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Abstract 9 

This paper presents a whole building energy modelling work incorporating a state-of-the-art 10 

indirect evaporative cooling system. The model is calibrated and validated with real-life 11 

empirical data, and is capable of representing actual performance of the system with high 12 

reliability. The investigated system is a novel super-performance Dew Point Cooler (DPC) 13 

with a guideless and corrugated Heat and Mass Exchanger (HMX). The DPC is modelled as 14 

part of the whole building energy model through detailed description of system and building 15 

characteristics at source code level. The developed model has been simulated in all different 16 

climates that an Indirect Evaporative Cooling (IEC) system can be operated, namely: 17 

subtropical hot desert, humid continental, Mediterranean, and hot desert climates. The 18 

performance predictions has been tested against experiments and numerical model of the 19 

same system, and a detailed investigation of modelling approaches to efficiently and 20 

effectively model aforementioned systems has been provided. 21 

The calibrated and empirically validated whole building energy model predicted the key 22 

performance parameters of the dew point evaporative cooling system with mean error values 23 

limited to 4.1%. The highest COP values recorded by experiments and whole building 24 

energy simulations were 51.1 and 49, respectively. The whole building energy model proved 25 

to better predict the performance of dew point evaporative cooler, when compared to 26 

numerical models, by incorporating the building-side parameters into the model. This 27 

modelling work paves the way toward detailed investigation of the advanced cooling systems 28 

within building context to achieve optimised performance of the system in wide range of 29 

buildings and operating conditions. 30 
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1. Introduction 32 

1.1. Background 33 

The rapid growth in global energy consumption, especially in past decades, has raised the 34 

world-wide concern over security of supply as the existing energy resources are exhausting 35 

[1]. One of the main contributors to the rising global energy consumption is the service 36 

sector which covers all the commercial and public buildings with a wide range of HVAC 37 

system [2]. The global energy consumption of service sector has increased by 295 Mtoe in 38 

2018 compared to 2000 levels and with this trend the sector would consume a further 323 39 

Mtoe by 2040. The sector has also showed the least reduction potential in energy 40 

consumption under the Sustainable Development Scenario, compared to Industry, 41 

Residential and Transport sectors [1]. To deal with the high energy consumption levels 42 

associated with the service sector and to improve its poor performance under future 43 

scenarios, the focus has been shifted toward development of advanced, efficient and low-44 

energy HVAC solutions in recent years.  45 

The growing energy use by HVAC systems are particularly significant in developed 46 

countries. In the USA, HVAC energy use accounts for up to 50% of building energy 47 

consumption [3] while in china the HVAC energy use is between 50-70% of the total energy 48 

consumed in buildings [4]. Issac and Vuuren [5] estimated that energy demand associated 49 

with air-conditioning will rise rapidly in 21st century reaching a peak of 4000 TWh in 2050 and 50 

more than 10,000 TWh by 2100. There are other studies which have predicted a similar rise 51 

in energy demand of air-conditioning [6] under future weather conditions of USA [7], 52 

Switzerland [8], and Australia [9]. 53 

1.2. Air-conditioning: past, present and future 54 

Traditionally, the most dominant air-conditioning systems were Mechanical Vapour 55 

Compression (MVC) ones which due to their inefficient compressors consumed a 56 

considerable amount of electricity [10]. In past decades absorption and adsorption cooling 57 

systems have gained more interest over mechanical vapour compression systems due to 58 

their lower energy consumption. The absorption and adsorption cooling systems greatly owe 59 

their lower energy consumption to replacing energy-intensive compressor with a cycle of 60 

high temperature water or vapour which reduces the applicability of these systems in sites 61 

with no access to heat source. Complexity of the pressurised and de-pressurised units used 62 

in the absorption and adsorption cooling systems and high maintenance costs associated 63 



with them are other shortcomings of these systems which have raised the need for practical 64 

solutions [11]. 65 

The most recent approach to provide conditioned air is based on the fundamentals of 66 

evaporative cooling which relies on latent heat of water (both recyclable and renewable) to 67 

remove dissipated heat from conditioned spaces. The Dew Point Evaporative Cooling 68 

approach was first investigated by Dr Valeriy Maisotsenko [12] and the resultant technology 69 

is adeptly known as M-cycle cooling [3]. Evaporative cooling systems generally fall under 70 

two categories: Direct Evaporative Cooling (DEC) and Indirect Evaporative Cooling (IEC) 71 

based on whether the primary air is in direct contact with cooling water or not. In DECs, the 72 

direct contact between primary air and cooling water results in production of cooled but more 73 

humid air which provides reduced occupant comfort and is not suitable for high-tech facilities 74 

like data centres. IECs, on the other hand, separate the primary air and the cooling water by 75 

introducing dry and wet channels which cools the product air through the heat transfer 76 

between the two channels [13]–[15]. While IECs provide better indoor air quality compared 77 

to DECs, they have a lower heat removal capacity due to the constraints introduced by air’s 78 

wet-bulb temperature. 79 

To overcome the shortcomings of IECs, Dew Point Coolers (DPC) as the most advanced 80 

indirect evaporative cooling systems available in the market, offer a modified heat and mass 81 

exchanger (HMX) configuration to provide pre-cooling for the air in wet channels, eliminate 82 

the wet-bulb limits, and lower the product air temperature down to its dew point, thus 83 

improving the cooling efficiency by up to 30% compared to conventional IECs [3], [16]–[19].        84 

1.3. Dew Point Coolers 85 

The research on Dew Point Coolers (DPCs) has gained more interest in past decade with 86 

first published work dating back to 2006 by Coolerado® project in USA [16] where a cross-87 

flow HMX DPC with perforated holes on the flow path was tested. Results indicated that by 88 

employing this type of HMX, for the first time, wet-bulb and dew-point effectiveness of up to 89 

80% and 50%, respectively could be achieved under specific operational conditions [16]. 90 

Since the first successful investigation and implementation of DPCs, more research has 91 

considered the potentials of these advanced cooling systems and recorded wet-bulb and 92 

dew-point effectiveness has reached values as high as 114% and 84%, respectively by 93 

Riangvilaikul et al. [20]. In their study a novel, vertically positioned DPC with counter-flow 94 

configuration between the intake and working air, and between the working air and water 95 

was tested experimentally. 96 



Other example of experimental works on DPCs is a flat-plate cross-flow HMX DPC by Bruno 97 

[21] that used a special sheet with high water retention and wicking capability as the wet 98 

material layer, and a water-proof membrane as a dry material layer. The authors reported 99 

they were able to achieve an average dew-point effectiveness of 75%, which was relatively 100 

higher than that of the existing types for the same operational conditions. Xu et al. [4] 101 

performed an experimental analysis of a DPC prototype employing a super performance wet 102 

material, intermittent water supply configuration and a corrugated HMX to find wet-bulb and 103 

dew-point effectiveness of up to 114% and 75%, respectively, and a record-high COP of 104 

52.5. The performance of same prototype DPC was then examined by Akhlaghi et al. [22] 105 

under four different climatic conditions, namely humid continental, Mediterranean, sub-106 

tropical hot desert, and hot desert climates. Annual energy savings of up to 90% was 107 

achieved compared to the conventional MVCs. 108 

With increasing demand for even more efficient and low-energy DPCs various modelling 109 

techniques and simulation tools have been employed by researchers across the world to 110 

investigate complex HMX configurations, water supply patterns, dry and wet channel 111 

materials, varying operating conditions and space requirements [20]–[36]. The modelling 112 

research on DPCs is investigated critically in the next section with particular attention to 113 

experimental validation of model outputs and observed uncertainties, advantages and 114 

limitation various modelling approaches introduce, and how this study fills the existing 115 

research gap on DPC research topic. 116 

1.4. Modelling DPCs: advantages, limits and the gap 117 

The vast majority of research on DPCs has employed numerical modelling techniques. 118 

