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Abstract—Parkinson’s disease is associated with high treatment 

costs, primarily attributed to the needs of hospitalization and 

frequent care services. A study reveals annual per-person 

healthcare costs for Parkinson’s patients to be $21,482, with an 

additional $29,695 burden to society. Due to the high stakes and 

rapidly rising Parkinson’s patients' count, it is imperative to 

introduce intelligent monitoring and analysis systems. In this 

paper, an Internet of Things (IoT) based framework is proposed 

to enable remote monitoring, administration, and analysis of 

patient’s conditions in a typical indoor environment. The proposed 

infrastructure offers both static and dynamic routing, along with 

delay analysis and priority enabled communications. The scheme 

also introduces machine learning techniques to detect the 

progression of Parkinson’s over six months using auditory inputs. 

The proposed IoT infrastructure and machine learning algorithm 

are thoroughly evaluated and a detailed analysis is performed. The 

results show that the proposed scheme offers efficient 

communication scheduling, facilitating a high number of users 

with low latency. The proposed machine learning scheme also 

outperforms state-of-the-art techniques in accurately predicting 

the Parkinson’s progression. 

 

Index Terms— Internet of things (IoT), machine learning, 

Parkinson’s disease, probability of blocking, low latency, priority 

communications. 

I. INTRODUCTION AND BACKGROUND 

Neurological disorders are becoming a leading cause of 

disability. Among all, Parkinson's disease (PD) is one of the 

fastest-growing neurological disorders. PD patients worldwide 

have reached 6 million, with projections of 12 million by 

2040[1]. PD, once a rare disorder, has become a pandemic, 

affecting people globally. The peculiar nature of PD also 

contradicts with patterns in most diseases where burden 

decreases with improving socioeconomic conditions. However, 

it increases with the improvement in socio-demographic index. 

Alarmingly, it has grown with the increasing per-capita Gross 

domestic product (GDP) in any economic evaluation [2]. In the 

past, our societies have been successful in confronting and 

arresting pandemics like HIV and breast cancer. Still, the 

relation of economic betterment and medical accessibility is 

unusual in the case of PD [3]. 

PD occurs due to deficiency of dopamine resulting from the loss 

of neurons in the substantia nigra region of the brain. There are 

several other cells in autonomic nervous system (ANS) which 

are also involved, connecting the central and peripheral regions 

of the brain. There are many other non-motor systems which 
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are affected in PD and increase the overall disability in patients. 

The measures being taken by biologists to have a better 

understanding of PD are commendable. However, one of the 

greatest challenges faced by biologists and clinicians is the 

identification of biological markers that can indicate the onset 

and advancement of the disease in its prodromal stage [4]. Five 

coding mutations were identified to be causatives for PD and 

leading to an early onset in life. Pathway analyses of genome-

wide association studies (GWAS) has implicated that in 

pathways related to ‘leucocyte or lymphocyte regulation 

activity’, ‘cytokine-mediated signaling’, ‘axonal guidance’ and 

‘calcium signaling’ have biological processes that can be 

etiological for the onset of PD in many patients [5].  Hatano et 

al. in 2016 [6] reported significantly lower levels of tryptophan, 

bilirubin and ergothioneine in PD patients and significantly 

higher levels of levodopa metabolites when compared to the 

normal controls [6]. As the elements responsible for oxidative 

stress in PD are not known, the metabolic activity of dopamine, 

mitochondrial dysfunction and neuroinflammation are all 

believed to play critical role of causative indicators in this 

disease [7]. However, the above predictive/detective measures 

still need to go a long way before becoming a prevalent method 

of PD prediction. Moreover, the clinical detections of PD and 

its diagnosis is an expensive affair, wherein solely dependent 

on marker elements which is often time consuming. Hence, in 

an era of advanced technologies, an alternative measure of PD 

prediction with use of a system of behavioral monitoring 

devices is the need of the hour. 

With the advent and technological advancement of systemic 

approaches in understanding the functionality of the human 

body, computer scientists and engineers have started making 

data-driven approaches as a step towards detecting and 

characterizing the underlying electrophysiological changes that 

a PD patient’s body emulates [8-10]. Clinically, accurate 

diagnosis of PD in the early stages is extremely complex, and 

the accuracy of diagnosis has been a big challenge for experts 

and researchers in medicine. However, the recent developments 

in Internet-of-things (IoT) and machine intelligence [11, 12] 

offer substantial benefits in detection [13, 14] and monitoring 

of patients in their early stages of PD [15-17].  

Recently, attempts have been made to apply data mining and 

artificial intelligence-based methods  on the auditory data [10, 

18, 19], human movement analysis through inertial sensors [8, 

20], and imagery data [21] of the PD patients.  A number of 

such studies are based on speech/auditory data, collected from 
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the PD patients. These studies established one of the important 

characteristics of PD, where vocal disorders were observed at 

an early stage, affecting the patient’s speech and leading to 

difficulty in pronunciation of words [22, 23]. In the past, several 

studies have developed machine learning-based PD detection 

system [24]. However, to the best of our knowledge, none of 

the existing systems proposed a complete physiological signal 

based indoor healthcare IoT paradigm for PD progression 

detection. It is mostly because existing systems are focused 

only on the data analytics of the physiological signals of 

individual patients instead of connecting larger cohorts of 

patients through IoT for remote monitoring to get better insight 

into PD progression. Moreover, interlinking auditory speech 

with motor function degradation through machine learning is 

still an unexplored domain. Therefore, monitoring and care 

taking of increasing number of PD patients is essential, where 

IoT can potentially lower the burden on national healthcare 

infrastructure. The existing machine learning based PD systems 

also suffer from the lack of reproducibility and generalizability 

[25]. This can be attributed to lack of reporting imperative 

information about the parameters of proposed machine learning 

model in the studies and lack of publicly available datasets. 

Therefore, the proposed work addresses these issues by 

analyzing the PD dataset, which is publicly available, and 

reporting the parameters of the developed machine learning 

model in the system model. In information and communications 

technology (ICT) infrastructure, very limited work can be found 

in existing IoT based large scale networks, dealing with diverse 

delays, reliability requirements, and communication needs. 

Therefore, the proposed customized IoT framework offers an 

efficient, cost-effective, and affordable approach for managing 

the chronic neurological disorders such as PD with potential to 

expand its applicability in diverse networks.  The potential 

benefits of the proposed system include ease-of-use, flexibility 

and scalability in monitoring PD patients. 

The main contributions of the proposed work are as follows:  

i. A detailed system model is proposed to monitor as well as 

predict the progression of PD.  

ii. An indoor IoT framework is proposed, which assists in 

taking the auditory samples of PD patients along with other 

fundamental sensory information, including patient’s vitals 

and environmental parameters, which can assist in better 

understanding and provision of healthcare for PD patients. 

iii. The work also proposes machine learning techniques to 

predict the progression of PD using auditory input.  

