inhibition; adding a stimulus will always reduce activity in units by 
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the proportion r. Removing a stimulus, however, does not simply result in fewer units being activated, 

but also changes the activation level of those units. The top-left panel of Figure 1 shows how 

generalization between A and AB varies with r. For all values of r, the effect of over-shadowing is 

greater than that of external inhibition. The top-right panel of Figure 1 shows corresponding 

predictions concerning generalization between A and ABC. Here, we can see that for some values of r 

between about .3 and .5, the difference in the size of the effects of over-shadowing and external 

inhibition is quite small. The bottom two panels of Figure 1 show predictions for generalization 

between ABC and either AB (left panel) or ABCD (right panel). In both cases, there are values of r for 

which the effect of external inhibition is predicted to be greater than that of overshadowing. 

------------------------ 

Figure 1 about here 

------------------------ 

Asymmetrical generalization has been reported in several experiments with rats (González, 

Quinn & Fanselow, 2003; Bouton, Doyle-Burr & Vurbic, 2012) and humans (Glautier, 2004; Wheeler, 

Amundson & Miller, 2006; Thorwart & Lachnit, 2010). Other authors have, however, observed 

symmetrical effects of overshadowing and external inhibition in very similar situations (Young, 1984 

cited in Pearce 1987; Rescorla, 1999; Thorwart & Lachnit, 2009). Perhaps then, it is premature to 

suggest that the experimental evidence provides particularly strong support for any one of these 

theories over any other. I am, however, aware of no evidence in support of C-AEM’s prediction that, 

under some conditions, the effect of external inhibition should be greater than that of overshadowing. 

REM and C-AEM also make the seemingly unreasonable prediction that adding a feature to a pattern 

will result in the same decrement in generalization regardless of the number of features of which that 

pattern is composed. Brandon et al’s (2000) results, however, support this prediction: two groups of 
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rabbits given conditioning with stimulus A or compound AB and then tested with compounds AB or 

ABC, respectively, showed equivalent decrements in responding (16% vs. 18%). 

Simple Summation 

If two stimuli, A and B, that have been separately paired with a US are then presented 

together, responding to the compound AB is sometimes observed to be greater than to either of the 

individual stimuli (e.g., Whitlow & Wagner, 1972). This summation effect is predicted by the RW model 

because first, the associative strength of a stimulus compound is assumed to be equal to the sum of 

the associative strengths of its constituent stimuli (i.e. VAB = VA + VB) and second, the relationship 

between associative strength and response strength is assumed to be at least ordinal.  

Configural Theory struggles to explain simple summation. Following A+ B+ training, 

responding to the compound AB will depend upon generalization of associative strength from the A 

and B configural units. According to Equation 5, the similarity of AB to each of the individual cues is .5. 

Hence, half of the associative strength of each stimulus will generalize to AB and the net associative 

strength of AB will be the average of the associative strengths of A and B. The failure to predict 

summation might not, however, be catastrophic for configural theory. It should be noted first that 

summation is not a ubiquitous effect. Although it has been observed in some experiments (e.g., Aydin 

& Pearce, 1995, 1997; Kehoe, 1986; Kehoe, Horne, Horne & Macrae, 1994), there are others where it 

has not (e.g., Aydin & Pearce, 1995, 1997; Kehoe, Horne, Horne & Macrae, 1994). There are also non-

associative explanations of the summation effect, such as stimulus intensity dynamism (e.g., Hull, 

1949) and disinhibition of delay (e.g., Pavlov, 1927). 

Configural theory does not have to rely on non-associative mechanisms to explain summation 

in all situations. In one experiment, Pearce, George & Aydin (2002) gave rats training in which two 

stimuli, A and B, were each individually paired with food, as was the compound CD (A+ B+ CD+). At 

test, responding was greater to compound AB than to CD – summation was observed. In a second 

experiment, the same comparison was made between-subjects. One group received A+ B+ training, 
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and a second were trained with just AB+ trials. At test there was no difference in the rate of responding 

during presentations of compound AB for these two groups. Inclusion of CD+ trials influenced 

summation of responding to A and B. One explanation for this effect that Pearce et al considered 

concerned the nature of the stimuli used, and the effect that this might have on generalization 

between stimuli. In these experiments, A and C were visual stimuli, whereas B and D were auditory 

stimuli. Pearce et al suggested that stimuli from the same modality might share some common 

features which are not shared between stimuli belonging to different modalities. Hence, A, B, C, and 

D may be conceptualized as ax, by, cx, and dy, and the compounds AB and CD as abxy and cdxy. Due 

to the influence of generalization on the asymptotic associative strengths of the various configural 

units, and generalization of associative strength from ax, by, and cdxy to abxy at test, configural theory 

predicts the net associative strength of abxy (1.1λ) will be greater than that of cdxy (λ) for the within-

subject comparison. For reasons explained earlier, no summation would be expected following simple 

A+ B+ training since half of the associative strength of ax and of by will generalize to abxy.  

Nevertheless, several experiments have demonstrated summation following simple A+ B+ 

training (e.g., Hendry, 1982; Kehoe, 1986; Konorski, 1948, Thein, Westbrook & Harris, 2008). Even in 

these circumstances, however, it is possible for Configural Theory to explain summation, if it is 

assumed that the experimental context is of relatively high salience. This seems to be a reasonable 

assumption in some cases at least, for example where aversive Pavlovian conditioning is conducted 

over an appetitive instrumental baseline (Hendry, 1982), or conditioning is conducted in restrained 

rabbits (Kehoe, 1986) or restrained dogs (Konorski, 1948). Where the context is salient, simple A+ B+ 

training may be re-described as AX+ BX+ Xø where X is the salient context, and the test compound is 

ABX. If the saliences of A, B, and X are equal, then at the asymptote of conditioning the net associative 

strengths of patterns AX and BX will be equal to λ and that of X will be 0. The associative strengths of 

the configural units, however, will be as follows: AX = BX = 1.33λ; X = –1.33λ. Since the similarity of 

ABX to AX and BX is high (.66), and relatively little inhibitory associative strength will generalize to ABX 

from X due to their low similarity (.33), the net associative strength of the compound is predicted to 
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be 1.33λ. Pearce, George, Redhead, Aydin and Wynne (1999; see also Aydin & Pearce, 1997; Pearce, 

Redhead & George, 2002) reported a related effect in pigeon autoshaping. They manipulated 

generalization between stimuli A and B and the test compound AB by changing the salience of the 

background illumination of the television screen on which they were presented. Summation was 

observed when the background was white and was also illuminated throughout the inter-trial-interval, 

but not when it was black. The results of simulations of Configural Theory are shown in the top panel 

of Figure 2. Stimuli A and B were individually paired with a US until each achieved asymptotic 

associative strength, and test trials were then given with the individual stimuli and their compound 

(A+ B+; A? B? AB?). Summation was predicted only when a salient contextual cue was added (AX+ BX+ 

Xø; AX? BX? ABX?). 