Hasan [30] employed an analytical model of a regenerative indirect evaporative cooling 119 

trying to achieve sub-wet bulb temperature without the need for a vapour compressor. The 120 

results of analytical model was compared with a previously developed numerical model and 121 

some tests, and the recorded agreement of results ensured validity of system performance 122 

modelling [30]. Cui et al. also developed a numerical model of a evaporative dew point 123 

cooler [32] and investigated the performance of system under three improved scenarios 124 

namely, varying channel dimensions; employing room return air as the working fluid; and 125 

installation of physical ribs along the channel length [37]. Their model was validated through 126 

comparison of temperature distribution and outlet air conditions with experimental results, 127 

and the largest discrepancy was recorded as ±7.5%.  128 

Lin et al. [33] employed a transient and dynamic numerical model to take into account the 129 

dynamic transitions between various components of a DPC and validated the model through 130 



inter-model comparison with a steady-state model of the same DPC and experimental 131 

comparison which yielded 4.3% discrepancy. Pandelidis et al. performed two numerical 132 

studies, one to investigate heat and mass transfer processes in an M-cycle HMX of a DPC 133 

[34] and the other to optimize the performance of the same evaporative air cooler [35]. In 134 

both studies experimental data was used to ensure the validity of model results and the 135 

optimal range of operational and geometrical conditions were identified. Akhlaghi et al. [38] 136 

developed a statistical model of a novel DPC employing Multiple Polynomial Regression 137 

(MPR) technique to predict the performance of the system. Several operating parameters 138 

including intake air temperature, relative humidity and flow rate as well as overall cooling 139 

capacity, Coefficient of Performance (COP), and wet bulb efficiency were investigated before 140 

applying the model to a number of scenarios in dry climates. 141 

Sohani et al. [36] used a Neural Network (NN) based numerical model to study and optimise 142 

the performance of a DPC with M-cycle under 12 diverse climatic weather conditions. While 143 

the multi-objective optimisation technique used by authors was able to improve mean values 144 

of the COP and cooling capacity by 8.1% and 6.9%, adequate evidence on empirical 145 

validation of the model was not provided. Chen et al. [24] employed a experimentally 146 

validated numerical model of an IEC to perform a detailed sensitivity analysis and 147 

optimisation based on the most influential and practically controllable parameters. Xu et al. 148 

[28] also did a numerical modelling work on guideless irregular HMX with corrugated heat 149 

transfer surface as used in a novel DPC. The experimentally validated work proved that the 150 

novel DPC system was capable of achieving up to 37% more cooling capacity, 55.8% higher 151 

wet bulb efficiency, and 33.3% higher COP.   152 

Other studies by Moshari and Heidarnejad [23], Akhlaghi et al. [39], [22], Riangvilaikul [20], 153 

[26], and Jradi et al. [27] all performed some sort of numerical modelling exercise in IECs 154 

and validated their findings through comparison with experimental data and other models. 155 

While all these studies were successful in recording some or extraordinary improvements in 156 

performance of the investigated systems, the vast majority of improvements were recorded 157 

under controlled test conditions in laboratory environment, neglecting the extensive building 158 

and occupants’ interactions which happen in real world. 159 

This study, therefore, fills the existing gap in DPC research by investigating the performance 160 

of a novel dew point evaporative cooling system through whole building energy modelling 161 

where the restraining system interactions with hosting building and its occupants are 162 

captured. In this way the transient behaviours of the system within the building envelope are 163 

quantified and the resultant impact on performance parameters of the system is investigated.  164 

A comparison of the predicted performance parameters from whole building energy 165 



simulation to those from numerical models of the same system enabled the critical 166 

assessment of each modelling approach in dealing with advanced Indirect Evaporative 167 

Cooling (IEC) systems. 168 

2. System Description 169 

This study investigates a state-of-the-art, high-performance counter flow DPC employing a 170 

complex, 4 kW rated Heat and Mass Exchanger (HMX). The new HMX configuration 171 

replaces the channel support guides with a corrugated heat transfer surface separating dry 172 

and wet channels (as depicted in Figure 1) which decreases air flow resistance by up to 173 

56% and increases heat transfer area by up to 40% leading to an improved heat transfer 174 

rate [28]. As seen in Figure 1 (a), a number of perforated holes are designed on top of each 175 

corrugated sheet to allow partial flow of air from dry channels to wet ones in order to 176 

complete heat transfer cycle and cool down the air in dry channels. The dry channels are 177 

made of a specific aluminium with high malleability while the wet channels’ material is a 178 

flexible Coolmax® fibre with high water absorption, diffusion and evaporation capacities 179 

which allows the sheet to have corrugated shape. The geometric dimensions of the HMX is 180 

summarised in Table 1. 181 

When system operates, the air with relatively high temperature and moisture level enters the 182 

DPC and passes through the dry channel losing its heat to the adjacent wet channel 183 

reducing its temperature to the desired level. Upon reaching the end of dry channel a part of 184 

cooled air leaves the channel as product air (to the conditioned space) and the remaining air 185 

is transferred to the wet channels through perforated holes as working air. This working air 186 

then gains heat from adjacent dry channel and moisture from Coolmax® material while 187 

passing through the wet channel and is discharged as exhaust air and water drops. In 188 

comparison to conventional flat plate HMXs, the introduced HMX configuration reduces the 189 

airflow resistance, increases heat transfer area, has higher diffusion area and better 190 

evaporation owing to use of Coolmax® wet channel material. 191 



 

 

 

Figure 1 Heat and Mass Exchanger (HMX). Upper: configuration and structure, Lower: 192 

corrugated heat transfer surfaces separating dry and wet channels [38] 193 

Owing to the high absorption capacity of fibrous material in the wet channels, the intermittent 194 

water supply scheme was used by a dedicated water distributer system, which reduces the 195 

amount of water used as well as water pump power consumption. The water distributer is 196 

composed of a water pump, a water header, a water sink, and a water distributer tubes 197 

which enable the even distribution of water over the surface of wet channels. When the 198 

water sink underneath the HMX is empty, the water is supplied with flow rate of 6.85 L/min 199 

for 15 seconds with 10 minutes intervals, and when the tank is full, the water is supplied with 200 

flow rate of 2.45 L/min for 60 seconds with 10 minutes intervals. 201 

In addition to the complex HMX introduced above, the DPC also employs two supply and 202 

two exhaust air fans each with 160 W power, 458 Pa pressure, and 705 m3/h volumetric flow 203 

rate, one circulating water pump with 24V DC power and 450 L/h flow rate, and two 204 



controllers for the fans and the water pump. Table 2 summarises the key elements of the 205 

DPC system and associated technical specifications. 206 

Table 1 Geometric dimensions of the Heat and Mass Exchanger 207 

Inlet flat plate height 120 mm 

Outlet flat plate height 10 mm 

Corrugated plate height 860 mm 

Transition length between flat and 

corrugated plates height 
5* mm 

Number of corrugated plates 160 - 

Total height of the HMX 1000 mm 

Width 800 mm 

Length 358 mm 

Total heat transfer area 49.3 m2 

Height of corrugated wave 2.8 mm 

Width of corrugated wave 11.6 mm 

*on each of the inlet and outlet sides 

Table 2 Technical manufacturer specifications of the DPC components 208 

Component Specifications 

Supply air fan R3G225-RE07-03, ebm-papst Ltd, fan speed 2865 rpm, 705 m3 .h-1, 458 Pa, 160 W 