The rest of the paper is organized as follows: Section II presents 

the proposed system model of IoT framework and machine 

learning techniques for PD progression detection. Section III 

provides results and discussion. Whereas concluding remarks 

and future directives are presented in Section IV. 

II. SYSTEM MODEL 

PD severely affects patient’s motor abilities and thus eventually 

requires continuous monitoring and care. Presently, most 

healthcare departments are suffering extensive setbacks due to 

a lack of qualified experts, support staff, and the availability of 

resources to care for the patients. The load on healthcare 

institutes is rising every year, and it is expected that the situation 

will further degrade in the next few years. PD patients require 

continuous monitoring and support, for which healthcare 

departments are not fully equipped. Therefore, the use of 

technology to support healthcare services by embedding smart 

systems for monitoring and aftercare services emerge as a 

viable solution to the prevailing problem. 

This work proposes an IoT enabled intelligent monitoring of PD 

patients. The proposed work incorporates machine learning 

techniques to effectively support patients suffering from PD. In 

addition, the proposed work also aims to improve the 

knowledge base by introducing techniques to extensively 

record the phases of PD progression. The proposed work 

provides a complete IoT framework to support communications 

from different sensory elements (patients and environment) to 

effectively monitor PD patients. The proposed scheme can also 

use translational learning, whichcan be easily molded to support 

elderly healthcare, patient monitoring, and aftercare. Further 

discussion in this section is divided into 1) IoT framework and 

2) Machine learning for PD progression analysis.  

 
IoT framework supports communication among the sensors 

with diverse bandwidth, frequency, throughput, scheduling, and 

communication requirements along with edge/cloud setup for 

data processing and accumulation [26]. Machine learning for 

Parkinson’s patients uses auditory information to evaluate the 

current progression state of PD, which can be used as a marker 

to record as well as evaluate progression in patients' motor 

functions, and functional abilities, leading to inability score of 

the patient to perform desired actions. This framework is 

expected to feed into the knowledge base of Parkinson’s 

progression and, thus, lead to more accurate ground truths of 

the progression stats in Parkinson’s in future studies.  

The proposed IoT infrastructure, which enables data 

accumulation along with edge services to pre-process and 

analyze the collected data, is presented in Fig. 1. For readers’ 

convenience, frequently used system parameters are presented 

in Table I. The IoT framework is expected to communicate 

auditory input to machine learning instance on edge device 

[27], which analyses the progression of PD and its effects on 

other motor abilities of a patient. Once the progression state of 

PD is confirmed, the time-stamped information from other 

environmental and electrophysiological sensors are linked with 

the progression measure and stored in the database. As a proof 

of concept, the proposed IoT framework is thoroughly 

evaluated for its ability to communicate information to the IoT 

gateway, and a machine learning technique is evaluated, which 

analyses the accuracy of predicted PD state with ground truth.  

 
Fig. 1.  IoT enabled Intelligent indoor healthcare monitoring 



 

 

TABLE I. SYSTEM PARAMETERS, SYMBOLS AND VALUES 

Parameters  Variables Value(s) 

IoT enabled devices 𝑠𝑖  

Total network load 𝑄  

Periodic sensor network load  𝜏 0.7 (%) 

Periodic 𝑃Δ 𝜏 × 𝑄 

Non-periodic/event based 𝐸Δ (1 − 𝜏) × 𝑄 

communication Time interval 𝑓𝑖 , 𝑡𝑖𝑛𝑡 25ms to 1sec 

IoT Gateway 𝐺𝐼 - 

Superframe Duration 𝑇 1 second 

Subframe duration 𝑇𝑠 25ms 

Orthogonal carrier frequency of 𝑠𝑖 𝑓𝑄(𝑖) - 

Total transmission slots in subframe 𝑛 50 

Max. non-periodic channel requests 𝑤 - 

Total Timeslots in superframe 𝑚 2000 

Time deadlines of cluster nodes 𝜃𝑖 25 ms-1 sec 

Timeslots in PC 𝑝 - 

Timeslots in CR ℎ − 𝑝 - 

Timeslot duration 𝑡 ~ 300 µs 

Communications duration in timeslot (1 − δ) × 𝑡 ~250 µs 

acknowledgement duration in timeslot (δ) × 𝑡 ~50 µs 

Total periodic sensor nodes 𝑠 - 

Total non-periodic sensor nodes 𝑏 - 

Total unscheduled slots in subframe 𝜑 - 

Avg. delay from request to feedback 𝑑 - 

Payload 𝐿𝑃 15.4 ms 

Average channel requests 𝜆 - 

Blockage probability 𝑃𝑏 - 

Scheduled slots in subframe ξ𝑠 - 

Free slots in subframe ξ𝑓 - 

Priority levels High, Medium, Low 𝑃ℎ𝑖𝑔ℎ, 𝑃𝑚𝑒𝑑, 𝑃𝑙𝑜𝑤 - 

A. Proposed IoT-based Patient Monitoring system 

In the proposed work IoT enabled devices (𝑠𝑖) are assumed 

where the initial framework of IEEE802.15.4e is used which 

allows communications after regular intervals. However, in the 

given scenario, the information is communicated in both 

periodic (𝑃Δ, i.e. after regular intervals) and event-driven (𝐸Δ) 

fashion. In addition, communication periodicity (𝑓𝑖) for sensor 

(𝑠𝑖) might be different from communication periodicity (𝑓𝑗) for 

sensor (𝑠𝑗) for (𝑖 ≠ 𝑗), where communications from 𝑠𝑖 and 𝑠𝑗 

take place after every 𝑡𝑖 and 𝑡𝑗 intervals respectively (given 𝑡𝑖 =

1 𝑓𝑖⁄  & 𝑡𝑗 = 1 𝑓𝑗⁄ ). Therefore, a scheduling algorithm is 

proposed to not only manage periodically communicating 

sensor nodes but also communications from dynamic and 

event-driven sensor nodes. The scheduling algorithm allows 

communications from all sensors communicating periodically 

in an orderly fashion where a static schedule is developed for 

all periodic communications along with instantaneous dynamic 

scheduling of on-demand communications. In addition to this, 

a priority enabled communication infrastructure for requests 

from on-demand/event-driven communication sources is also 

proposed. A suitable priority of access is maintained in the 

proposed IoT system to allow effective communications from 

event-driven devices to give timely channel access, analysis, 

and feedback.  
1) Clustering, gateway and IoT infrastructure 

It is assumed that the IoT devices/sensors are affiliated to IoT 

Gateway (𝐺𝐼) in star topology during the setup phase. Time 

Division Multiple Access (TDMA) and beacon-enabled 

communications are used, which limit the interference of 

different devices accessing the channel at the same time. Thus, 

mitigating the packet collision commonly seen in Carrier Sense 

Multiple Access (CSMA) and other collision avoidance 

schemes. To enable timely communications from audio, video 

and sensory nodes in the IoT infrastructure, information is 

transmitted in short subframes, each of duration 𝑇𝑠 [28]. As 

represented in Fig. 2, a sub-frame is further divided in four 

sections: beacon (B), channel request (CR), scheduled periodic 

communications (PC), and the scheduled requested 

communications (SRC). Beacon synchronizes all the local 

clocks of sensor nodes with 𝐺𝐼. CR allows on-demand 

communication requests to be made by non-periodic sensor 

nodes and scheduled by 𝐺𝐼. Any channel requests by non-

periodic sensor nodes are made directly to the gateway [29]. 