------------------------ 

Figure 2 about here 

------------------------ 

Configural Theory can also predict simple summation if generalization between patterns is 

increased by giving the d parameter a value lower than 2. For example, when d = 1.5, the net 

associative strength of compound AB following asymptotic conditioning with A and B will be 1.19λ. 

Reducing the value of d does, however, cause some problems for Configural Theory. For example, 

when d < 2 Configural Theory predicts that complex negative patterning discriminations of the form 

A+ B+ C+ AB+ AC+ BC+ ABCø are insoluble, which is not the case (Redhead and Pearce, 1995). 

Increasing d above 2 decreases generalization and results in compound AB having lower net 

associative strength than A or B alone.  

REM and C-AEM make the same predictions as each other concerning simple summation 

following conditioning with patterns that share no common features. In this situation, generalization 

from the training patterns to the test pattern is determined purely by the r parameter. For REM, during 
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conditioning with stimulus A, content independent elements Ai and context-dependently inhibited 

elements A~b will accrue associative strength. During presentations of test compound AB, these latter 

elements will not be active, and generalization of associative strength from A to AB will be based upon 

the proportion of context independent elements, s = (1 – r). Associative strength will generalize from 

stimulus B to compound AB in the same way, and the compound will have a net associative strength 

of 2(1 – r). In C-AEM, stimulus A will only activate its own representational unit, a, and that unit will 

gain associative strength until VA = λ. The activation of unit a (and unit b) when compound AB is 

presented may be calculated using Equation 9 and will again be equal to (1 – r). The lower panel of 

Figure 2 shows the results of the predictions of REM and C-AEM for a summation experiment where 

stimuli A and B were presented alone and in compound following conditioning with A and B. The 

models predict that summation will occur when interaction between the stimuli is low (r < .5). For high 

values of the r parameter (r > .5), they predict less responding to compound AB than to either A or B 

individually. Hence, all three models can accommodate the results of experiments which have 

demonstrated response summation using stimuli drawn from different modalities (e.g., Whitlow & 

Wagner, 1972) and those which have failed to find evidence of summation within a single stimulus 

modality (e.g., Rescorla & Coldwell, 1995), if we assume that r < .5 in the former case, and r ≈ .5 in the 

latter case. REM and C-AEM also predict lower responding to a compound when the replacement 

parameter is very high, an effect that has been observed by Aydin & Pearce (1995, 1997). 

Differential Summation 

Pearce, Aydin & Redhead (1997) gave pigeons autoshaping training in which presentations of 

three visual stimuli, A, B, and C, were paired with food. For one group of pigeons, these stimuli were 

presented individually (A+ B+ C+), whereas for a second group, they were presented in pairs (AB+ AC+ 

BC+). Following this training, responding to the compound ABC was assessed in each group. 

Responding during these test trials was slower in the group trained with the individual stimuli. This 

result is predicted by Configural Theory because the similarity of ABC to the compounds AB, AC, and 

BC is greater than the similarity of ABC to the individual stimuli A, B, and C. Although generalization 
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between the pairs of stimuli will result in the configural units for AB, AC, and BC each having an 

asymptotic associative strength of .66λ, two-thirds of the associative strength of each compound will 

generalize to the compound ABC, resulting in a net associative strength of 1.33λ. When the three 

stimuli are trained individually the asymptotic associative strengths of the configural units A, B, and C, 

will be λ. Because only one third of the associative strength of each will generalize to ABC the net 

associative strength of the test pattern is predicted to be λ. The top-left panel of Figure 3 shows the 

predicted net associative strength of compound ABC for the two groups in Pearce et al’s experiment 

(A+ B+ C+; ABC? or AB+ AC+ BC+; ABC?). 

The RW model makes the opposite prediction. It supposes that training with the individual 

stimuli will result in each gaining an asymptotic associative strength of λ. When the stimuli are trained 

in compound, however, Equation 2 predicts that the asymptotic associative strength of each stimulus 

will be .5λ. Because the net associative strength of the compound is the simple arithmetic sum of the 

associative strengths of A, B, and C, RW predicts that ABC will have an associative strength of 3λ 

following individual training, but of only 1.5λ following compound training. Myers et al (2001) 

replicated Pearce et al’s (1997) experiment in rabbits using eyeblink conditioning with three stimuli 

drawn from different modalities (auditory, visual, and tactile), and found greater levels of responding 

to ABC in the group that received A+ B+ C+ training than in the group the received AB+ AC+ BC+ 

training, consistent with the predictions of the RW model.  

Configural Theory can accommodate Myers et al’s results if it is assumed that a salient 

contextual cue is present (AX+ BX+ CX+ Xø; ABCX? or ABX+ ACX+ BCX+ Xø; ABCX?). Results of 

simulations of Configural Theory with the inclusion of a contextual cue are shown in the top-right 

panel of Figure 3. During AX+ BX+ CX+ Xø training, there will be some generalization between the 

compounds (SAX,BX = .25), but considerably more generalization between each compound and the 

context (SAX,X = .5). This means that the configural units for AX, BX, and CX will have asymptotic 

associative strengths of 1.33λ whereas the unit for X will have an associative strength of -2λ. Half of 
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the associative strength of AX, BX, and CX will generalize to ABCX, but only one quarter of that of X 

will. Hence, the net associative strength of the test compound is 1.5λ. For ABX+ ACX+ BCX+ Xø training, 

there will be considerably more generalization between the compounds (SABX,ACX = .44) and less 

generalization between the compounds and the context (SABX,X = .33). At test, three quarters of the 

associative strength of each compound and one quarter of the associative strength of the context will 

generalize to ABCX, meaning that its net associative strength will be 1.29λ. Configural units ABX, ACX, 

and BCX will end up with associative strengths of .64λ and X will have an associative strength of -.64λ.  

Configural Theory also predicts that compound ABC will have greater net associative strength 

following A+ B+ C+ training than following AB+ AC+ BC+ training if the d parameter is reduced 

significantly below 2, but it is difficult to justify increasing generalization when it prevents the model 

from solving some discrimination problems. Increasing the value of d above 2 does not affect the 

ordinal predictions of Configural Theory. 

------------------------ 

Figure 3 about here 

------------------------ 

When training patterns share common features, the predictions of REM and C-AEM diverge. 

Predictions from REM may be derived quite straightforwardly. Since replacement of A elements by 

different stimuli (i.e. B and C) is statistically independent, there are nine distinct populations of A 

elements to be considered; each population is either context independent, context-dependently 

inhibited, or context-dependently activated with respect to B and with respect to C. These nine 

populations and their relative sizes are enumerated in Table 1. 