Exhaust air fan R3G225-RE07-03, ebm-papst Ltd, fan speed 2865 rpm, 705 m3 .h-1, 458 Pa, 160 W 

Water pump DH40H-24110, Shenzhen Zhongke Century Technology, 24 V/1.2 A DC, 11mH2O, 450 L/hr 

Fan controller 980-CAS11007 – TMS Controller, ebm-papst Ltd 

Pump controller DH48S-S, Xinling Electrical Co. Ltd 

Figure 2 represents the whole system design, the computer model, and the actual system in 209 

the laboratory environment. 210 



 211 

Figure 2 Dew Point Cooler (DPC) and its components. (a): 2D cross-section view, (b) 3D 212 

computer model, (c): actual system in the lab environment [4] 213 

Finally, for optimum operation of the DPC, temperature of the running water is kept at the 214 

range of 16-20˚C to ensure efficient cooling [4]. A water filter with cartridge to purify the 215 

water and an anti-scale agent was used to minimise the risk of blockage at the perforated 216 

holes. Also an optimised water distribution scheme was introduced to maximise the use of 217 

circulating water within the cooler and reduce the amount of intake water [4].   218 

3. Experimental Set-up and Analysis Method 219 

To examine performance of the novel 4 kW Dew Point Cooler (DPC) with introduced 220 

complex Heat and Mass Exchanger (HMX), the test set-up presented in Figure 3 was 221 

constructed in the lab environment. The test set-up comprises a heater, a 222 

humidifier/dehumidifier, and four balancing dampers to enable conditioning of the inlet air 223 

and simulate various weather conditions.  224 

The water pump, supply and exhaust fans, and supply-discharge ducting system is also 225 

presented in Figure 3. After conditioning the inlet air temperature and humidity to match 226 

those of the climates under study, the supply fans and the necessary ducting is used to 227 

create a zero static pressure at the inlet of DPC. A specific multi-function measurement 228 

device capable of measuring the ventilation and air conditioning parameters as well as 229 

indoor air quality parameters (i.e. temperature, humidity, flow rate and speed) was used to 230 

identify the characteristics of the air flow at the inlet and outlet of the system. The 231 

measurement points were placed at a distance 10 times the diameter of the ducts (ø160 232 

mm) from inlet and outlet of the system to allow development of fully steady air flow for the 233 

sake of accuracy of measurements. Two water flow meters were also installed at the inlet 234 



and outlet of wet channels to measure the amount of water used and consequent pressure 235 

drop. A water pressure of 1.8 mH2O was preserved throughout the system to ensure even 236 

distribution of the water across the wet surfaces (as suggested by Coolmax® wet channel 237 

material manufacturer). Finally, a simple fan controller was employed to achieve the 238 

optimum working air to intake air ratio of 0.37, and product air and waste air flow rates of 602 239 

m3.h-1 and 364 m3.h-1, respectively, throughout the experiments as identified by [20]. 240 

 241 

Figure 3 Experimental test set-up with individual components as constructed in the 242 

laboratory environment 243 

The measure parameters from the system are recorded in real time and analysed to quantify 244 

the overall cooling capacity, Coefficient of Performance (COP), wet bulb and dew point 245 

efficiencies. The overall cooling capacity of the system can be calculated from Equation 1, 246 

as suggested by ASHRAE [40] for all Indirect Evaporative Cooling (IEC) systems: 247 

𝑄𝐶𝑜𝑜𝑙𝑖𝑛𝑔 = 𝐶𝑝(𝑇𝑑𝑟𝑦,𝑖𝑛 − 𝑇𝑑𝑟𝑦,𝑜𝑢𝑡)(1 − 𝜑)Q𝑚,𝑑𝑟𝑦,𝑖𝑛 Equation 1 

 Where 𝑄𝐶𝑜𝑜𝑙𝑖𝑛𝑔 is the cooling capacity of DPC, 𝐶𝑝 is the specific heat capacity of the inlet 248 

air, 𝑇𝑑𝑟𝑦,𝑖𝑛 and 𝑇𝑑𝑟𝑦,𝑜𝑢𝑡 are the inlet and outlet temperatures of the air in dry channel, 𝜑 is 249 

the working air to intake air ratio, and Q𝑚,𝑑𝑟𝑦,𝑖𝑛 is the mass flowrate of the intake air in the 250 

dry channel. 251 



Then the Coefficient of Performance (COP) can be calculated as the ratio of cooling capacity 252 

to the total of electrical power consumed by fans (𝑊𝐹𝑎𝑛𝑠) and pumps (𝑊𝑃𝑢𝑚𝑝𝑠): 253 

𝐶𝑂𝑃 =
𝑄𝐶𝑜𝑜𝑙𝑖𝑛𝑔

𝑊𝐹𝑎𝑛𝑠 + 𝑊𝑃𝑢𝑚𝑝𝑠
 

Equation 2 

Finally, the wet bulb and dew point efficiencies (𝜀𝑤𝑏 and 𝜀𝑑𝑝) are calculated from Equation 3 254 

and Equation 4, respectively: 255 

𝜀𝑤𝑏 =
𝑇𝑑𝑟𝑦,𝑖𝑛 − 𝑇𝑑𝑟𝑦,𝑜𝑢𝑡

𝑇𝑑𝑟𝑦,𝑖𝑛 − 𝑇𝑑𝑟𝑦,𝑖𝑛,𝑤𝑏
 Equation 3 

𝜀𝑑𝑝 =
𝑇𝑑𝑟𝑦,𝑖𝑛 − 𝑇𝑑𝑟𝑦,𝑜𝑢𝑡

𝑇𝑑𝑟𝑦,𝑖𝑛 − 𝑇𝑑𝑟𝑦,𝑖𝑛,𝑑𝑝
 Equation 4 

Where 𝑇𝑑𝑟𝑦,𝑖𝑛,𝑤𝑏 and 𝑇𝑑𝑟𝑦,𝑖𝑛,𝑑𝑝 are the wet-bulb temperature of the intake air in dry channel 256 

and the dew point temperature of the intake air in dry channel, respectively. 257 

Having identified the performance parameters needed to investigate the DPC, four 258 

representative cities with totally different weather conditions were identified to test the 259 

performance of system. These cities are: Las Vegas (USA) with subtropical hot desert 260 

climate, Beijing (China) with humid continental climate, Rome (Italy) with Mediterranean 261 

climate, and Riyadh (KSA) with hot desert climate. The weather conditions from these cities 262 

were simulated and corresponding intake air with representative temperature and humidity 263 

levels were produced in the laboratory environment to test the performance of DPC under 264 

each climate. Due to very high relative humidity of the air in Beijing and Rome, a pre-265 

treatment had to been applied to the intake air in order to bring the humidity level to the 266 

operational range (<40%) of the DPCs in common high-tech facilities like data centres [39]. 267 

Hence, this research could focus solely on the cooling performance of the system without 268 

having to take into account the dehumidification. The dehumidification process was carried 269 

out using a solar/waste energy driven dehumidification cycle employing a desiccant bed 270 

located inside a channel that is constructed by a porous and visible-light LiCl-Sillicon-Gels 271 

material. As a result of the dehumidification process, the moisture content of outside air in 272 