The total number of non-periodic nodes is expressed by 𝑤. Note 

that the sensor nodes in the indoor environment are allocated a 

unique orthogonal carrier (𝑓𝑄(𝑖), 𝑖 = 1 → 𝑤), which is 

broadcasted by the sensing devices during CR period. These 

orthogonal frequency bands are distributed in 𝜖 priority levels, 

where more critical sensor node is assigned higher priority 

carrier. Upon reception of carriers during CR, 𝐺𝐼 distinguishes 

between the transmitted frequency bands, thus identifying and 

scheduling more critical requests first. The schedule of 

transmissions is broadcasted by the gateway to confirm 

acceptance or rejection of channel requests, as represented in 

Fig. 2, transmission schedule. During PC and SRC, periodic and 

non-periodic communications take place.   
Each subframe allows communication of a maximum of 𝑛 

sensor nodes. The communications of each sensor node except 

audio-visual inputs is completed in one timeslot of duration 𝑡 . 

A timeslot is subdivided in ‘communication’ and ‘ack’ window 

of duration (1 − δ) × 𝑡 and δ × 𝑡, respectively. The 

communications frequency/periodicity of periodic sensor node 

𝑖 (𝑠𝑖) is given by 𝜃𝑖, and average channel requests per unit time 

for event-driven/non-periodic sensors is given by 𝜆. 

All channel access requests from non-periodic sensors are made 

prior to communications of every subframe, which allows the 

system to broadcast the communication schedule before 

subframe communications are initiated. The proposed 

scheduling scheme offers a static schedule for periodic 

communications, allocating timeslots as evenly as possible in 

each subframe. Whereas, the free timeslots in each subframe 

 

Fig. 2.  Superframe structure 



 

 

are filled with dynamic channel requests received from non-

periodic sensors. This scheduling of free timeslots is carried out 

by a dynamic scheduling algorithm, which also considers the 

priority of the requesting sensor nodes.  

Communications between the sensor nodes and IoT gateway is 

carried out in subframes where multiple subframes formulate a 

superframe. The duration of the subframe and superframe is 

derived from the communication interval of periodically 

communicating nodes. For instance, if the shortest interval for 

one of the sensor nodes is 20 milliseconds (ms) (i.e., it has to 

communicate its data to the gateway, 𝐺𝐼, every 20 ms), the 

subframe duration will be selected 20 ms. Whereas, in the same 

cluster, if a sensor node has to communicate to 𝐺𝐼 every 400 

ms, which is the longest interval, then the superframe duration 

would be 400 ms. In general, subframe and superframe duration 

are expressed as 𝑇𝑠 and 𝑇 respectively where 𝑇 =
1

𝜃𝑖(𝑚𝑖𝑛)
 and 

𝑇𝑠 =
1

𝜃𝑖(𝑚𝑎𝑥)
. However, slight variations in the duration of 𝑇𝑠 

and 𝑇 are introduced such that ∀ 𝑢 ∈ 𝐈 | 𝑇 = 𝑢 × 𝑇𝑠 is satisfied. 
The information accumulated from sensor nodes at 𝐺𝐼 during 

the superframe is relayed to the edge device (𝑒𝐼), which at the 

first instance assigns a unique id to the patients for anonymity 

purposes. The accumulated data is processed at edge device 

where data is extracted, preprocessed, labeled, and anonymized 

before its further propagation to central cloud space. It is 

assumed that the data analytics and visualization of the 

accumulated cloud data are used to assist in monitoring, 

prescription, and diagnosis of the current state of PD patients. 

2) Scheduling Algorithm 

As stated earlier, the scheduling algorithm schedules both 

periodic and non-periodic communications.  The scheduling is 

achieved in two phases. At first, static scheduler schedules 

periodic communications within the cluster. The periodic 

communications are although communicated after regular 

intervals, yet, the interval duration for each sensor can vary 

significantly. In Fig. 3, the time interval of communications of 

each sensor is presented. The bar graphs in Fig. 3 present the 

periodicity (regular intervals after which the communications 

have to be made by each node). For instance, sensor node 1 

needs to resend/communicate its readings every 1 second, 

whereas node 30 has to communicate every 0.2 seconds. The 

represented communication deadlines of each sensor are quite 

randomly distributed between 0-1 seconds. To schedule these 

periodic communications, the static scheduler defines 

superframe and subframe duration. Due to the high complexity 

of scheduling heterogenous deadlines, all the divisors of time 

duration 𝑇 are listed and heterogeneous time interval/time 

deadlines of each node are approximated to the nearest lower 

divisor, 𝜃𝑖  (see algorithm 1~Line:1). The duration of 

superframe and subframe is defined using 𝜃𝑖(𝑚𝑖𝑛) and 

𝜃𝑖(𝑚𝑎𝑥) (see algorithm 1~Line: 2, 3).  
The scheduling algorithm considers five categories: 𝐶1 to 

𝐶5(scheduled in algorithm 1~Line:8-14). It is noteworthy that 

the static schedule produced in Algorithm 1 only schedules 𝐶1 

to 𝐶4 whereas 𝐶5 is scheduled in real-time. Scheduling of 𝐶1 

considers nodes with interval/deadline (𝑡𝑖𝑛𝑡) equal to 𝑇𝑠. 𝐶2 

considers nodes with 𝑡𝑖𝑛𝑡 = 𝑢 × 𝑇𝑠 | 𝑢 ∈ 𝐈 & 𝑢 𝑖𝑠 𝑒𝑣𝑒𝑛 & 𝑢 ×
𝑇𝑠 ≤ 𝑇/2. 𝐶3 considers nodes with 𝑡𝑖𝑛𝑡 = 𝑢 × 𝑇𝑠 | 𝑢 ∈
𝐈 & 𝑢 𝑖𝑠 𝑜𝑑𝑑 & 𝑢 × 𝑇𝑠 ≤ 𝑇/2. 𝐶4 considers nodes with 𝑡𝑖𝑛𝑡 =

𝑇.  𝐶5 considers non-periodic nodes and schedules them in real-

time. In the proposed scheme, the load from periodic sensor 

nodes is assumed to be maximum of τ percent of the total load 

where total timeslots in superframe are given by 
𝑚 = (𝑇/𝑇𝑠) × 𝑛                                                            (1) 

 The overall required timeslots by periodic sensors is given by  

β =    {(∑ 𝑏𝑖 × 𝑆(𝑟𝑖  ,   𝑠𝑑𝑙)
𝑠

𝑖=1
) × 𝑇} 𝐵∆⁄                   (2) 

where 𝑠 is the total number of periodic sensor nodes, 𝑏𝑖 is the 

number of bits to be transmitted by source 𝑖 in every 

communication, 𝑟𝑖   is the communication time interval of the 

node 𝑖,  𝐵∆ is total bits communicated in one timeslot and 𝑠𝑑𝑙  is 

the vector consisting of all possible symmetric deadlines 

(divisor of 𝑇). The 𝑆(𝑟𝑖 ,   𝑠𝑑𝑙) allows symmetrical attributes of 

the superframe by approximating 𝑟𝑖 to the nearest symmetrical 

deadline from the 𝑠𝑑𝑙  vector.  