------------------------ 

Table 1 about here 
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------------------------ 

For animals trained with the individual stimuli A, B, and C, none of the added elements (i.e., 

Ab, Ac,, Ab~c, Ac~b, Abc) will be activated during training, and generalization from A to the test compound 

ABC will rely solely on the elements that are context independent with respect to both B and C (Ai). 

Thus, generalization from A to ABC will equal (1 – r)2. Associative strength will also generalize from B 

and C to ABC in the same proportions. When r = 0, VABC = 3λ. As the amount of replacement increases, 

generalization will decrease exponentially until the net associative strength of ABC will equal zero 

when r = 1. For animals trained with compounds AB, AC, and BC, generalization from stimulus A to 

ABC will rely not only on the context independent Ai elements, but also on the context dependent 

elements that are commonly activated by compounds ABC and either AB or AC (i.e. Ab and Ac).  The 

combined size of these latter populations of elements is given by 2r(1 – r). The relationship between 

the value of this term and r is not monotonic. Instead, it increases with r in the range 0 ≤ r ≤ .5 until it 

reaches a maximum value of .5 but decreases as r increases in the range .5 ≤ r ≤ 1. This means that as 

r increases in value, a decline in the size of the population of context-independent Ai elements will, to 

some extent, be offset by an increase in the number the context-dependent Ab and Ac elements. The 

interplay between these different populations of elements means that for some intermediate values 

of r, REM predicts that the test compound ABC will have greater net associative strength following 

AB+ AC+ BC+ training than following A+ B+ C+ training (see the middle panel of Figure 3). 

In C-AEM, the activation level of a unit affects both its contribution to the net associative 

strength of a pattern, and also the change in the associative strength of that unit following a 

conditioning trial. Because of this, the contribution of units to the net associative strength of a 

compound in C-AEM can differ from the contribution of corresponding populations of elements in 

REM.  Following conditioning with the individual stimuli (A+ B+ C+), only the representational units for 

the stimuli themselves (a, b, and c) will accrue associative strength in C-AEM. For all values of r, the 

associative strength of each unit will approach λ at the asymptote of conditioning. When compound 
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ABC is presented at test, each of these units will have an activation of (1 – r)2, and hence the net 

associative strength of the compound will be 3(1 – r)2. This is the same prediction as REM. During 

compound conditioning, however, units ab, ac, and bc will also acquire associative strength. Because 

the activation level of each unit acts as a rate parameter in Equation 12, the distribution of associative 

strength between the representational units activated by a compound is influenced by r.  Within each 

compound, the proportion of associative strength that will accrue to the configurational cue will be 

equal to r: Vab / (Va + Vb + Vab) = r.  At test, the activation of the configurational cue ab will be 2r(1 – r), 

and the combination of these two influences of r means that the unit makes very little contribution to 

the net associative strength of compound ABC for low values of r. The results of simulations of C-AEM 

are shown in the bottom panel of Figure 3. Despite some differences in the predictions of REM and C-

AEM, they agree that the net association strength of ABC following compound training will be lower 

than following individual training for values of r less than about .35. The opposite will be true for values 

of r greater than about .4. 

Differential External Inhibition 

Pearce, Adam, Wilson and Darby (1992) also compared responding to the compound ABC in 

two groups of pigeons given slightly different training involving the three stimuli. The first group were 

trained on a discrimination involving the individual stimuli in which A and C were each individually 

paired with food whereas B was not (A+ Bø C+). The second group got the same training except that 

B was present on all trials (AB+ Bø BC+). Responding to ABC at test was greater in the latter group, a 

result consistent with Configural Theory because ABC is more similar to AC and BC than it is to A or C. 

In contrast, the RW model predicts that there should be no difference in responding to ABC by the 

two groups because A and C should each reach an asymptotic associative strength of λ, while B should 

have an associative strength of zero. Kundey, Tronson and Wagner (2002; unpublished data cited in 

Wagner, 2003) found the same pattern of results as Pearce et al in a rabbit eye-blink experiment using 

stimuli from different modalities.  
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In order that Configural Theory may explain effects such as summation and differential 

summation, we may assume that aversive conditioning procedures result in the presence of a salient 

contextual cue throughout the experimental session. Given Kundey et al’s (2002) results, it is 

significant, therefore, that the inclusion of a salient contextual cue does not affect Configural Theory’s 

ordinal predictions in the case of this experimental design. Configural Theory predicts that the net 

associative strength of ABC will be .67λ following A+ Bø C+ training and 1.33λ following AB+ Bø BC+ 

training. Corresponding values when there is a salient contextual cue are λ and 1.5λ, respectively. 

Wagner (2003) showed that REM also makes the same (correct) prediction for all values of r except 

for zero and 1. In the former case, REM is equivalent to the RW model. It is encouraging that C-AEM 

makes the same predictions as REM for this design where experimental findings have been consistent, 

just as it does for others where empirical results differ between laboratories. Both models predict that 

the net associative strength of ABC will be 2(1 – r)2 following A+ Bø C+ training and 2(1 – r) following 

AB+ Bø BC+ training. Because (1 – r) ≤ 1, the former value is smaller than the latter except when r = 0 

or r = 1, when they are equal. 

Complex Negative Patterning 

For a feature negative discrimination of the form A+ ABø, the addition of a common element, 

C, to each pattern (AC+ ABCø) retards acquisition of the discrimination (Pearce & Redhead, 1993; 

Rescorla, 1972). Configural Theory predicts this effect because the similarity of (and therefore, 

generalization between) the reinforced and non-reinforced patterns is increased by the addition of a 

common element. Redhead and Pearce (1995) further examined the effects of similarity on 

discrimination learning using a complex negative patterning design in which three stimuli, A, B, and C, 

were each paired with food when presented individually or in pairs, but were paired with no food 

when all three were presented together (A+ B+ C+ AB+ AC+ BC+ ABCø). Configural Theory predicts 

that acquisition of the discrimination between the individual stimuli (A, B, C) and the triplet (ABC) 

should proceed more rapidly than acquisition of the discrimination between the pairs of stimuli (AB, 

AC, BC) and the triplet. The top-left panel of Figure 4 shows the results of a simulation of Configural 
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Theory trained on this complex negative patterning discrimination. These predictions were confirmed 

by Redhead and Pearce in a series of autoshaping experiments with pigeons in which the three stimuli 

were all drawn from the visual modality. 

------------------------ 

Figure 4 about here 

------------------------ 

According to the RW model, compounds AB, AC, and BC will provoke larger CRs than the 

individual stimuli A, B, and C due to summation of associative strength. This model, therefore, predicts 

the opposite pattern of results to that observed by Pearce and Redhead (1993) and by Rescorla (1972). 