Beijing and Rome are brought down required range resulting in a parallel sensible cooling 273 

process. The monthly average temperature and relative humidity of the four representative 274 

cities and corresponding pre-treated values for Beijing and Rome are all summarised in 275 

Table 3. 276 



As seen in Table 3 the temperature and humidity values are given only for the months where 277 

free cooling is not available in each particular climate and there is need for operation of 278 

DPC. The average outdoor temperature required for free cooling is identified as 22˚C based 279 

on ASHRAE guidelines for power requirements in data centre design [41]. For Beijing and 280 

Rome weather conditions where pre-treatment was necessary, the pre-treated monthly 281 

temperatures are taken as the selection criteria. Hence, the DPC operation is required from 282 

March to October in Riyadh, from April to October in Beijing and Las Vegas, and from May to 283 

October in Rome as seen in Table 3.  284 

Table 3 Monthly average temperature and humidity values for the four representative cities 285 

with pre-treatment data where required 286 

Having identified the intake air properties, the heater and humidifier/dehumidifier shown in 287 

Figure 3 were used to produce the intended intake air for the DPC and then the DPC was 288 

operated under each weather conditions. The system performance parameters as well as 289 

the achieved indoor air properties were recorded and are presented in Section 6. 290 

4. Numerical Model of the System 291 

A numerical model of the advanced Dew Point Cooler (DPC) with corrugated HMX design 292 

was developed using Multiple Polynomial Regression (MPR) technique [38]. Regression 293 

analysis is a very popular and well know method as it provides robust grounds for 294 

developing predictive tools to investigate complex relations between dependant and 295 

Month 

Beijing Rome Las Vegas Riyadh 

Before pre-
treatment 

After pre-
treatment 

Before pre-
treatment 

After pre-
treatment 

No pre-treatment needed 

T(˚C) RH T(˚C) RH T(˚C) RH T(˚C) RH T(˚C) RH T(˚C) RH 

March - - - - - - - - - - 27 37% 

April 20 45% 23.7 16% - - - - 25 25% 31 35% 

May 26 53% 30.8 23% 23 75% 27.3 39% 30 21% 38 21% 

June 30 60% 35.6 24% 26 74% 30.8 35% 37 18% 42 16% 

July 31 75% 36.8 24% 28 73% 33.2 38% 40 20% 44 17% 

August 30 78% 35.6 40% 28 75% 33.2 39% 39 27% 42 19% 

September 27 69% 32 35% 27 75% 32 39% 33 26% 42 19% 

October 20 60% 23.7 28% 23 76% 27.3 40% 27 30% 35 23% 



independent parameters in a wide range of areas i.e. engineering, physics and chemical 296 

sciences [42], [43]. The developed model takes a set of operational and geometric 297 

parameters as input to predict the performance parameters of the DPC under investigation. 298 

These parameters and their corresponding ranges as used in the MPR model are 299 

summarised in Table 4. 300 

Table 4 Operational and geometrical parameters used in the MPR model to predict 301 

performance parameters of the DPC and the corresponding ranges 302 

Operational Parameters Range Geometrical Parameters Range Performance 

Parameters 

Intake air temperature, T(˚C) 25-45 Channel height, H (m) 1-3 Cooling capacity 

Intake air relative humidity, RH 0.125-0.5 Channel interval, Int (m) 0.004-0.008 
Coefficient of 
Performance 

Intake air flow rate, U (m/s) 0.3-3.3 Number of layers, L 100-200 
Dew point 
effectiveness 

Working air to intake air ratio (φ) 0.1-0.9 - - 
Wet-bulb 
effectiveness 

The operating and geometrical parameters were used as independent parameters in the 303 

MPR model mainly due to the flexibility of these parameters which allows them to be 304 

changed continuously in real-life operation of the DPC. Hence, other parameters which didn’t 305 

offer such flexibility were excluded from input parameters of the model. 306 

Table 5 Discrete values selected for operating parameters to construct training and 307 

validation sets of the MPR model [38] 308 

No 

Training set  Validation set 

T 

(˚C) 
RH 

U 

(m/s) 
𝛗  T (˚C) RH 

U 

(m/s) 
𝛗 

1 25 0.125 0.3 0.1  26.25 0.14 0.5 0.15 

2 27.5 0.17 0.7 0.2  28.75 0.19 0.9 0.25 

3 30 0.22 1.1 0.3  31.25 0.24 1.3 0.35 

4 32.5 0.26 1.5 0.4  33.75 0.28 1.7 0.45 

5 35 0.3 1.9 0.5  36.25 0.32 2.1 0.55 

6 37.5 0.34 2.3 0.6  38.75 0.36 2.5 0.65 

7 40 0.38 2.7 0.7  - - - - 

8 42.5 0.42 3 0.8  - - - - 

9 45 0.5 3.3 0.9  - - - - 



Having identified the input (operational and geometrical) parameters and their ranges, 309 

discrete values for each parameter were required to construct a training set to develop the 310 

model and a validation set to verify the developed model. Hence, 9 discrete values for the 311 

training set and 6 discrete values for the validation set were selected to develop the MPR 312 

model (Table 5). 313 

As seen in Table 5 the discrete values for the two sets were chosen such that the validation 314 

set values won’t overlap with training set values, hence offering robust model validation 315 

grounds. As for geometrical parameters, discrete values of 1m, 2m, and 3m for height, 316 

0.0004m and 0.008 for interval, 100 and 200 for number of layers were used in the model 317 

(see Figure 1 for geometrical parameters). Water temperature was modelled as 16˚C and 318 

water flow rate as 411 L/h to match the experimental values [4]. All the possible 319 

combinations with these discrete values were considered in the model to account for all the 320 

random operating conditions. Hence, the total number of operating conditions becomes 7857 321 

in which 80% of them, 6561 (94), are for training set and 20%, 1296 (64), are for the 322 

validation set. Once the model is developed and validated, it can be used beyond the scope 323 

of the discrete values and ranges presented in Table 4 and Table 5.  324 

The regression model was developed from the described data sets in R software package 325 

can be represented in the following equation: 326 

𝑌 =  𝛽0 + 𝛽1 × (𝑇𝑛1,1 × 𝑅𝐻𝑛2,1 × 𝑈𝑛3,1 × 𝜑𝑛4,1)

+ 𝛽2 × (𝑇𝑛1,2 × 𝑅𝐻𝑛2,2 × 𝑈𝑛3,2 × 𝜑𝑛4,2) + ⋯

+ 𝛽𝑚 × (𝑇𝑛1,𝑚 × 𝑅𝐻𝑛2,𝑚 × 𝑈𝑛3,𝑚 × 𝜑𝑛4,𝑚) 

Equation 5 

 

Where Y represents all the performance parameters to be predicted by model, T is 327 

temperature, RH is the relative humidity, U is air flow velocity of intake air, and 𝜑 is the 328 

working air to intake air ratio. 𝛽0, 𝛽1, 𝛽2, …, 𝛽𝑚 are regression coefficients to represent 329 

geometric characteristics; n1,m represents the intake air temperature of the mth coefficient, 330 

n2,m represents intake air humidity of the mth coefficient, n3,m represents intake air flow 331 

velocity of the mth coefficient, and n4,m represents the working air to intake air ratio of the mth 332 

coefficient. 333 

The model was developed based on the introduced training sets and the validation set was 334 

used to verify the predicted performance parameters (Y). For validation purpose, least 335 

squares method was used where the sum of squared residuals are minimised. The residual 336 

or Sum Square of Errors (SSE) is the difference between the actual values and the 337 

estimated regression values by MPR model (also denoted as ri): 338 



𝑆𝑆𝐸 = ∑(�̂�𝑖 − 𝑌𝑖)2

𝑁

𝑖=0

= ∑ 𝑟𝑖
2

𝑁

𝑖=0

 Equation 6 

Where �̂� represents the predicted value of individual performance parameters, Y is the 339 

actual value of the same parameter, and N is the number of predicted value. Having 340 

identified the SSE value, three of the main metrics to evaluate the performance of the model 341 

i.e. Mean Square Error (MSE), Maximum Relative Error (MRE), and coefficient of 342 

determination (R2) can be calculated: 343 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑁
=