 
Apart from scheduling the periodic communications, the 

scheduling algorithm also considers non-periodic 

communications and schedules them in real-time. The 

scheduling algorithm is run on 𝐺𝐼.  

3) Resource management and Dynamic Design 

In the proposed system, while the periodic sensor nodes receive 

a static schedule; however, the behavior of non-periodic nodes 

need to be carefully modelled to keep the blocking probability 

of nodes below the desired thresholds. In addition, the delay 

must also be carefully modelled to evaluate the accurate 

performance of the proposed IoT infrastructure. This subsection 

particularly focuses on mathematical modelling of the proposed 

system to analyze the blocking probability (𝑃𝑏) of IoT channel 

and to suggest a maximum number of non-periodic IoT nodes 

suitable for maintaining 𝑃𝑏  below certain thresholds. The 

average on-demand communication requests (𝜆) are also 

considered in system modelling. 

 The scheduling of channel requests primarily depends on the 

available/unscheduled timeslots in a subframe (𝜑). The 

unscheduled slots (𝜑) in each subframe express the available 

resources. Since the resource, 𝜑, is limited, a finite number of 

sensor nodes can be accommodated while ensuring certain 𝑃𝑏 , 

given a certain arrival rate (𝜆) is expected. Individual sensor 

nodes are modelled as poison distribution where its conditional 

probability mass function (PMF) can be expressed as 

  𝑃𝐼(𝑖) = {

(𝜆𝑇𝑠) 𝑖𝑒−𝜆𝑇𝑠/𝑖!

∑ 𝜆𝑇𝑠
𝑗𝑒−𝜆𝑇𝑠/𝑗!𝑤

𝑗=0

   𝑤ℎ𝑒𝑟𝑒 𝑖 = 0,1, 2, … , 𝑤 

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

      (3) 

 
Fig. 3. Periodic communication interval of different sensor nodes 
 



 

 

where 𝜆 is the average number of requests, 𝑇𝑠 is the unit time, 

which in this case is taken equal to subframe duration, and 𝑤 is 

the maximum number of requesting devices. 

The average delay (𝑑) is modeled as a function of average 

requests per unit time (𝜆), average timeslots available (𝑠) per 

subframe, and channel conditions. The mathematical notation 

for the average delay, 𝑑 for a given payload, 𝐿𝑝, is as follows: 

𝑑 = ((
∑ 𝑖 × (𝜆𝑇𝑠)𝑖𝑒(𝜆𝑇𝑠)/𝑖!𝑠

𝑖=1

∑ (𝜆𝑇𝑠)𝑗𝑒(𝜆𝑇𝑠)/𝑗!𝑠
𝑗=0

+ (𝑛 − 𝑠)) × 𝑡)

+ (𝑇𝑠 × ∑ (
𝑠
𝑖
) 𝑝𝑖(1 − 𝑝)𝑠−𝑖  

𝑠

𝑖=1

) + 𝐿𝑝      (4) 

The probability of blockage (𝑃𝑏) of communications for non-

periodic sensor nodes highly depend on the average number of 

available slots (𝜑) in each subframe, the number of non-

periodic sensor nodes (𝑏), and the average number of requests 

per sensor node per unit time (𝜆). Therefore, in the given 

scenario, 𝑃𝑏  can be expressed as  

𝑃𝑏 = ∑
(𝜆𝑇𝑠)𝑖𝑒−𝜆𝑇𝑠/𝑖!

∑ 𝜆𝑇𝑠
𝑗𝑒−𝜆𝑇𝑠/𝑗!𝑤

𝑗=0

𝑤

𝑖=𝜑+1

                       (5) 

Further discussion on scheduling, delay, and blockage 

probability is continued in Section III section. 

 

 
The use of IoT framework allows near real-time data 

communications, thus enabling large-scale data assembly from 

Parkinson’s patients. Though, the data collection from different 

sensory elements in controlled environments is very important, 

yet, the machine learning plays a vital role in devising strategies 

to not only process large data but also to label the biological 

markers with the help of well-established speech based 

Parkinson’s progression analysis. Further details of the 

proposed machine learning techniques are covered as follows. 

B. Machine Learning Model Development for Parkinson’s 

Disease Progression Prediction 

1) Dataset 

This work utilizes a dataset collected by Tsanas et al. [30] using 

At Home Testing Device (AHTD) from intel corporation [31]. 

The ATHD is capable of recording PD measures related to 

dexterity (i.e., the tasks related to fine motor skills muscles) and 

speech. The dataset analyzed here recorded only speech-related 

task where subjects were instructed to perform sustained 

phonation of vowels. The study then used the Unified Parkinson 

Disease Rating Scale (UPDRS) to quantify the severity of the 

disease, where speech recordings were obtained through the 

ATHD device and were mapped to predict the UPDRS score. 

The UPDRS score is a clinical measure that provides the 

severity of the disease. UPDRS scale ranges from 0 to 176, 

where 0 represents healthy adults, and 176 represents 

completely disabled individuals. This scale considers the 

activities of daily living, mental behavior, mood, and motor 

activities [30]. Another variant of this scale is also measured in 

this study, called the motor UPDRS scale. It ranges from 0 to 

108, where 0 represents physically active and healthy 

individuals, and 108 represents severe motor impairments and 

tremors. The UPDRS serves as a ground truth measure in this 

study due to its strong correlation with the severity of the PD in 

clinical settings [30].  

Forty-two subjects suffering from idiopathic PD participated in 

data collection procedures and performed voice recordings at 

their residential settings using AHTD. The dataset was 

collected over a period of six months, where voice recordings 

were captured once every week on a specified day. The data 

collection procedure was specified to the subjects on how and 

when to perform the experiment. The data collected through 

each of the ATHD devices was sent to the clinic, which was 

then used to obtain the UPDRS score and to perform further 

processing on auditory data. The subjects performed two sets of 

voice recordings: 1) carrying on the sustained vowels 

phonation, 2) describing the static photographs through running 

speech. The sampling frequency of the device was 24 kHz. This 

resulted in a total of 5875 signals recorded by 42 subjects over 

a period of six months. 