In order to solve the discrimination and reduce responding to the non-reinforced compound ABC, the 

model must assume that at least some stimulus conjunctions generate a unique configurational cue 

which will gain inhibitory associative strength. Slightly different predictions may be derived dependent 

upon whether configurational cues are generated by each conjunction, or by ABC alone, but these 

differences do not affect the ordinal prediction that the net associative strength of AB, AC, and BC will 

be higher than that of A, B, and C alone (before learning reaches asymptote). Myers et al (2001) found 

support for the predictions of the RW model, and not for Configural Theory, when they trained rabbits 

using eyeblink conditioning and stimuli from three different modalities. The addition of a salient 

contextual cue does not substantially affect the predictions of Configural Theory, as can be seen in 

centre-top panel of Figure 4. Responding to the compounds AB, AC, and BC is predicted to be greater 

than to the individual stimuli very briefly early in training, but Configural Theory does not provide a 

convincing match to Myers et al’s results. Similarly, changing the value of the d parameter does not 

allow Configural Theory to explain Myers et al’s results. When d < 2, the model predicts that the 

discrimination is insoluble. For all values of d greater than 2, the modified version of Configural Theory 

predicts greater responding to reinforced patterns than to the non-reinforced compound ABC. As d 
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increases, the difference in responding to A, B, and C and the compounds AB, AC, and BC is predicted 

to decrease, so that for large values (around 10), responding to all reinforced patterns should be 

approximately equal. This pattern of results was observed by Kinder and Lachnit (2003) using a human 

eye-blink conditioning procedure. For no value, however, is responding to A, B, and C predicted to be 

lower than to AB, AC, and BC; the model is incapable of predicting Myers et al’s results. 

Simulations of REM reveal that it cannot generate predictions consistent with Redhead and 

Pearce’s (1995) results. The middle row of Figure 4 shows simulation of REM for r values of .2, .4., and 

.8. Additional simulations, not shown here, confirmed that for all values of r greater than zero, REM 

can solve the discrimination, but at no point in any simulation was the net associative strength of 

compounds AB, AC, and BC lower than that of the individual stimuli A, B, and C. Further simulations 

found that addition of a salient contextual cue did not affect the ordinal predictions of REM (or C-

AEM) for the complex negative patterning discrimination task, or any of the other effects considered 

in this paper. 

C-AEM’s ordinal predictions are affected by the value of the r parameter. For very high values 

of r, its predictions are similar to those of REM, but for intermediate values it much more closely 

resembles Configural Theory. It can predict the results of the pigeon experiments if we assume that r 

equals about .4 or .5 for those experiments; this seems a reasonable assumption since C-AEM (and 

REM) predict the correct pattern of responding in summation and differential summation experiments 

for these values. However, when r is much lower (around .2, the value which Wagner, 2003, suggests 

might be appropriate for modelling the results of rabbit eye-blink experiments) the pattern is less 

clear. For a quite extended period early in training, C-AEM predicts Myers et al’s (2001) pattern of 

result, but later flips over to match those of Redhead and Pearce (1995). Unfortunately, we do not 

have any data on the effects of extended training on the complex negative patterning task in rabbits, 

but it could be that Myers’ data reflects an early training period; their rabbits showed only a moderate 
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discrimination between the patterns at the end of training with a high level of responding to the non-

reinforced compound ABC.  

A study of causal learning in humans gives some support to this interpretation of Myers et al’s 

(2001) results.  In two experiments, Redhead (2007) trained participants on the same complex 

negative patterning discrimination. In his first experiment, all stimuli were coloured dots, but in the 

second, they came from three different modalities. At the end of training, Redhead reported the same 

pattern of casual ratings in both cases: ratings for A, B, and C were greater than those for AB, AC, and 

BC, consistent with Configural Theory. Examination of the result from the participants trained with 

multimodal stimuli suggests, however, that for a couple of blocks of trials towards the beginning of 

training rating were higher for AB, AC, and BC than for A, B, and C. Although this numerical difference 

did not reach conventional levels of statistical significance, it persisted beyond the point where ratings 

for ABC were significantly lower than for the reinforced patterns. In a third experiment, Redhead also 

found simple summation of responding for multimodal stimulus compounds, but not unimodal ones. 

Hence, for multimodal stimuli the results of the summation test and the course of acquisition of the 

complex negative patterning discrimination matched the predictions of C-AEM for a value of r around 

.2, whereas for unimodal stimuli the results were consistent with the predictions of C-AEM for values 

of r in the region of .4 – .5. 

Parity 

Pearce et al (2008) trained pigeons on a slightly different patterning discrimination of the form 

A+ B+ C+ ABø ACø BCø ABC+ in which the individual stimuli and the compound of all three were paired 

with food whereas the compounds comprising pairs of stimuli were not. I have previously referred to 

this as a parity discrimination (George, 2018) because patterns containing odd and even numbers of 

features are treated differently from each other. Pearce et al found that when stimuli A, B, and C were 

very similar to each other – three white circles differentiated only be their position on a television 

monitor – pigeons were unable to solve this discrimination problem. They responded most rapidly to 
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A, B, and C, and least rapidly to the reinforced compound ABC; responding to the non-reinforced 

compounds AB, AC, and BC was at an intermediate rate. These results matched the predictions of 

Configural Theory, which are shown in the top-left panel of Figure 5. A different pattern of results was 

found when the stimuli were more different to each other. When A, B, and C were collections of dots 

of different colours (red, green, and blue, respectively), the pigeons learned to peck at the reinforced 

patterns A, B, C, and ABC, and withhold responding to AB, AC, and BC. However, they responded more 

rapidly to stimuli A, B, and C than to compound ABC. It appears that reducing the similarity of the 

individual stimuli had the effect of reducing generalization between the patterns composed of them, 

which facilitated the acquisition of the discrimination. Increasing the value of d in Equation 7 has the 

same effect and allows Configural Theory to predict the results of this experiment, as shown in the 

top-centre panel of Figure 5. There is no reason to suggest that there was a salient contextual cue 

present in either of Pearce et al’s experiments and addition of one does not allow Configural Theory 

to solve the discrimination when d = 2. 

------------------------ 

Figure 5 about here 

------------------------ 

 REM is capable of solving the parity discrimination, but it incorrectly predicts that responding 

should be greater for compound ABC than for A, B, or C alone (see the middle row of Figure 5). This is 

true for all values of r greater than zero. When r = 0 (not shown), REM fails to solve the discrimination 

but predicts that the order of rates of responding is as follows: ABC > AB/AC/BC > A/B/C. Hence, REM 

is unable to predict the results of either of Pearce et al’s (2008) experiments for any value of r.  