∑ (�̂�𝑖 − 𝑌𝑖)
2𝑁

𝑖=0

𝑁
=

∑ 𝑟𝑖
2𝑁

𝑖=0

𝑁
 

Equation 7 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑ (�̂�𝑖 − 𝑌𝑖)2𝑁
𝑖=0

∑ (𝑌�̅� − 𝑌𝑖)2𝑁
𝑖=0

 Equation 8 

Where SST is sum square of total, and �̅� is the mean of predicted values. 344 

5. Whole Building Energy Model 345 

The whole building dynamic energy model of the system and the hosting building was 346 

developed using EnergyPlus (e+) software package (version 8.9.0.1) [44], which is open 347 

source, widely used and verified. In order to enable empirical validation and comparison with 348 

numerical model, the same system parameters and numerical model inputs as described in 349 

Sections 2, 3 and 4 were used in developing the whole building energy model. Where there 350 

was lacking data, further data collection was conducted to create a detailed energy model 351 

which is capable of representing reality with high reliability. 352 

To facilitate the data input process, DesignBuilder [45] software version 6.1.2.009 was 353 

employed to create laboratory building’s geometry (where DPC was operated and tested), 354 

construction materials, internal boundary conditions and a template of an Indirect 355 

Evaporative Cooler (IEC). DesignBuilder was used initially because it is a commercially 356 

available software package that offers detailed dynamic thermal simulations, employing the 357 

EnergyPlus simulation engine and provides a user friendly graphical user interface [45]. 358 

Having formed the basis for energy model of the DPC in Laboratory environment, the 359 

corresponding EnergyPlus Input Data File (IDF) was exported with .idf extension. The IDF 360 

was then modified using a text editor and the EnergyPlus IDF editor [46] to add exact DPC 361 

characteristics as described in Sections 2 and 3 (Figure 4). The completed IDF with custom 362 

weather files created for the four cities investigated in the experiments (see Table 3 for 363 



details) were fed to the EnergyPlus and simulations were run. As seen in Figure 4 the 364 

simulation results were then checked against experimental results and necessary 365 

modification were added to the EnergyPlus IDFs in order to produce the validated and 366 

calibrated model of the DPC under investigation. 367 

 368 

Figure 4 Schematic of the whole building energy modelling process: from raw data to the 369 

validated model  370 

Upon completion of the modelling process as depicted in Figure 4, the validated whole 371 

building energy model and the performance parameters predictions are compared to the 372 

numerical model estimates (Section 6).  373 

 374 

Figure 5 Left: Floor plan of the laboratory room depicting DPC configuration, Right: Building 375 

layout with adjacent rooms to the laboratory as modelled in DesignBuilder 376 



The building hosting the Dew Point Cooler (DPC) in experiments was modelled in 377 

EnergyPlus software package based on the data collected through a comprehensive survey 378 

carried out on the building. Figure 5 presents the floor plan of the laboratory building with 379 

DPC test set-up, and a 2-D view of the building model. 380 

As seen in Figure 5 the adjacent spaces to the experiment room is also modelled in order to 381 

capture possible impact they can have on the indoor environment of the laboratory and 382 

consequently on system performance. The experiment room has total floor area of 31m2 and 383 

floor to ceiling height of 2.7m with an L-shaped layout, three windows with total glazing area 384 

of 1.1m2 and a wooden entrance door with area of 1.6m2. Table 6 summarises the 385 

construction materials of the building, their compositions and their corresponding U-values 386 

as modelled in EnergyPlus. Since the construction details of the building wasn’t a part of 387 

analysis in previous experimental or numerical modelling studies, the required details for 388 

developing the whole building energy model was gathered separately by surveying the 389 

building envelope and referring to building plans and construction handbook provided by 390 

states office at the University of Hull, where the DPC is tested. Hence, the description of 391 

construction materials and details of their layers were used in the modelling process and 392 

resultant U-values are reported in Table 6.  393 

The external walls are made of lightweight concrete blocks as outermost layers followed by a 394 

thin air gap and plasterboard on the inside of the building, with an overall U-value of 1.6 395 

W/m2K. The laboratory where the experiments were carried out was located on second floor 396 

of the building, hence the internal floor and ceiling was modelled as a solid concrete slab 397 

with U-value of 0.7 W/m2K. The room has three square windows, equally spaced on the 398 

external wall with single glazing and aluminium frame which were closed during the 399 

experiments and hence modelled with zero opening area and overall U-value of 4.8 W/m2K. 400 

The entrance door to the room was a wooden one with 65mm thickness and U-value of 3.0 401 

W/m2K. Finally, the internal partitions separating the experiment room from the rest of 402 

building were formed of a single layer brickwork covered with plaster on each side giving the 403 

walls a thickness of 220mm and U-value of 2.1 W/m2K. 404 

Measuring infiltration rates of the experiment room was not possible at the time of this study 405 

as the tests were running in the experiment room. Instead, airtightness test results of a 406 

similar laboratory in the same building which was carried out in 2017 and reported in building 407 

data repository was used. The airtightness test was carried out with 50 Pa pressurised unit 408 

and Equation 9, from BS EN 12831 [47] was used to convert the reported value to 409 

infiltration rate at normal operating conditions: 410 



�̇�𝑖𝑛𝑓,𝑖 = 2 × 𝑉𝑖 × 𝑛50 × 𝑒𝑖 × 𝜀𝑖 Equation 9 

Where �̇�𝑖𝑛𝑓,𝑖 is the infiltration rate of the space, 𝑉𝑖 is the volume of space (m3), 𝑛50 is the air 411 

exchange rate per hour (ACH), resulting from a pressure difference of 50 Pa between the 412 

inside and outside of the building, 𝑒𝑖 is the shielding factor which was taken as 0.03 for a 413 

moderate shielding and heated spaces with more than one exposed opening, and 𝜀𝑖 is 414 

height correction factor which takes into account the increase in wind speed with the height 415 

of the space from ground level. 𝜀𝑖 = 1 when the centre of zone height to ground level is 416 

below 10m which was the case in the experiment room. Inserting the infiltration value of 0.16 417 

ACH (as result of airtightness test) into the Equation 9, an infiltration rate of 0.8 ACH was 418 

calculated and added to the whole building energy model of the building. 419 

Table 6 Summary of construction materials as modelled in EnergyPlus, physical properties, 420 

and corresponding overall U-values 421 

Element Description Layers  
Thickness 

(mm) 

Density 

(kg/m3) 

Specific 

heat 

capacity 

(J/kgK) 

U-value 

(W/m2K) 