TABLE II: FEATURE EXTRACTED FROM VOICE RECORDINGS [30] 

Sr. Computed feature description 

1 KayPentax multidimensional voice jitter in percentage 

2 KayPentax multidimensional voice jitter in microseconds 

3 KayPentax multidimensional voice amplitude perturbation 

4 KayPentax multidimensional voice average perturbation quotient 

5 Jitter difference divided by the average period 

6 KayPentax multidimensional voice local shimmer 

7 KayPentax multidimensional voice in dbs 

8 Shimmer 3-point perturbation quotient 

9 Shimmer 5-point perturbation quotient 

10 KayPentax multidimensional voice 11 point perturbation quotient 

11 Shimmer amplitude difference over period 

12 Noise to harmonic ratio 

13 Harmonic to noise ratio 

14 Recurrent period density entropy 

15 Detrended fluctuation analyses 

16 Pitch period entropy 

Algorithm 1 Communication Scheduling 

Input: (𝐟𝐢, 𝒃𝒊, 𝒔𝒅𝒍, 𝑩∆, 𝐤, 𝐬, 𝐢 = 𝟏, 𝟐, … , 𝐬) 
Output: (Sch_stat + Sch_subframe) //Transmission Schedule 
1. sortAscend (𝜃𝑖); // sorting communication intervals  
2.  𝑇 = 1/𝜃𝑖(𝑚𝑖𝑛);  
3. 𝑇𝑠 = 1/𝜃𝑖(𝑚𝑎𝑥); 
4. 𝜎 = 𝑇/𝑇𝑠; //Total Sub-frames per superframe 
5. 𝑚 = 𝑛 × 𝜎;  
6. β = (∑ 𝑏𝑖 × 𝑆(𝑟𝑖 ,   𝑠𝑑𝑙)𝑠

𝑖=1 ) × 𝑇; 
7. 𝑁𝐿 = β/𝑛; // percentage used slots 
8. 𝐶1(𝑠𝑐ℎ)=schAll{𝐶1(subframe(1→ 𝜎) ,timeslot(1→ 𝑠))};  
9. 𝐶2(𝑠𝑐ℎ)= schAll{𝐶1 (subframe(1→ 𝜎), timeslot(1→ 𝑠))},{ Shift & 

adjust};  
10. 𝐶3(𝑠𝑐ℎ) =scheduleAll{𝐶3(subframe(1→ 𝜎), timeslot(1→ 𝑠))},{ Shift 

& adjust}; 
11. 𝐶2,3(𝑠𝑐ℎ) =Shift & adjust (𝐶2 , 𝐶3) 
12. count(sch_Slots/subframe); 
13. Sch=merge(𝐶1(𝑠𝑐ℎ), 𝐶2,3(𝑠𝑐ℎ)); 
14. Sch_stat=Adjust {𝐶4 (1→ 𝑡𝑜𝑡𝑎𝑙) ⇒Min (sch_Slots in subframe)}; 
15. 𝐷𝑠𝑐ℎ = 𝑓𝑄(𝑖). 𝑎𝑟𝑟𝑎𝑛𝑔𝑒()/*arrange current channel requests in 

priority order*/ 
16.  𝜑. 𝑓𝑖𝑙𝑙(𝐷𝑠𝑐ℎ) // filling vacant timeslots  
17. Sch_stat.update(𝐷𝑠𝑐ℎ) 
18. Return Sch_stat, Sch_subframe; 



 

 

2) Feature Extraction 

The features used in this study are similar to the one extracted 

by Tsanas et al. [30]. The features extracted are referred to as 

dysphonia measures. A variety of dysphonia measures were 

extracted from the speech signals, and each of these dysphonia 

measures represented a number as a feature value that described 

the unique characteristics of the signal. A total of 16 dysphonia 

measures were used in this study as these measures had a 

maximum correlation with the motor UPDRS and overall 

UPDRS scores [30]. These measures were extracted from the 

voice recording obtained through the AHTD device, as listed in 

Table II. Each recording resulted in 16 features. Therefore, 

5875 signal recordings obtained through 42 subjects resulted in 

a feature matrix of 5875 (samples) x16 (features).  

3) Machine Learning Model development to predict 

Parkinson’s Disease progression 

The secondary objective after the successful development of the 

IoT framework is to predict the PD progression through 

auditory recordings captured by AHTD. The UPDRS and motor 

UPDRS scores are used to validate the performance of the 

proposed voice recording based PD progression detection 

system over a period of six months. In the proposed work, 

extreme gradient boosting (XGB) is used as a regression 

method [32, 33] to develop a machine-learning based PD 

progression detection model using the feature-set extracted 

from the voice recording of ATHD device. The performance of 

this model is then validated with the ground truth (i.e., motor 

UPDRS score and overall UPDRS score).  

The objective function of XGB is shown in Eq. 1 [34]. The loss 

(𝑙(𝑡)) function aims to reduce the predictor error between the 

true and the predicted outcomes.  

𝑙(𝑡) = Ω(𝑓𝑡) + ∑ 𝑙(𝑦𝑖−𝑡𝑟𝑢𝑒, 𝑦𝑖−𝑝𝑟𝑒𝑑
(𝑎−1) (𝑎) + 𝑓𝑎(𝑋𝑎))

ℎ

𝑖=1
      (6) 

here f describes the total structures in the regression tress with 

weights, i represente the data samples, t represents the iteration, 

X represents the feature set,  h represents the total number of 

data samples, 𝑦𝑖−𝑝𝑟𝑒𝑑 represents the predicted UPDRS values 

of the proposed machine learning model and the 𝑦𝑖−𝑡𝑟𝑢𝑒 

represents the true or the actual values of the UPDRS scale 

obtained in clinical settings. 

Ω(𝑓𝑎) = ɤW + 0.5 ×  δ ||w||
2
                      (7) 

The first term in Eq. 7 describes the complexity of the model 

and the second (δ) is the regularization which prevents the 

model from overfitting, W represents the number of leaves per 

tree and w represents the weight of the leaf. 

The mean absolute error (MAE) is computed as a performed 

measure which describes the predictor error of (Eq. 6).  The 

large value of MAE corresponds to high prediction error and a 

larger deviation from true values, and vice versa.  

𝑀𝐴𝐸 = 1 ℎ⁄ ∑ |𝑦𝑖−𝑝𝑟𝑒𝑑 − 𝑦𝑖−𝑡𝑟𝑢𝑒|
ℎ

𝑖=1
                (8) 

The 90/10 split based cross-validation procedure is used for the 

XGB based machine learning model development and 

performance evaluation. The classifier model is trained using 

90% of the data samples (5288 data samples) and tested on the 

remaining 10% (587 data samples) for performance evaluation 

and validation. This process is repeated for 1000 iterations by 

randomly assigning the testing and training samples for cross-

validation. The validation and performance evaluation adopted 

is the same as the one performed by Tsanas et al. [30] to provide 

a fair and unbiased comparison. The parameters used for XGB 

classifier are: objective function=mean squared error, number 

of estimators=100, learning rate=0.08, gamma=0.5, maximum 

depth, minimum child weight=7. 

