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Abstract 77 
 78 
Primary immunodeficiency (PID) is characterised by recurrent and often life-threatening infections, 79 
autoimmunity and cancer, and it presents major diagnostic and therapeutic challenges. Although the 80 
most severe forms present in early childhood, the majority of patients present in adulthood, typically 81 
with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: 82 
about 25% of patients have autoimmune disease, allergy is prevalent, and up to 10% develop lymphoid 83 
malignancies1–3. Consequently, in sporadic PID genetic diagnosis is difficult and the role of genetics is not 84 
well defined. We addressed these challenges by performing whole genome sequencing (WGS) of a large 85 
PID cohort of 1,318 participants. Analysis of coding regions of 886 index cases found disease-causing 86 
mutations in known monogenic PID genes in 10.3%, while a Bayesian approach (BeviMed4) identified 87 
multiple potential new candidate genes, including IVNS1ABP. Exploration of the non-coding genome 88 
revealed deletions in regulatory regions which contribute to disease causation. Finally, a genome-wide 89 
association study (GWAS) identified PID-associated loci and uncovered evidence for co-localisation of, 90 
and interplay between, novel high penetrance monogenic variants and common variants (at the PTPN2 91 
and SOCS1 loci). This begins to explain the contribution of common variants to variable penetrance and 92 
phenotypic complexity in PID. Thus, a cohort-based WGS approach to PID diagnosis can increase 93 
diagnostic yield while deepening our understanding of the key pathways influencing human immune 94 
responsiveness. 95 
  96 
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The phenotypic heterogeneity of PID leads to diagnostic difficulty, and almost certainly to an 97 
underestimation of its true incidence. Our cohort reflects this heterogeneity, though it is dominated by 98 
adult onset, sporadic antibody deficiency-associated PID (AD-PID: comprising Common Variable 99 
Immunodeficiency (CVID), Combined Immunodeficiency (CID) and isolated antibody deficiency). 100 
Identifying a specific genetic cause of PID can facilitate definitive treatment including haematopoietic 101 
stem cell transplantation, genetic counselling, and the possibility of gene-specific therapy2 while 102 
contributing to our understanding of the human immune system5. Unfortunately, only 29% of patients 103 
with PID have a genetic cause of their disease identified6, with the lowest rate  in patients who present 104 
as adults and have no apparent family history. While variants in over 300 genes have been described as 105 
monogenic causes of PID3, it is often difficult to match the clinical phenotype to a known genetic cause, 106 
because phenotypes are heterogeneous and disease penetrance is often low2,7. Furthermore, a common 107 
variant analysis of CVID identified new disease-associated loci, and raised the possibility that common 108 
variants may impact upon clinical presentation8. We therefore investigated whether applying WGS 109 
across a “real world” PID cohort might illuminate the complex genetics of the range of conditions 110 
collectively termed PID: the approach is summarised in Extended Data Fig. 1.   111 

 112 
Patient cohort 113 

We sequenced 1,318 individuals recruited as part of the PID domain of the United Kingdom NIHR 114 
BioResource - Rare Diseases program (NBR-RD; Extended Data Fig.2; Supplementary Methods). The 115 
cohort comprised of both sporadic and familial PID patients (N=974) and family members. Of the 116 
patients, 886 were index cases who fell into one of the diagnostic categories of the European Society for 117 
Immunodeficiencies (ESID) registry diagnostic criteria (Fig. 1a; Extended Data Table 1). This cohort 118 
represents a third of CVID and half of CID patients registered in the UK9. Clinical phenotypes were 119 
dominated by adult-onset sporadic AD-PID: all had recurrent infections, 28% had autoimmunity, and 8% 120 
had malignancy (Fig. 1a-b, Extended Data Table 2), mirroring the UK national PID registry6. 121 

 122 
Identification of Pathogenic Variants in Known Genes 123 

We analysed coding regions of genes with previously reported disease-causing variants in PID10 124 
(Methods). Based on filtering criteria for diagnostic reporting according to the American College of 125 
Medical Genetics (ACMG) guidelines11 and described in the Methods, we identified and reported to the 126 
referring clinicians 104 known or likely pathogenic variants in 91 index cases (10.3%) across 41 genes 127 
implicated in monogenic disease (Fig. 1c; Supplementary Table 1). 60 patients (6.8%) had a previously 128 
reported pathogenic variant in the disease modifier TNFRSF13B (TACI), increasing the proportion of 129 
cases with a reportable variant to 17.0% (151 patients). Interestingly, 5 patients with a monogenic 130 
diagnosis (in BTK, LRBA, MAGT1, RAG2, SMARCAL1) also had a pathogenic TNFRSF13B variant. Of the 131 
103 monogenic variants we report here, 69 (67.0%) had not been previously described (Supplementary 132 
Table 1) and 8 were structural variants, including single exon and non-coding promoter deletions 133 
unlikely to have been detected by whole exome sequencing12. 134 

In 22 patients with variants in 14 genes (34% of 41 identified genes) reported as pathogenic, the 135 
clinical presentation deviated from the phenotypes typically associated with those genes. One 136 
example was chronic mucocutaneous candidiasis (CMC), which is the trigger for clinical genetic testing 137 
for STAT1 GOF variants, as CMC was reported in 98% of such patients13,14. Now this series, along with 138 
single case reports15,16, indicate STAT1 GOF may present with phenotypes as diverse as CVID or 139 
primary antibody deficiency. Since many PID-associated genes were initially discovered in a small 140 
number of familial cases, it is not surprising that the phenotypes described in the literature do not 141 
reflect the true clinical diversity. Thus, a cohort-based WGS approach to PID provides a diagnostic 142 
yield even in a predominantly sporadic cohort, allows diagnoses which are not constrained by pre-143 
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existing assumptions about genotype-phenotype relationships, and suggests caution in the use of 144 
clinical phenotype in targeted gene screening and interpreting PID genetic data. 145 