External walls Lightweight concrete 

block, air gap and 

plasterboard 

Concrete block 
Air gap 
Steel 
Plasterboard 

200 
25 
10 
10 

600 
- 

7800 
900 

1000 
- 

450 
1000 

1.6 

Internal 
floor/ceiling 

Solid (concrete slab)  Cast concrete 150 2100 840 0.7 

Windows 
Single glazing with 

aluminium frame 

Glazing 
Frame 

3 
35 

- 
2800 

- 
880 4.8 

Entrance door Wooden Painted oak 65 700 2390 3.0 

Internal 
partitions Solid Brick Brick (inner) 220 1700 1000 2.1 

The building was modelled as two thermals zones: the experiment room and the rest of the 422 

building. The heat gains from the system equipment were excluded from the zone definition 423 

as these details are included in the system model and the resultant impact on system 424 

performance and indoor environment is considered. The occupancy and the metabolic gains 425 

are also modelled to represent presence of a single person (to run the experiments) in the 426 

room during system operations and no window or door opening is considered to eliminate 427 

the impact of external air flow on system performance. Lighting gains of 10 W/m2 are also 428 

considered in the model. 429 



The custom EnergyPlus weather files were created by scaling typical weather year data from 430 

the International Weather for Energy Calculations (IWEC) [48] following the methodology 431 

described in a previous article by the authors [49]. Monthly values of external air temperature 432 

and relative humidity were compared with the experimental weather values to produce a 433 

scaling factor. The scaling factor was then applied to the hourly values using EnergyPlus 434 

auxiliary weather programme [46] to produce equivalent weather information suitable for 435 

whole building energy modelling. For weather information from Beijing and Rome, the pre-436 

treated values given in Table 3 were used to develop the equivalent hourly weather file, 437 

whereas for Riyadh and Las Vegas the original values were used as no pre-treatment was 438 

found necessary. 439 

The DPC was modelled explicitly in EnergyPlus by detailed modification of the IDFs 440 

including geometry and construction details. The dimension and size details of the system, 441 

as presented in Figure 6, were added into IDFs as object-oriented entries which sat in the 442 

previously allocated lines of the IDF as assigned by the system template.  443 

 444 

Figure 6 Dew Point Cooler (DPC) and test set-up technical plan as constructed in laboratory 445 

environment with component dimensions 446 



The overall power requirements of the pumps and fans (90.5 W), pressure rise range and 447 

efficiencies as identified in product catalogues, air flow rates passing through the wet and 448 

dry channels of the DPC as measured in the experiments (602 and 364 m3.h-1), and height 449 

of air inlets (2.1m) and outlets (1.85m) as depicted in Figure 6 were all included the IDFs to 450 

ensure system model is capable of simulating real-life operation of the DPC. 451 

The details of the system as constructed in the laboratory environment was input explicitly 452 

into IDFs except for the Thermal Mass Parameter (TMP). This was due to EnergyPlus not 453 

having the capacity to model system physically, instead the operation and performance of 454 

the system was modelled. Hence, the experiment room was modelled as a vacant space 455 

with conditioned air inlet and exhaust air outlets. To account for the TMP of system 456 

component, a further TMP of 50 kJ/m2K was added to the existing TMP of the building as 457 

calculated from Equation 10 [50]: 458 

𝑇𝑀𝑃 =
∑ 𝜅 × 𝐴

𝑇𝐹𝐴
 Equation 10 

Where 𝜅 is the heat capacity (kJ/m2K) of each element, A is the element’s area, and TFA is 459 

the Total Floor Area of the experiment room, and the summation is over all walls together 460 

with both sides of all internal walls and floors/ceilings. 461 

6. Results and Discussion 462 

6.1. Comparison of the whole building energy model results with experiments: 463 

empirical validation 464 

The completed IDFs which were developed to represent the actual system and hosting 465 

building’s characteristics under equivalent experimental conditions were fed to the 466 

EnergyPlus calculation engine and simulations were run for the previously identified climates 467 

(see Table 3 for climate details). The model was calibrated and simulations were compared 468 

to experimental results in order to validate the model. All the simulations were run in 469 

EnergyPlus version 8.9.0.1, and simulation of system operation under each climate required 470 

approximately 18 minutes of single CPU time for a full year simulation at 1-minute time 471 

steps. The model was calibrated using the operational parameters contributing to cooling 472 

capacity of the system, as provided in Equation 1. The specific heat capacity of the inlet air 473 

(𝐶𝑝), the inlet and outlet temperatures of the air in dry channel (𝑇𝑑𝑟𝑦,𝑖𝑛 and 𝑇𝑑𝑟𝑦,𝑜𝑢𝑡), and the 474 

working air to intake air ratio (𝜑) as modelled in EnergyPlus were checked against 475 

experimental values to ensure system model characteristics matched those of the actual 476 

system. Having calibrated the system model, simulation results were exported and analysed. 477 



Figure 7 presents the comparison of experimental COP and cooling capacity results to 478 

EnergyPlus predictions in: (a) Beijing, (b) Rome, (c) Las Vegas, and (d) Riyadh. As seen in 479 

Figure 7, the cooling capacity of the actual system and simulations are identical to each 480 

other in all the simulated climates. This shows that the calibration of model using the 481 

mentioned operational parameters were reflected in the simulation results and the system 482 

model is capable of representing actual operation of the DPC. However, other performance 483 

parameters (as listed in Table 4) need to be checked to ensure that the whole building 484 

energy model is also accurate and capable of representing transient interaction of the 485 

system with surrounding building. 486 

An initial look at the graphs in Figure 7 reveals that both experimental and simulation values 487 

of the COP in all four of the climates follow a similar trend to cooling capacity variations 488 

throughout the year. The highest cooling capacity of the system and thus the highest power 489 

consumption was observed under hot desert weather conditions of the Riyadh and 490 

subtropical hot desert weather conditions of Las Vegas with cooling capacity reaching a 491 

peak of 4.6 kW in July. 492 

The DPC was required to run for 180 minutes under each weather condition to allow system 493 

enough time to stabilize, and the rate of power consumption in Beijing, Rome, Las Vegas, 494 

and Riyadh as recorded by experiments were 12.77 kW, 10.21 kW, 13.56 kW, and 15.33 495 

kW, respectively. In this study, the rate of power consumption by DPC under different 496 

weather conditions is considered instead of the amount of used electricity as the comparison 497 

factor. This is mainly because of different running times of the DPC in various regions and 498 

hosting facilities which are highly dependent on the weather conditions and the amount of 499 

dissipated heat as well as various operating time of facilities. Hence, the rate of power 500 

consumption was chosen as comparison factor in order to eliminate impact of inequivalent 501 

operating parameters on system performance. Considering the 24-hour operation of DPC 502 

during the operating months (as indicated in Table 3), the estimated annual consumption 503 

values for Beijing, Rome, Las Vegas and Riyadh become 64.4 MWh, 44.1 MWh, 68.3 MWh, 504 

and 88.3 MWh, respectively. 505 

In case of COPs, the highest values were recorded both by experiments and simulations in 506 

four consecutive months (June-September) of Riyadh, reaching experimental peak of 51.1 507 

and simulation peak of 49 in July. The lowest COP values, on the other hand, were observed 508 

both experimentally (17.7) and by simulation (17.9) in April of Las Vegas. The COP and 509 

cooling capacity values in all the climates show an increasing trend towards warmer months 510 

of the year and decreasing trends in relatively cooler months. These trends are well justified, 511 



considering that both cooling capacity and COP are dependent on external weather 512 

conditions (Equation 1 and Equation 2). 513 
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 518 