C-AEM predicts the same pattern of results as REM for very high values of r (bottom-right 

panel of Figure 5). For intermediate values, around .4 (bottom-centre panel of Figure 5), it correctly 

predicts the results of Pearce et al’s (2008) experiment using coloured dots. There is a brief period 
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early in training where C-AEM predicts summation (ABC > AB/AC/BC > A/B/C), but this is also true of 

Configural Theory and for both models responding to A, B, and C is predicted to be greater than to 

ABC soon after responding to the non-reinforced patterns begins to decline. It is possible that stimuli 

which are identical except for their location may interact with each other perceptually rather less than 

different stimuli within the same modality. When r is small (.2), C-AEM still solves the discrimination, 

but extremely slowly (bottom-left panel of Figure 7; note that the scale on the x-axis is an order of 

magnitude different than for the other simulations of C-AEM in the same figure). Here, there is an 

extended period during which the model predicts a similar pattern of responding to that observed by 

Pearce et al in the experiment using white circles as stimuli (A/B/C > AB/AC/BC > ABC), although the 

model’s predictions do not match the performance of the pigeons as closely as do the predictions of 

Configural Theory.  

To the best of my knowledge, this type of parity discrimination has been employed only in the 

experiments reported by Pearce et al (2008) and in one other study (George, 2018). I trained human 

participants on simultaneous negative (A+ B+ C+ ABø ACø BCø ABC+) and positive (Dø Eø Fø DE+ DF+ 

EF+ DEFø) parity discriminations in a predictive learning task. For some participants, each of the stimuli 

was a circle that consistently appeared in a specific location on a computer monitor (the six stimuli 

were arranged at the vertices of an imaginary hexagram so that ABC and DEF were the corners of two 

equilateral triangles), and all of the circles were of the same colour. For other participants the six 

stimuli were quite different from each other, based on those used by Pearce and George (2002) in a 

pigeon auto-shaping experiment. On each trial, participants were asked to rate the likelihood that the 

visual pattern would be followed by the presentation of a tone (+) on a scale that ranged from 1 = very 

unlikely to 9 = very likely. Both groups of participants solved the discrimination problems, but stimulus 

similarity affected predictive ratings for the individual stimuli and the compounds of three stimuli 

(ABC/DEF). When stimulus similarity was low, participants made more extreme ratings to the 

individual stimuli than to the three-stimulus patterns (i.e. A/B/C > ABC; D/E/F < DEF). The group 

trained with very similar stimuli showed the opposite pattern of results (i.e. A/B/C < ABC; D/E/F > DEF).  
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The results of simulations of Configural Theory, REM, and C-AEM are shown in Figure 6 for the 

human parity discrimination task. For simplicity, only the data from the negative parity discrimination 

are shown; data from the positive and negative parity discriminations are rotations of each other 

around the zero point of the y-axis. For these simulations, β was .05 both when the US was present 

and when it was absent, and λ was -1 when the US was absent. These values were chosen because in 

human causal learning experiments the presence and absence of the outcome are usually events of 

equal salience and likelihood (Livesey, Thorwart & Harris, 2011). The predictions of Configural Theory 

are consistent with the results from the group of participants trained with low similarity stimuli when 

d > 2 (top-centre panel). When d = 2, Configural Theory cannot solve the discrimination (top-left 

panel). For all values of r, REM predicts that more extreme ratings should be given to the three-

element patterns that to the individual stimuli (middle row), the effect shown by participants trained 

with high-similarity stimuli. Only C-AEM can predict both patterns of results. The low-similarity stimuli 

differed across three perceptual dimensions (colour, shape, and orientation), although they were all 

visual. Pearce and George (2002) found that pigeons trained on a complex negative patterning 

discrimination with these stimuli behaved in a similar manner as Redhead and Pearce’s (1995) pigeons 

trained with stimuli that differed along a single dimension (colour). Hence, it is reasonable to set the 

r parameter to a value in the range .4 – .5 for which C-AEM correctly predicts the results of other 

pigeon auto-shaping experiments. As can be seen in the bottom-centre panel of Figure 6, the 

predictions of C-AEM with r  = .4 match the pattern of rating for the low-similarity stimuli. For high 

values of r (.8), C-AEM predicts the pattern of results obtained from participants trained with high-

similarity stimuli (bottom-right panel). It may be fair to suppose that perceptual interaction was 

abnormally high for the high-similarity stimuli. Because the individual elements of the patterns were 

identical, defined only by their location, their geometric arrangement may have been very salient. A, 

B, and C alone were simply points in space; AB, AC, and BC were pairs of points lying along lines a 120°, 

60°, or 0° from horizontal, respectively; ABC was three points at the corners of an implied equilateral 

triangle. When the individual stimuli were less similar their identities may have been rather more 
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salient than their spatial arrangement, resulting in less perceptual interaction (but still more than for 

multi-modal stimuli). Simulations of C-AEM reproduced another aspect of the experimental data; C-

AEM predicts faster learning when r = .8 than when r = .4. Although there was no statistically significant 

difference in the overall rates of learning of the two groups, there was a trend for the group trained 

with high-similarity stimuli to learn more rapidly than those trained with low-similarity stimuli. 

In order for C-AEM to explain both Pearce et al’s (2008) and my (George, 2018) results, it is 

necessary to assume that stimuli that differ only in their location interact with each other to a much 

lesser extent for pigeons that for people. Points on a computer monitor might be seen as the vertices 

of shapes by people, but not by pigeons. There is some evidence that this is true, or at least that 

vertices and edges are processed differently by the two species. Biederman (1987), for example, found 

that people’s recognition of simple line drawings of objects was impaired to a much greater extent by 

the deletion of vertices than by the deletion of edges. The opposite effect was found in pigeons by 

Rilling, De Marse and La Claire (1993; see Qadri & Cook, 2015, for a discussion of divergences between 

avian and mammalian visual cognition).  

Summary 

The context-dependent added-elements model presented here is computationally less 

complex than Wagner’s (2003) replaced elements model while retaining many of the properties of 

REM. C-AEM is able to accommodate conflicting findings concerning summation and differential 

summation from experiments involving pigeon autoshaping (e.g., Pearce et al, 1997) and rabbit 

eyeblink conditioning (e.g., Myers et al, 2001), and also the consistent effect of differential external 

inhibition in these two preparations (Pearce et al, 1992; Kundy et al, 2002) in a similar manner to REM. 

In addition to its relative simplicity, C-AEM has the strength that it provides a better overall fit to data 

from experiments involving complex patterning discriminations than does either REM or Pearce’s 

Configural Theory. For both complex negative patterning and parity discriminations, REM predicts a 

consistent (ordinal) pattern of results for all values of r greater than zero. Configural Theory provides 
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a very close match to data from Pearce et al’s (2008) parity experiments, but cannot accommodate 

the differential results of complex negative patterning experiments (Redhead & Pearce, 1995; Myers 

et al, 2001) or the effects of similarity on human parity discrimination learning (George, 2018). 