III. RESULTS AND DISCUSSION 

A. Performance Analysis of IoT infrastructure 

The primary objective of the proposed IoT based solution for 

data accumulation and analysis of the progression of 

Parkinson’s is to minimize the need for frequent external 

interventions and to sustain healthy living in the patients. The 

proposed scheme receives the data from a variety of sensors and 

records auditory feedback from the patients to analyze the 

progression of the disease. The proposed IoT infrastructure is 

aimed at managing communications from diverse sources with 

desynchronized periodicity, which is achieved using the 

scheduling algorithm. The scheduling algorithm is evaluated 

based on its ability to schedule a large number of nodes along 

with minimum possible variation in the scheduled slots (ξ𝑠) to 

free slots (ξ𝑓) ratio in each subframe. For evaluation purposes, 

a subframe duration of 25 ms and a superframe of the duration 

of 1 second is used. Number of nodes with periodic 

communication requirements which are affiliated to 𝐺𝐼, are 

varied from 20 to 80. Bandwidth requirements of the sensor 

nodes is also changed depending on the type of the sensor (i.e., 

whether it is a binary sensor, audio, or video feedback). As 

represented in Fig. 4, the scheduling algorithm schedules 

complex communications with high efficiency. The right-hand 

side Y-axis represents the percentage timeslots scheduled in 

each subframe (represented by bar plot), which shows that up 

to 70 sensor nodes can be effectively scheduled by the 

scheduling algorithm, keeping approximately 25% free 

timeslots in each subframe for non-periodic communications. 

In the Figure, the left-hand Y-axis shows the average number 

of timeslots (𝑛 = 50) scheduled per subframe along with the 

deviation (represented as error bar plots). The relatively small 

deviation from the mean depicts high accuracy of the 

scheduling algorithm.  

The scheduling of non-periodic nodes is dependent on the 

available resources (i.e., ξ𝑓 per subframe). It also depends on 

the expected average number of channel requests per sensor 

node per second. The analysis presented here covers a relatively 

high number of requests per second (𝑢𝑝𝑡𝑜 𝜆 = 20). As 

represented in Fig. 5, for a relatively low share of available 

resources (ξ𝑓 = 5, i.e., 10% of the given resources), a relatively 

bearable probability of blockage (P𝑏 < 3%) is achieved for up 

to 10 non-periodic sensor nodes with, on average, ten channel 

requests per second. Thus, the proposed system can 

accommodate 85 sensor nodes with 75 periodic sensor nodes 

with P𝑏 = 0, and ten non-periodic sensor nodes with P𝑏 < 3%. 

Please note that the periodic and non-periodic nodes are 

assigned 90% and 10% resources. In Fig. 6, a 70/30 resource 

share is allocated to periodic and non-periodic sensor nodes. It 

can be seen from Fig. 4 and Fig. 6 that this accommodates 60 

periodic sensors with 40 non-periodic sensors with P𝑏 < 5% for 

average requests per node as high as 10 per second. If the 



 

 

average channel requests for non-periodic sensors is reduced to 

5 per second (i.e., on average a channel request is made by each 

individual sensor node every 200 ms, a more realistic scenario) 

the number of non-periodic nodes that can be accommodated 

with proposed system reaches to 200 (in addition to 60 periodic 

sensors), which confirms the suitability of proposed IoT 

framework for not only the home patients but also for hospital 

wards and care homes. 

 
In addition to the probability of denial of service/blockage 

probability, the delay is also an important attribute to evaluate 

the performance of the proposed work. Since most of the 

healthcare scenarios also have some level of emergency 

involved, therefore, channel assignment delay is evaluated from 

the time of the request to the assignment of timeslot. For 

evaluation purposes three levels of priority (𝑃ℎ𝑖𝑔ℎ , 𝑃𝑚𝑒𝑑 , 𝑃𝑙𝑜𝑤) 

are considered among the requesting nodes, as presented earlier 

in Fig. 2 and Section 3. In evaluation, it is assumed that 30% of 

resources are reserved for non-periodic communications. In 

addition, the probability of denial of service of less than 5% 

(P𝑏 < 5%) is maintained. The average delay for three priority 

classes of sensor nodes is evaluated where affiliated non-

periodic nodes are varied from 10 to 200 and 𝜆 = 5. As 

represented in Fig. 7, the delay for high priority sensor node 

(10% of total sensors) is relatively low with average channel 

access delay of nearly 11ms, which is well within the 

requirements of any health-related emergency system. The 

delay of medium priority sensor nodes is also relatively low; 

however, saturation is approached for low priority, 𝑃𝑙𝑜𝑤  when 

nodes exceed 120, after which delay rises notably. A similar 

pattern in delay arises for 𝑃𝑚𝑒𝑑  as well after nodes are increased 

over 250. However, the overall performance of the system is 

well suited for the proposed scenario where high priority nodes 

can timely access the channel for critical communications.  

The proposed IoT framework and scheduling algorithm not 

only offers improved data scheduling but also allows timely 

communications of the periodic data originating from different 

sources. The thorough analysis of the proposed framework 

suggests the suitability of IoT infrastructure for information 

collection and remote monitoring. However, for a system to be 

completely autonomous and to be able to operate 

independently, the accuracy of the machine learning and AI-

driven diagnosis in healthcare is very important. The following 

discussion covers the performance of AI in detail.  

 

 

 

B. Performance Analysis of PD progression detection 

The secondary objective of the proposed model is to accurately 

predict PD progression through machine learning. The machine 

learning model was trained using the features-set obtained from 

auditory recording and validated using the ground truth 

measure obtained from the clinical setting (motor UPDRS scale 

and overall UPDRS scale). The findings of the proposed PD 

progression prediction through overall UPDRS and motor 

UPDRS are presented in Fig. 8(a). The findings are presented 

for the training and testing scenarios using MAE as a 

performance metric. The mean and standard deviation of MAE 

was calculated over 1000 iterations for both training and 

testing. The performance analysis shows that the proposed 

XGB based method is capable of predicting the motor UPDRS 

score with MAE of 2.29±0.04 and 5.09±0.16 on the training and 

 
Fig. 4. Average scheduled timeslots in subframe for periodic 
communications. 

 
Fig. 5.  𝐏𝐛 with changing requests per node per second (𝝀)  

 

 
Fig. 6. 𝐏𝐛 as a function of affiliated non-periodic nodes 

 
Fig. 7. Delay analysis of priority enabled communications in IoT 



 

 

testing datasets respectively. Moreover, the proposed method 

resulted in MAE of 2.97±0.05 and 6.45±0.21 in the training and 

testing datasets respectively to predict the overall UPDRS 

score.  