(c) 519 

 520 

(d) 521 

Figure 7 Comparison of experimental COP and cooling capacity results to EnergyPlus 522 

predictions in: (a) Beijing, (b) Rome, (c) Las Vegas, and (d) Riyadh 523 

Upon careful calibration of the model, it can be seen in Figure 7 that experimental COP 524 

results and simulation predictions are in good agreement with a maximum recorded error of 525 

4.13% and mean error of 3.65% in Riyadh, as summarised in Table 7. The best fit between 526 

experiments and simulations is achieved in Beijing with mean error of 2.13% followed by Las 527 

Vegas and Rome with mean errors of 2.23% and 3.6%, respectively (Table 7). The 528 

simulations predict lower COP values compared to experiment results in majority of the 529 

months, except for April and May in Las Vegas and March in Riyadh where the whole 530 
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building energy model over-estimated the COP values. This can be related to the sensitivity 531 

of model to lower external temperatures and relatively low COP values in these months 532 

(<30). With higher COP values, the model tends to predict higher COP values compared to 533 

experiment results.   534 

Figure 8 presents the other two performance parameters of the DPC, namely the wet bulb 535 

and dew point efficiencies, which are calculated based on inlet and outlet temperatures of 536 

the system (Equation 3 and Equation 4). As can be seen in Figure 8, the experimental and 537 

simulation values for both wet bulb and dew point efficiencies, in all investigated climates, 538 

are in good agreement and are following similar trends throughout the year. A look at the 539 

error values in Table 7 reveals that, similar to COP predictions, EnergyPlus has successfully 540 

predicted the efficiencies of the system, presenting a robust case for model validation. The 541 

largest monthly difference observed between EnergyPlus and experimental results of the 542 

wet bulb and dew point efficiency are 5% (July in Rome) and 4.3% (July in Las Vegas), 543 

respectively. Overall, the whole building energy model gave the best predictions of efficiency 544 

parameters for Beijing and Las Vegas with mean error values of below 2.5%. The efficiency 545 

predictions for Las Vegas and Riyadh, despite being in validation range, showed a larger 546 

gap between experimental and simulation results with mean errors of 3.5-3.7%, as seen in 547 

Table 7. 548 

The closer investigation of the results in Figure 8, shows that both experimental and 549 

simulation results of the efficiency parameters have a steadier rate of variation in Riyadh 550 

compared to the other three climates, and hence the DPC performs at a more steady and 551 

reliable state. Such stability of operation can be related to two main factors: (i) that the mean 552 

monthly external air temperatures, which is fed to the system as working air, has less 553 

variations in Riyadh compared to the other investigated climates; and (ii) the Riyadh 554 

weather, as a hot desert climate, has the least amount of water content (i.e. humidity) 555 

compared to Beijing, Rome and Las Vegas (as seen in Table 3). Hence, the statement 556 

(supported by both experiments and validated whole building energy model) can be made 557 

that the dew point evaporative coolers tend to have more reliable and steady performance in 558 

hot desert climates. Such reliable and steady operation of the system, especially in high 559 

demand facilities like data centres plays a key role in effective energy management and 560 

provides flexibility in dealing with peaks of power consumption. Therefore, it can be 561 

concluded that, although higher efficiencies and COP values can be reached in some 562 

months of more moderate and humid climates, the sustained and steady operation of the 563 

investigated system is achieved in hot and dry climates. 564 
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(c) 570 

 571 

(d) 572 

Figure 8  Comparison of experimental wet bulb and dew point efficiencies to EnergyPlus 573 

predictions in: (a) Beijing, (b) Rome, (c) Las Vegas, and (d) Riyadh 574 
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Table 7 Monthly and average difference between experimental values of COP, wet bulb and 575 

dew point efficiencies with EnergyPlus predictions 576 

City Month 

COP 

Error 

(%) 

Mean 

COP 

Error (%) 

Wet Bulb 

Efficiency 

Error (%) 

Mean Wet 

Bulb Efficiency 

Error (%) 

Dew Point 

Efficiency 

Error (%) 

Mean Dew-

Point Efficiency 

Error (%) 

Beijing 

March - 

2.1337 

- 

2.0921 

- 

2.2109 

April 1.3289 2.5424 1.4799 

May 1.4620 2.4350 2.5570 

June 2.1053 2.7611 3.2614 

July 3.9801 2.4123 2.8911 

August 2.0290 1.8582 2.3390 

September 1.9284 1.3427 1.5813 

October 2.1021 1.2933 1.3643 

Rome 

March - 

3.5984 

- 

4.0664 

- 

3.4793 

April - - - 

May 2.8455 3.4532 3.1460 

June 3.5616 4.1115 3.9042 

July 3.7647 4.9679 3.1717 

August 3.4803 3.6269 3.1201 

September 3.0509 3.2665 3.4744 

October 4.8872 4.9724 4.0592 

Las Vegas 

March - 

2.2296 

- 

2.3453 

- 

2.5300 

April -1.1299 -2.3042 -2.3519 

May -1.1194 -2.7761 -2.4571 

June 3.2051 2.3334 1.3627 

July 3.7549 3.2996 4.2474 

August 3.1325 2.5258 3.5842 

September 1.4535 1.0105 1.5714 

October -1.8116 -2.1676 2.1351 

Riyadh 

March -3.3835 

3.6468 

-3.9413 

3.7432 

-3.8556 

3.6714 

April 2.5862 2.1431 2.2921 

May 3.1026 3.5642 3.2688 

June 4.1257 4.1301 4.2079 

July 4.1096 3.9891 4.2379 

August 3.6217 4.2391 4.0435 

September 5.0584 4.5035 4.3053 

October 3.1863 3.4353 3.1603 

 577 

 578 

 579 



6.2. Comparison of the whole building energy model results with numerical model: 580 

superiority analysis 581 

In this section, the whole building energy model is compared to a previously developed 582 

numerical model of the same Dew Point Cooler (DPC) [38]. The 8th degree polynomial 583 

numerical model (described in Section 4) investigated the same cooling system and used 584 

the equivalent input parameters as employed by the whole building energy model. Despite 585 

the modelling work presented in this study, the numerical model lacks empirical validation 586 

and only involves an inter-model comparison to verify the results. Hence, this study offers an 587 

unprecedented opportunity to compare performance of a empirically validated whole building 588 

energy model, which takes into account the dynamic interaction of the system components 589 

with each other and also the interactions of the system with its surrounding building, to a 590 

commonly used numerical model; and provide evidence based and critical review of various 591 

modelling approaches.   592 

The numerical model was developed based on 7857 possible operating conditions, majority 593 

of which doesn’t happen in real-life operation of the system and only were considered to fully 594 

train the model [38]. The performance of the numerical model, after completing the training 595 

process was tested in the Las Vegas weather conditions, and hence here only a comparison 596 

of experiment results and models’ predictions for the city of Las Vegas (Figure 9 and Figure 597 

10) is presented. As can be seen in Figure 9, the unrestrained operating conditions 598 

employed by the numerical model can lead to COP estimates of up to two times higher than 599 

experimental values and EnergyPlus predictions. The numerical model has predicted 600 

different cooling capacities compared to the EnergyPlus and the experiments. The main 601 

reason for this lies in Equation 1, which shows that the cooling load is calculated based on 602 

operating parameters (various operating temperatures in this case) which has not be 603 

restricted reasonably by the numerical model. Hence, while the matching fan and pump 604 

powers are used in both models and the experiments, due to un-restricted operation 605 

parameters used by the numerical model, different cooling capacities and consequently 606 

different COPs have been predicted by the numerical model. The unrealistic COPs of 100 in 607 