Other models of learning 

 The primary purpose of this paper was to explore whether the configurational cue, or added 

elements, approach of Spence (1952) and Wagner and Rescorla (1972) was able to account for the 

variety of data concerning the effects of similarity on generalization and discrimination learning as 

well as Wagner’s (2003) replaced elements model. The clear answer is yes, and better, if the activity 

of representational units is context-dependent. There are, however, other elemental models of 

learning which may be able to account for some of the effects of stimulus modality on discrimination 

learning. Harris and Livesey (2010; Thorwart, Livesey & Harris, 2012) described an Attention-

Modulated Associative Network (AMAN) model in which the activation of representational elements 

undergoes a normalization process which is affected by stimulus similarity. They have suggested that 

stimuli from the same modality are more similar to each other than are those from different 

modalities; similarity produces the modality effect. AMAN is able to reproduce the effect of stimulus 

modality in some circumstances. Redhead and Pearce (1993) trained pigeons on two concurrent 

patterning discriminations where all of the stimuli were coloured dots. The first discrimination was of 

the standard form: A+ B+ ABø. In the second, a common feature was present on all trials: CD+ CE+ 

CDEø. Addition of the common element increased similarity between reinforced and non-reinforced 

patterns and retarded acquisition of the discrimination, as predicted by Configural Theory. Bahçekapılı 

(1997; described in Myers et al, 2001) found the opposite pattern of results when he trained two 

groups of rabbits on feature negative discriminations with (AC+ ABCø) or without (A+ ABø) a common 

feature using multi-modal stimuli. Redhead and Curtis (2013) replicated this moderating effect of 

stimulus modality on the ability of a common feature to retard or enhance discrimination learning in 

a human contingency learning experiment. They also conducted simulations of AMAN, which showed 
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that by manipulating the similarity of the stimuli, the model could predict their results. However, in a 

direct test of the AMAN’s predictions, I manipulated the similarity of stimuli across four patterning 

tasks and in no case could AMAN accommodate the results (George, 2018). 

McLaren and Mackintosh (2000, 2002; McLaren, Kaye & Macktinosh, 1989) presented a real-

time elemental model of learning. The predictions that this model makes concerning the addition of 

a common element to a patterning or feature-negative discrimination depends upon how much 

learning takes place on each trial. When little is learned, the model’s predictions match those of the 

RW model, but when the amount learned is high, they match the predictions of Configural Theory. 

Conflicting results of experiments using multimodal and unimodal stimuli (or rabbit eyeblink 

conditioning vs. pigeon autoshaping) may, therefore, be the result of differences in learning rates. It 

is, however, difficult to compare learning rates between experiments and few experiments have made 

a direct comparison. Redhead and Curtis (2013) found no difference in the rate of learning between 

participants trained with multimodal or unimodal stimuli even though the relative rates at which they 

learned a simple negative patterning discrimination (A+ B+ ABø) and one with the addition of a 

common feature (CE+ DE+ CDEø) was affected by stimulus modality. I also found no difference in the 

overall rate of learning between groups of participants that showed the patterns of results predicted 

by the RW model and by Configural theory for a variety of patterning discrimination tasks (George, 

2018). In fact, across four experiments there were numerical differences in learning rate in the 

direction opposite to that predicted by McLaren and Mackintosh. Recently, Kokkola, Mondragón & 

Alonso (2019) described a novel elemental connectionist network model, which can account for a wide 

range of learning phenomena. It is possible that this model may also accommodate the results 

discussed here, but that so far remains to be confirmed. 

Concluding comments 

REM and C-AEM can, with slightly different levels of success, reproduce the predictions of 

both the RW model and Configural Theory. Their flexibility suggests that differences in the predictions 
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of the latter two models are not simply the results of differences between elemental and configural 

stimulus processing. Indeed, Ghirlanda (2015) has demonstrated that, under conditions met by 

existing configural models, it is always possible to construct a configural model equivalent to a given 

elemental model. Thorwart, Uengoer, Livesey and Harris (2017) have argued that the critical 

differences between the RW model and configural theory concern normalization of activity within the 

models and context-dependency of stimulus processing. In Configural Theory, activity of units within 

the input network are normalized so that only one configural unit is ever fully activated. The activation 

of configural units is also context-dependent; configural unit A is fully activated by stimulus A, but only 

partially activated by compound AB. In the RW model, conjunctions of stimuli will result in the 

generation of a unique configurational cue, but this is in addition to the elemental representations of 

the component stimuli which are otherwise unaffected by the presence or absence of others. Hence, 

stimulus representations in RW are both context-independent and non-normalized. In both REM and 

C-AEM, the activation of individual elements, or the activation level of a unit, is dependent upon the 

context in which a stimulus is presented, but each stimulus always contributes the same amount of 

activity to the system; these models are context-depended, but non-normalized. The Inhibited-

Elements Model (IEM) described by Wagner and Brandon (2001) as an elemental equivalent to 

Configural Theory is a normalized, context-dependent elemental model. By varying the degree of 

normalization with the IEM and comparing its predictions with those of REM and Configural Theory, 

Thorwart et al (see also Thorwat & Lachnit, 2020) were able to independently evaluate the importance 

of normalization and context-dependency to the models’ ability to predict acquisition of positive and 

negative patterning discriminations. They concluded that a low-level of context dependency was the 

critical factor in replicating their results rather than either normalization or a difference in elemental 

vs. configural processing. Although not presented here, the predictions of C-AEM match those of REM 

for Thorwart et al’s task. This should not be surprising since C-AEM shares those same properties of 

non-normalization and context-dependence.  
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Given that REM and C-AEM are both non-normalized and context-dependent, we must 

consider why they make different predictions in some instances. There are three key differences 

between the models. First, in C-AEM (and the RW model and Configural Theory), stimuli are 

represented by units, whereas in REM representations consist of collections of elements or 

microfeatures. It is unlikely that this difference is responsible for variations in the models’ behaviour. 

Glautier (2007) suggested that an alternative way of simulating REM was to treat each population of 

elements as a single unit which could be either on or off, and to scale changes in associative strength 

of these units by a parameter, ω, reflecting the relative size of the populations in REM. This approach 

yields the same results as simulations in which stimuli are represented by populations of elements. 

Furthermore, it is possible to conceive of a version of C-AEM in which the stimuli and configurational 

cues are represented by populations of elements, a different random sample of which are activated 

each time a stimulus or compound is presented. 

Second, in C-AEM the activation level of a unit affects both the unit’s contribution to the net 

associative strength of a pattern (Equation 13), and the change in associative strength of the unit 

following a trial (Equation 12). In REM an element is either active or inactive; if it is active then its 

associative strength may be modified according to Equation 1. Populations of elements will, therefore, 

accrue different total amounts of associative strength depending on their size, but each element will 

contribute its full associative strength to the prediction of the US if it is active. Given that Glautier 

(2007) has shown that REM may also be simulated by representing each population as a single binary 

unit, and scaling changes in association strength, the differences in the predictions of REM and C-AEM 

are not likely to be due to either the effects of unit activation on net associative strength or on changes 

in associative strength, but rather the combination of these two factors.  