These findings show the strength of the proposed method in 

predicting the PD progression accurately through dysphonia-

based measures obtained from voice recordings with low MAE. 

A comparative analysis of MAE in predicting the PD 

progression is also performed among the proposed method and 

the method developed by Tsanas et al. [30]. The study provides 

a fair and unbiased comparison as both methods have used the 

same dataset, cross-validation procedure, and the performance 

metric. The MAE errors of both studies in predicting the motor 

UPDRS and overall UPRDS through voice recordings are 

depicted in Fig. 8(b).  

 
The results show that the proposed system has outperformed the 

PD progression detection method proposed by Tsanas et al. 

[30], and MAE is reduced significantly both in motor UPDRS 

prediction as well as overall UPDRS prediction. These findings 

are quite interesting and show the significance of the proposed 

method in accurately predicting the PD progression over time.  

 

For better visualization and understanding, the PD progression 

prediction of a single patient, over six-month duration through 

motor UPDRS scale, and overall UPDRS scale is depicted in 

Fig. 9.  

 
The graphs present the actual values of UPDRS or the ground 

truth values obtained through clinical settings and the UPDRS 

prediction performed by our proposed XGB based method. It is 

quite evident from these plots in Fig. 9 that the proposed method 

can efficiently track both PD progression scales (motor 

UPDRS, overall UPDRS) with high efficiency and low MAE. 

These findings also suggest that sustained vowel phonation 

audio recording offers potential for tracking PD progression 

remotely with high accuracy.  

IV. CONCLUSION 

The proposed IoT and machine learning framework aims to 

offer an effective solution to support the routine life of 

Parkinson’s patients with minimal external interference. It is 

also aimed at providing a framework to enable continuous 

monitoring and progression analysis of PD. The proposed IoT 

infrastructure allows continuous monitoring of 

electrophysiological and environmental parameters of an 

indoor environment. It also incorporates a large number of 

sensors, which demonstrates its ability to function in hospital 

wards and care homes. The results show that the proposed 

framework not only offers efficient communication scheduling 

but also enables prioritized channel access. A relatively low 

average delay of 11 ms was observed for high priority sensor 

nodes. In addition, the scheduling algorithm can handle up to 

250 sensor nodes (periodic and non-periodic), which can be 

scaled to even larger networks with suitable clustering schemes. 

The probability of denial of service was also limited to 5%. The 

proposed machine learning algorithm also offers high accuracy 

of PD progression prediction.  

While the proposed work offers notable improvements, 

however, it only utilizes voice recordings based measure to 

develop PD progression prediction system. In addition, it does 

not cover how inertial sensor-based methodologies and other 

human movement capturing systems can assist in predicting the 

PD progression. Therefore, as a future direction, it would be 

interesting to perform a comparative study that observes the 

performance of the proposed voice recording based PD 

progression detection and the inertial sensors-based PD 

progression detection. The functionalities of edge and cloud 

devices can be further explored. In addition to this, a long-term 

evaluation and logging of sensory data with auditory UPDRS 

predication can also improve the knowledge base and 

understanding of progression stages in PD.  

ACKNOWLEDGEMENT 

Imran’s work is supported by the Deanship of Scientific 

Research through research group project number RG-1435-

051.  

REFERENCES 

[1] V. L. Feigin et al., "Global regional and national burden of neurological 

disorders during 1990–2015: a systematic analysis for the Global Burden 
of Disease Study 2015", Lancet Neurol, vol. 16, no. 11, pp. 877-897, 

2017.  

[2] E. Dorsey, T. Sherer, M. Okun and B. Bloem, "The emerging evidence of 
the Parkinson pandemic," J. Parkinson’s Disease, vol. 8, no. s1, p. S3–

S8, 2018. 

[3] S. Bohingamu Mudiyanselage et al., "Cost of living with Parkinson’s 
disease over 12 months in Australia: a prospective cohort study," 

Parkinson’s Disease, vol. 2017, 2017. 

[4] W. Poewe et al., “Parkinson disease”. Nature reviews Disease primers, 
2017;3:17013 Epub 2017/03/24. doi: 10.1038/nrdp.2017.13. 

[5]    J. Brás, R. Guerreiro, and J. Hardy, "SnapShot: genetics of Parkinson’s 

disease," Cell, vol. 160, no. 3, pp. 570-570. e1, 2015.  
[6] T. Hatano et al., "Identification of novel biomarkers for Parkinson's 

disease by metabolomic technologies," J. Neurol Neurosurg Psychiatry, 

vol. 87, no. 3, pp. 295-301, 2016.  
[7] J. Blesa, I. Trigo-Damas, A. Quiroga-Varela, and V. R. Jackson-Lewis, 

"Oxidative stress and Parkinson’s disease," Frontiers Neuroanatomy, vol. 

9, p. 91, 2015. 

 
 
Fig. 8: MAE Analysis in Predicting PD Through UPDRS Scores (a) 
Proposed (b) Comparison: proposed with Tsanas et al. 
 
 

 
Fig. 9.  UPDRS score prediction of proposed method w.r.t ground truth 



 

 

[8] M. Corzani, A. Ferrari, P. Ginis, A. Nieuwboer, and L. Chiari, "Analysis 
of Biofeedback Effects in Parkinson’s Disease at Multiple Time-Scales," 

in Intl. Conf. on NeuroRehabilitation, pp. 815-818, 2018. 

[9] R. R. Guimaraes et al., "Intelligent network security monitoring based on 
optimum-path forest clustering," IEEE Network, vol. 33, no. 2, pp. 126-

131, 2018. 

[10] D. Gupta et al., "Optimized cuttlefish algorithm for diagnosis of 
Parkinson’s disease", Cogn. Syst. Res., vol. 52, pp. 36-48, Dec. 2018. 

[11] M. M. Mahmoud et al., "Enabling technologies on cloud of things for 

smart healthcare," IEEE Access, vol. 6, pp. 31950-31967, 2018. 
[12] J. J. Rodrigues et al., "Enabling technologies for the internet of health 

things," IEEE Access, vol. 6, pp. 13129-13141, 2018. 

[13] J. Srinivas, A. K. Das, N. Kumar, and J. Rodrigues, "Cloud centric 
authentication for wearable healthcare monitoring system," IEEE Trans. 

Dependable Secure Comput., 2018. 

[14] M. W. Moreira, J. J. Rodrigues, V. Korotaev, J. Al-Muhtadi, and N. 
Kumar, "A comprehensive review on smart decision support systems for 

health care," IEEE Systems Journal, vol. 13, no. 3, pp. 3536-3545, 2019. 

[15] M. A. da Cruz, J. J. P. Rodrigues, J. Al-Muhtadi, V. V. Korotaev, and V. 
H. C. de Albuquerque, "A reference model for internet of things 

middleware," IEEE Internet of Things Journal, vol. 5, no. 2, pp. 871-883, 

2018. 
[16] M. Awais, M. Raza, K. Ali, Z. Ali, M. Irfan, O. Chughtai, I. Khan, S. Kim, 

M. Ur Rehman, "An Internet of Things based bed-egress alerting 

paradigm using wearable sensors in elderly care environment", Sensors, 
vol. 19, no. 11, pp. 2498, 2019. 