June and July as estimated by the numerical model, highlights the critical need for models to 608 

take into account the restricting impact of parameters outside system operational conditions, 609 

i.e. interaction of the system with hosting building and surrounding environment. The 610 

numerical model over-estimates the COP of the system in all of the months that system was 611 

operated. The cooling capacity, however, shows a totally biased trend as it is over-estimated 612 

by the numerical model in March and April, under-estimated in May, June and July, and 613 

closely matches the experimental and EnergyPlus results in August and September (Figure 614 

9). 615 



Considering that the COP values are directly co-related to cooling capacity (Equation 1 and 616 

Equation 2), it is expected that the estimates of the two performance parameters by the 617 

numerical model follow a similar trend when compared to experimental and real-life 618 

performance parameters of the system. However, the larger overall difference observed in 619 

COP estimates than the cooling capacity estimates of the numerical model when compared 620 

to experimental values suggests that the numerical model is more sensitive to cooling 621 

capacity variances when it comes to COP calculations. 622 

   623 

Figure 9 Comparison of cooling capacity and COP from experiments and EnergyPlus to 624 

numerical model estimates in Las Vegas 625 

Investigating the wet bulb and dew point efficiency estimates of the numerical model (Figure 626 

10) shows that, similar to COP values, the numerical model over-estimates both efficiency 627 

values. The smallest differences between the experimental and numerical model results are 628 

recorded in May and June, and the largest difference in March and April. Figure 10 clearly 629 

shows that while the validated EnergyPlus model predicts very close efficiencies to the 630 

experiments, the numerical model fails to produce realistic efficiency predictions in most 631 

months. The close agreement of numerical model estimates in May and June shows that the 632 

operating parameters used in these months match with the realistic values, whereas in 633 
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March and April the trained operating parameters are far from reality, resulting in poor 634 

prediction of the wet bulb and dew point efficiencies. 635 

The randomness of the variances in numerical model errors compared to experiments and 636 

EnergyPlus results, as observed in Figure 9 and Figure 10, increases the confidence in 637 

concluding that the characteristics difference of the models in simulating operation of the 638 

DPC causes the recorded differences with real life operation of the system. Especially that 639 

the two models (EnergyPlus and numerical) used equivalent and matching input parameters, 640 

proves that the input parameters and unidentified uncertainties didn’t have role in poor 641 

performance of the numerical model.   642 

 643 

Figure 10 Comparison of wet bulb and dew point efficiencies from experiments and 644 

EnergyPlus to numerical model estimates in Las Vegas 645 

Having compared the whole building energy model and numerical model predictions with 646 

each other and with real-life experimental results revealed that despite numerical models’ 647 

capacities in swift assessment of evaporative cooling system, these models fail to take into 648 

account the various restraining parameters which would lower the performance parameters 649 

of the investigates system. Hence, the numerical models tend to over-estimate the key 650 

performance parameters like COP, wet bulb and dew point efficiencies resulting in 651 

unrealistic and biased assessment of the system performance. The whole building energy 652 
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model developed in this study proved to better predict the performance of dew point 653 

evaporative cooler by incorporating the building-side parameters into the model and showing 654 

very close agreement with experimental performance parameters of the system.  655 

Hence, the authors conclude with high certainty that validated whole building energy models 656 

can outperform numerical models in assessing performance of dew point evaporative 657 

coolers. These models also provide a great opportunity to investigate the system 658 

performance in a wide range of hosting buildings, from commercial buildings to schools, 659 

hospitals and office buildings, providing valuable insight into the necessary modification that 660 

might be necessary before operating the system in various buildings.       661 

7. Conclusion 662 

Faced with increasing interest in Indirect Evaporative Coolers (IECs) as a popular low 663 

energy cooling solution for high demand facilities, this study performed a modelling and 664 

experimental investigation of a state-of-the-art indirect dew point evaporative cooler. The 665 

investigated system was a high-performance counter flow Dew Point Cooler (DPC) 666 

employing a guideless and corrugated Heat and Mass Exchanger (HMX) as described in 667 

Section 2. The experiments were run under four different weather conditions: Beijing as 668 

humid continental climate, Rome as Mediterranean climate, Las Vegas as subtropical hot 669 

desert climate, and Riyadh as hot desert climate investigating four key performance 670 

parameters of the DPC: (i) cooling capacity, (ii) Coefficient of Performance (COP), (iii) wet 671 

bulb efficiency, and (iv) dew point efficiency (Section 3). The numerical model tested against 672 

the experiments was an 8th degree Multiple Polynomial Regression (MPR) model employing 673 

6561 operational parameters as the training set and 1296 operational parameters as the 674 

validation set. The key operational parameters used in the numerical model were intake air 675 

temperature, relative humidity, and flow rate as well as Working air to intake air ratio 676 

(Section 4). The whole building energy model of the system and the hosting building was 677 

developed in the EnergyPlus software package which is an internationally known and tested 678 

tool for building energy simulation. The model was calibrated and validated empirically using 679 

experimental results (Section 5). The whole building energy model results were compared 680 

to experiments as part of model calibration and validation. The validated model was then 681 

compared to the numerical model to investigate superiority of the two approaches in 682 

predicting performance of advance dew point evaporative coolers (Section 6). The key 683 

findings and conclusions of the study can be summarised as: 684 

• The highest power consumption was observed under hot desert weather conditions of 685 

the Riyadh (15.33 kW) and subtropical hot desert weather conditions of Las Vegas 686 

(13.56 kW) with cooling capacity reaching a peak of 4.6 kW in July. 687 



• The highest COP values were recorded both by experiments and whole building energy 688 

simulations in four consecutive months (June-September) of Riyadh, reaching 689 

experimental peak of 51.1 and simulation peak of 49 in July.  690 

• The lowest COP values were observed both experimentally (17.7) and by simulation 691 

(17.9) in April of Las Vegas.  692 

• Experimental COP results and whole building energy simulation predictions were in good 693 

agreement with a maximum recorded error of 4.13% and mean error of 3.65% in Riyadh. 694 

• The best COP fit between experiments and whole building energy simulations was 695 

achieved in Beijing with mean error of 2.13% followed by Las Vegas and Rome with 696 

mean errors of 2.23% and 3.6%, respectively. 697 

• The largest difference observed between EnergyPlus and experimental results of the wet 698 

bulb and dew point efficiency are 5% (July in Rome) and 4.3% (July in Las Vegas), 699 

respectively.  700 

• The whole building energy model gave the best predictions of efficiency parameters for 701 

Beijing and Las Vegas with mean error values of below 2.5%. The efficiency predictions 702 

for Las Vegas and Riyadh, despite being in validation range, showed a larger gap 703 

between experimental and simulation results with mean errors of 3.5-3.7%. 704 

• The unrestrained operating conditions employed by the numerical model lead to COP 705 

estimates of up to two time higher than experimental values and EnergyPlus predictions. 706 

The numerical model over-estimates both efficiency values. 707 

• The whole building energy model proved to better predict the performance of dew point 708 

evaporative cooler by incorporating the building-side parameters into the model. 709 

This study proved that comprehensive validation of the numerical model (and generally any 710 

model) is a crucial part of any modelling exercise in achieving the most reliable predictions. 711 

Hence, the future work by authors will focus on developing hybrid numerical models which 712 

take into account the building side parameters and use the data from whole building energy 713 

models where necessary to develop robust numerical models capable of representing reality 714 

with high precision. 715 
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