The third difference between the models is, however, especially important for the complex 

negative patterning and parity discrimination tasks;  in C-AEM a stimulus does not activate units which 

explicitly signal the absence of other stimuli, whereas the inhibited elements in REM serve this 
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purpose. When a stimulus is presented alone, in C-AEM it will activate its own representational unit 

fully, and no others. That means that in a complex negative patterning or parity discrimination where 

A, B, and C are individually paired with the US, units a, b, and c will each have an asymptotic associative 

strength of λ. This is not affected by the value of r. In REM, however, this associative strength is 

distributed between four populations of elements (context-independent Ai, and context-dependent 

elements A~b, A~c, and A~b~c), and the distribution of associative strength between these populations is 

affected by r. The result is a complex interplay between the expression of this associative strength on 

compound conditioning trials and changes in the associative strength of configurational cues (or 

context-dependent elements) dependent on r. The effect is significant variation in the distribution of 

associative strength between units or populations of elements between the two models. 

In conclusion, I have presented a context-dependent added elements model which is a version 

of the RW model with configurational cues in which the activation of units representing stimuli and 

their configurations are dependent upon the context in which a stimulus is presented. C-AEM can 

accommodate a wide range of conflicting data from Pearce’s and Wagner’s laboratories concerning 

the effects of stimulus similarity on generalization and discrimination learning if we assume that the 

context-dependency of representational units is affected by the perceptual properties of stimuli. The 

success of C-AEM relative to both REM and Configural Theory suggest that a configurational cue 

approach put forward by Spence (1952) and adopted by Wagner and Rescorla (1972) still has 

something to offer contemporary models of associative learning. 
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Footnotes 

1. Predictions derived from the RW model in this case are relatively insensitive to variations in 

the absolute values of the α and β parameters, as long as the α of all of the stimuli is the same, 

and the α of all of the configurational cues is the same. In general, whether the β associated 

with the presentation of the US is greater, less than, or the same as the β associated with the 

absence of the US has no impact on the model’s predictions. Changes in the relative salience 

of the stimuli and configurational cues result in small differences in their asymptotic 

associative strengths, but unless extreme values are selected do not prevent the model from 

solving the discrimination. If all stimuli and configurational cues have the same α, the RW 

model predicts that the asymptotic associative strengths of the stimuli and configurational 

cues will be: A/B/C/D = 0.2λ, w/x = 0.6λ, y/z = –0.4λ. 

2. It is common to assume that the value of β is greater when the US is present than when it is 

absent. Some effects are only predicted by RW model when this is the case. One example is 

the relative validity effect (Wagner, Logan, Haberlandt & Price, 1968) where less conditioned 

responding to stimulus X was observed following AX+ BXø training than following training in 

which compounds AX and BX were each reinforced on 50% of trials. When the two β values 

are equal the RW model predicts no difference between conditions. All simulations reported 

here were repeated with β equal to .05 both when the US was present and when it was absent. 

While this change had a trivial effect on the rate at which learning progressed, it did not alter 

the overall pattern of results for any simulation.  
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Appendices 

Appendix A: Derivation of population expansion in REM using trinomial theorem 

We may represent the effect of adding a stimulus (B) on individual elements within the 

representation of another stimulus (A) using balanced ternary notation where the element is either 

context dependently activated (+1; i.e. Ab), content-independent (0; i.e. Ai), or context dependently 

inhibited (-1, i.e. A~b). Since replacement by different stimuli is statistically independent, we can then 

characterize the effect of any number of different stimuli upon a particular population of elements 

within the representation of A using a vector of ternary bits. In any system where n stimuli may be 

presented in combination, the vectors describing the various populations of elements within the 

representation of each stimulus will consist of n – 1 = m bits. For example, within the representation 

of A, elements that are context-dependently inhibited by B, but are context-independent with respect 

to C (A~b) may be represented by the vector [-1, 0], and elements that are context-dependently 

activated only in the presence of both B and C (Abc) would be represented by the vector [+1, +1]. The 

number of populations for which these vectors sum to a particular value, k, is given by the trinomial 

coefficient which may be calculated using Equation A1.  
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 (Andrews 1990; Andrews & Baxter, 1987) and k has the range (-m, m). The total number of 

populations of elements within the representation of A, is then given by the term
2

m

k m

m

k=−

 
 
 

 . Since the 

trinomial coefficients are defined by Equation A3 and m = n – 1, if we substitute 1 for x in Equation A3, 

we can see that it reduces to 3n-1. This is the number of populations within the representation of a 
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single stimulus. For a system consisting of n stimuli, n3n-1 distinct populations of elements may, 

therefore, be identified.  
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Appendix B: General form of the C-AEM activation function 

 Equation 9 gives the activation function for units in C-AEM when all r values and stimulus 

intensities are equal. In many situations this will, however, not be the case. For example, when a 

stimulus may be presented in compound with other stimuli from either the same or a different 

modality. A general form of the activation function is given in Equation B1 which allows stimuli to 

differ both in their intensity and the extent to which they interact with each other. In this equation, IH 

is the intensity of stimulus H, rj,h is the extent to which stimulus J interacts with the perception of 

stimulus H, n is the total number of stimuli present and k is the number of stimuli that contribute to 

the activation of the unit. 

, ,

1 1, 1

(1 )
k nk

H i h j h

h i i h j k

I r r
= =  = +

= −  
    (B1) 

In a stimulus compound, each stimulus will contribute to the activation of more than one unit. 

When there are three or more stimuli present, then each stimulus will contribute to the activation of 

multiple configurational units. Because of this, activation of a unit may be affected by the presence of 

stimuli which do not directly contribute to its activation. Consider compound ABC. Stimuli A will 

contribute to the activation of units a, ab, ac, and abc. Because stimulus A always contributes the 

same total activity to the system, equal to its intensity IA, the presence of stimulus C will reduce the 

amount of activity available for units a and ab. In Equation B1, the contribution of each stimulus (h = 

1 to k) to the activation of a unit is calculated based on its intensity (IH) and these contributions are 

summed (stimuli A and B both contribute directly to the activation of unit ab, all three stimuli 

contribute directly to the activation of unit abc). The intensity of each stimulus is multiplied by the 

product of the r values for each additional stimulus that contributes to the activation of the unit, and 

the product of the (1 – r) values for each additional stimulus that does not contribute to the activation 

of the unit. Hence, the contribution of stimulus A to the activation of the ab unit is IArb,a(1 – rc,a), and 
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the total activation of the unit, γab = IArb,a(1 – rc,a) + IBra,b(1 – rc,b). Activation of unit a is γa = IA(1 – rb,a)(1 

– rc,a), and of unit abc is γabc = IArb,arc,a + IBra,brc,b + ICra,crb,c. 