[17] S. Dash, A. Abraham, A. K. Luhach, J. Mizera-Pietraszko, and J. J. 
Rodrigues, "Hybrid chaotic firefly decision making model for Parkinson’s 

disease diagnosis," Intl. J. Distributed Sensor Networks, vol. 16, no. 1, 

2020. 
[18] L. Naranjo, C. J. Pérez, J. Martín, Y. Campos-Roca, "A two-stage variable 

selection and classification approach for Parkinson’s disease detection by 

using voice recording replications", Comput. Methods Programs 
Biomed., vol. 142, pp. 147-156, Apr. 2017. 

[17] A. U. Haq et al., "Comparative analysis of the classification performance 

of machine learning classifiers and deep neural network classifier for 
prediction of parkinson disease", Proc. IEEE Int. Comput. Conf. Wavelet 

Active Media Technol. Inf. Process., pp. 101-106, Dec. 2018. 

[20]  M. Corzani, A. Ferrari, P. Ginis, A. Nieuwboer, and L. Chiari, "Motor 

Adaptation in Parkinson’s disease during prolonged walking in response 
to corrective acoustic messages," Frontiers in Aging Neuroscience, vol. 

11, p. 265, 2019. 

[20] C. R. Pereira et al., "Handwritten dynamics assessment through 
convolutional neural networks: An application to parkinson's disease 

identification", Artif. Intell. Med., vol. 87, pp. 67-77, May 2018. 

[22] B. Harel, M. Cannizzaro, P. J. Snyder, "Variability in fundamental 
frequency during speech in prodromal and incipient Parkinson's disease: 

A longitudinal case study", Brain Cogn., vol. 56, pp. 24-29, 2004. 

[23] B. Sakar, M. Isenkul, C. Sakar, A. Sertbas, F. Gurgen, S. Delil, H. 

Apaydin, O. Kursun, "Collection and analysis of a Parkinson speech 

dataset with multiple types of sound recordings", IEEE Biomed. Health 
Informatics, vol. 17, no. 4, pp. 828-834, 2013. 

[24] M. I. Razzak, M. Imran, G. Xu, "Big data analytics for preventive 

medicine", Proc. Neural Comput. Appl., pp. 1-35, Mar. 2019. 
[25] A. Abós et al., "Discriminating cognitive status in Parkinson's disease 

through functional connectomics and machine learning", Sci. Rep., vol. 

7, Mar. 2017. 

[26] N. Hassan, S. Gillani, E. Ahmed, I. Ibrar, M. Imran, "The role of edge 

computing in Internet of Things", IEEE Commun. Mag., vol. 56, no. 11, 

pp. 110-115, Nov. 2018. 

[27] E. Ahmed et al., "Bringing computation closer toward the user network: 
Is edge computing the solution?", IEEE Commun. Mag., vol. 55, no. 11, 

pp. 138-144, Nov. 2017. 

[28] M. Raza, H. Le-minh, N. Aslam, and S. Hussain, "A novel MAC proposal 
for critical and emergency communications in Industrial Wireless Sensor 

Networks," Comput. Electr. Eng, vol. 72, pp. 976-989, 2018. 

[29] M. Raza et al., "Dynamic priority based reliable real-time 
communications for infrastructure-less networks", IEEE Access, vol. 6, 

pp. 67338-67359, 2018. 

[30] A. Tsanas, M. A. Little, P. E. McSharry, L. O. Ramig, "Accurate 
telemonitoring of Parkinson's disease progression using non-invasive 

speech tests", IEEE Trans. Biomed. Eng., vol. 57, no. 4, pp. 884-893, Apr. 

2010. 

[31] C. G. Goetz et al., "Testing objective measures of motor impairment in 
early Parkinson's disease: Feasibility study of an at-home testing 

device", Movement Disord., vol. 24, no. 4, pp. 551-556, 2009. 

[32] K. M. Ghori, R. A. Abbasi, M. Awais, M. Imran, A. Ullah, and L. 
Szathmary, "Performance Analysis of Different Types of Machine 

Learning Classifiers for Non-Technical Loss Detection," IEEE Access, 

vol. 8, pp. 16033-16048, 2019. 
[33] S. Rahman, M. Irfan, M. Raza, K. Moyeezullah Ghori, S. Yaqoob, and M. 

Awais, "Performance Analysis of Boosting Classifiers in Recognizing 

Activities of Daily Living," Intl. J. Environmental Research and Public 
Health, vol. 17, no. 3, p. 1082, 2020. 

[34] T. Chen, C. Guestrin, "XGBoost: A scalable tree boosting system", Proc. 

SIGKDD, pp. 785-794, 2016. 
 

Dr Mohsin Raza is lecturer at Northumbria University, UK. 

Prior to this, he worked as a post-doctoral fellow (2018-19) 
at Middlesex University, UK, Junior lecturer (2010-12) and 

later as Lecturer (2012-15) in at Mohammad Ali Jinnah 

University, Pakistan, and Hardware Engineer (2009-10) at 
USS, Pakistan. His research interests include IoT, 5G, ITS, 

machine learning, Industry 4.0 and digital twins. 

 
Dr. Muhammad Awais is a Research Fellow in Data 
Analytics and AI at University of Hull. His research 

interests are in data mining, signal processing, applied 

machine learning and deep learning to develop ICT 
(Information and communication Technologies) based 

systems for remote sensing, Interent of things, Industry 4.0 
analytics, biomedical and health care domain.  

 

Dr Nishant Singh was awarded a PhD in Bio-Medical 
Technology, Birla Institute of Technology (BIT), India. 

Currently, he is a postdoc research fellow at the School of 

Psychology, University of Birmingham, UK. He worked as 
a Research Assistant at the Biomedical Instrumentation 

Laboratory, BIT, and later as a post-doc (2018-19) at the 

Computer Science Department, Middlesex University, UK.  

 

Dr Sajjad Hussain is Assistant Professor (Lecturer) in the 

School of Engineering, University of Glasgow. Previously, 
he served at the Capital University of Science and 

Technology, Pakistan as Associate Professor. He completed 

his masters from Supelec, Gif-sur-Yvette and PhD in 2009 
from the University of Rennes 1, France. 

 

Muhammad Imran is an associate professor in the College 
of Applied Computer Science, King Saud University. His 

research interests include mobile and wireless networks, 

IoT, software-defined networking, cloud and edge 
computing, and information security. He has published 

several research papers in top journals. He serves as the 

Editor-in-Chief of EAI Transactions on Pervasive Health 
and Technology and Associate Editor for many top ranked 

international journals, such as IEEE Access, IEEE Communications Magazine, 

and Future Generation Computer Systems. 

 

 