The total activity across all units cannot now be calculated using Equations 10 and 11. It will, 

however, always be equal to ΣI. It seems somewhat implausible to suggest that when two stimuli of 

greatly differing intensities are presented in compound that the less intense stimulus will interfere 

with the more intense stimulus to the same extent as the more intense stimulus interferes with the 

less intense. This may be illustrated with an example in which stimulus A has an intensity of 4, and 

stimulus B an intensity of 1. If the replacement parameter, rb,a, has a value of 0.4, then from Equation 

B1 we can see that the activation levels of a, b, and ab, will be 2.4, 0.6, and 2, respectively. Hence, the 

configurational cue ab is of greater intensity than one of the stimuli contributing to its activation when 

presented alone. For this reason, I propose that two further modifications might be appropriate. First, 

perceptual interaction between two cues may not always be symmetrical: the degree to which B 

interferes with A, rb,a, is not necessarily equal to the degree to which A interferes with B, ra,b. Second, 

the value of the parameter rb,a may be proportional to the ratio between the intensities of the two 

stimuli A and B: the greater the ratio A:B, the greater value of ra,b and the smaller the value of rb,a. 

These modifications do not affect the total contribution that each stimulus makes to activity across all 

units; γtotal will always be equal to ΣI. Exploration of the effects of these modifications are, however, 

beyond the scope of this article which considers only situations in which all stimulus intensities and r 

values are equal.  
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Appendix C: Derivation of population expansion in C-AEM using binomial theorem 

C-AEM exhibits a similar exponential growth in the number of units required to represent 

stimulus compounds as does REM, but at a much slower rate. The total number of units that may be 

activated in a system consisting of n stimuli is equal to the number of units activated by the compound 

containing all n stimuli: one unit for each of the n stimuli, plus units activated by each combination of 

2 or more stimuli in the set. Since the number of units receiving activation from k inputs is given by 

the binomial coefficient (see Equation 8 in the main text), then the total number of units activated by 

an n stimulus compound must be 
1
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 
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 . Binomial coefficients may be defined by Equation C1. 
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If we substitute 1 for x in Equation C1, we can see that it reduces to 2n. This total includes the case 

where k = 0, but we do not require a unit to which no stimuli contribute activation. Since 1
0

n 
= 

 
, the 

total number of units required to represent a system in which n stimuli may be presented in compound 

is, therefore, (2n – 1).  
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Tables 

Table 1. The populations of elements within the representation of a stimulus, A, according to Wagner’s 

REM. There are nine distinct populations to consider when stimulus A may be presented in 

combination with either or both of two other stimuli, B and C. Each population of elements may be 

context-independent, context-dependently activated (added), or context-dependently inhibited with 

respect to B and with respect to C. The relative size of the populations is determined by parameters 

rb and rc. Whenever A is presented, whether alone or in compound with B and/or C, four of these 

populations of elements will be active. Activity within those populations will always sum to 1. 

 

  

Dependence on 

Stimulus C 
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rbrc 



Stimulus Conjunction  55  

Figure Captions 

Figure 1. The predictions concerning the relative size of the effects of overshadowing and external 

inhibition for Pearce’s (1994) Configural Theory, Wagner’s (2003) Replacement Elements Model 

(REM), and the Context-dependent Added Elements Model (C-AEM). Top-left panel: generalization 

between patterns A and AB when either A is presented at test following conditioning with AB 

(remove), or AB is presented at test following conditioning with A (add); the predictions of Configural 

Theory are the same in both cases. The other three panels show the results of corresponding tests of 

generalization between patterns A and ABC (top-right), AB and ABC (bottom-left) and ABC and ABCD 

(bottom-right). 

Figure 2. The predicted results of a test of simple summation in which two stimuli are presented either 

alone (A/B) or in compound (AB) following conditioning to the individual stimuli (A+ B+). Top panel: 

Pearce’s (1994) Configural Theory without (left) or with (right) the inclusion of a salient contextual cue 

(X) throughout conditioning and at test. Bottom panel: Wagner’s (2003) Replaced Elements Model 

(REM) and the Context-dependent Added Element Model (C-AEM) as a function of the 

replacement/perceptual interaction parameter, r. 

Figure 3. The predicted results of a test of differential summation in which compound ABC is presented 

following conditioning to the individual stimuli (A+ B+ C+) or with pairs of stimuli (AB+ AC+ BC+). Top 

panel: Pearce’s (1994) Configural Theory without (left) or with (right) the inclusion of a salient 

contextual cue (X) throughout conditioning and at test. Middle panel: Wagner’s (2003) Replacement 

Elements Model (REM) as a function of the perceptual interaction parameter, r. Bottom panel: The 

Context-dependent Added Element Model (C-AEM) as a function of the perceptual interaction 

parameter, r. 

Figure 4. Predictions concerning the course of acquisition of a complex negative patterning 

discrimination (A+ B+ C+ AB+ AC+ BC+ ABCø). Top row: Pearce’s (1994) Configural Theory either 

without (left panel) or with (centre panel) the inclusion of a salient contextual cue. Middle row: 
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Wagner’s (2003) Replaced Elements Model (REM) with either a low (left panel), intermediate (centre 

panel) or a high (right panel) value of the replacement parameter, r. Bottom row: The Context-

dependent Added Elements Model (C-AEM) with either a low (left panel), intermediate (centre panel) 

or a high (right panel) value of the perceptual interaction parameter, r. 

Figure 5. Predictions concerning the course of acquisition of a parity discrimination (A+ B+ C+ ABø ACø 

BCø ABC+). Top row: Pearce’s (1994) Configural Theory with different values of the discriminability 

parameter, d (left panel, d = 2; centre panel, d = 3). Middle row: Wagner’s (2003) Replaced Elements 

Model (REM) with either a low (left panel), intermediate (centre panel) or a high (right panel) value of 

the replacement parameter, r. Bottom row: The Context-dependent Added Elements Model (C-AEM) 

with either a low (left panel), intermediate (centre panel) or a high (right panel) value of the perceptual 

interaction parameter, r. Note that the scale for the bottom-left panel is an order of magnitude 

different from the other panels in the middle and bottom rows. 

Figure 6. Predictions concerning the course of acquisition of a negative (A+ B+ C+ ABø ACø BCø ABC+) 

parity discriminations with symmetrical outcomes. Top row: Pearce’s (1994) Configural Theory with 

different values of the discriminability parameter, d (left panel, d = 2; centre panel, d = 3). Middle row: 

Wagner’s (2003) Replaced Elements Model (REM) with either a low (left panel), intermediate (centre 

panel) or a high (right panel) value of the replacement parameter, r. Bottom row: The Context-

dependent Added Elements Model (C-AEM) with either a low (left panel), intermediate (centre panel) 

or a high (right panel) value of the perceptual interaction parameter, r. Note that the scale for the 

bottom-left panel is an order of magnitude different from the other panels in the middle and bottom 

rows. 
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Figures 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 