 146 
An approach to prioritising candidate PID-associated genes in a WGS cohort 147 

We next determined whether the cohort-based WGS approach could identify new genetic associations 148 
with PID. We included all 886 index cases in a single cohort in order to optimise statistical power, and 149 
because genotype-phenotype correlation in PID is incompletely understood. We applied a Bayesian 150 
inference procedure, named BeviMed4, and used it to determine posterior probabilities of association 151 
(PPA) between each gene and case/control status of the 886 index cases and 9,283 unrelated controls 152 
(Methods). We obtained a BeviMed PPA for 31,350 genes in the human genome; the 25 highest ranked 153 
genes are shown in Fig. 2a (see also Supplementary Table 2 and Supplementary Note 2). Overall, genes 154 
with BeviMed PPA>0.1 were strongly enriched for known PID genes (odds ratio = 15.1, P = 3.1x10-8 155 
Fisher’s Exact test), demonstrating that a statistical genetic association approach can identify genes 156 
causal for PID.  157 

This method produces a posterior probability of association, therefore it is inevitable that, where this is 158 
<1, some genes identified will not end up being found to be causal. Such false positives are an integral 159 
feature of a method which does not provide statistical proof of causality, but rather ranks/prioritises 160 
genes for subsequent functional assessment. They can be minimised by ensuring reasonable 161 
assumptions in the Bayesian algorithm4, and by taking care to detect and minimise relatedness and 162 
population stratification (detailed in Methods, Supplementary Note 2 and Supplementary Table 2).  163 

NFKB1 and ARPC1B were first associated with PID in the literature as a result of familial co-segregation 164 
studies17,18, and were highly ranked in the BeviMed analysis, validating it as a gene-discovery tool in PID. 165 
NFKB1 had the strongest probability of association (PPA=1-(1.25x10-8)), driven by truncating 166 
heterozygous variants in 13 patients – leading to our report of NFKB1 haploinsufficiency as the 167 
commonest monogenic cause of CVID19. Association of ARPC1B with PID (PPA=0.18) was identified by 168 
BeviMed based on two recessive cases; one the first reported to link this gene to PID18 and the other 169 
described below.  170 

To further demonstrate the effectiveness of BeviMed at prioritizing PID-related genetic variants in the 171 
cohort, we selected IVNS1ABP for validation. BeviMed enrichment (PPA=0.33) of IVNS1ABP was driven 172 
by three independent heterozygous protein-truncating variants, suggesting haploinsufficiency, while no 173 
such variants were observed in controls (Fig. 2b). A pathogenic role for IVNS1ABP was supported by its 174 
intolerance to loss-of-function (pLI=0.994) and a distinctive clinical similarity between the patients – all 175 
had severe warts (Supplementary Note 1). IVNS1ABP protein expression was around 50% of control, 176 
consistent with haploinsufficiency (Fig. 2c). The patients also shared a previously undescribed peripheral 177 
leukocyte phenotype – with low/normal CD4+ T cells and B cells and aberrant increased expression of 178 
CD127 and PD-1 on naïve T cells (Fig. 2d,e). Taken together, these data implicate IVNS1ABP 179 
haploinsufficiency as a novel monogenic cause of PID (Supplementary Note 1). 180 

The identification of both known and new PID genes using BeviMed underlines its effectiveness in 181 
cohorts of unrelated patients with sporadic disease. As the PID cohort grows, even very rare causes of 182 
PID should be detectable with a high positive predictive value (Extended Data Fig. 3). 183 

 184 
Identification of regulatory elements contributing to PID 185 

Sequence variation within non-coding regions of the genome can have profound effects on gene 186 
expression and would be expected to contribute to susceptibility to PID. We combined rare variant and 187 
large deletion (>50bp) events with a tissue-specific catalogue of cis-regulatory elements (CREs)20, 188 
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generated using promoter capture Hi-C (pcHi-C)21, to prioritise putative causal PID genes (Methods). We 189 
limited our initial analysis to rare large deletions overlapping exon, promoter or ‘super-enhancer’ CREs 190 
of known PID genes. No homozygous deletions affecting CREs were identified, so we sought individuals 191 
with two or more heterozygous variants comprising a CRE deletion with either a rare coding variant or 192 
another large deletion in a pcHi-C linked gene. Such candidate compound heterozygote (cHET) variants 193 
had the potential to cause recessive disease. Out of 22,296 candidate cHET deletion events, after 194 
filtering by MAF, functional score and known PID gene status, we obtained 10 events (Supplementary 195 
Table 3, Extended Data Fig. 4); the confirmation of three is described.   196 

The LRBA and DOCK8 cHET variants were functionally validated (Extended Data Figs. 4 and 5). In these 197 
two cases SV deletions encompassed both non-coding CREs and coding exons, but the use of WGS PID 198 
cohorts to detect a contribution of CREs confined to the non-coding genome would represent a major 199 
advance in PID pathogenesis and diagnosis. ARPC1B fulfilled this criterion, with its BeviMed association 200 
partially driven by a patient cHET for a novel p.Leu247Glyfs*25 variant resulting in a premature stop, 201 
and a 9Kb deletion spanning the promoter region including an untranslated first exon (Fig. 3a) that has 202 
no coverage in the ExAC database (http://exac.broadinstitute.org). Two unaffected first-degree relatives 203 
were heterozygous for the frameshift variant, and two for the promoter deletion (Fig. 3b), confirming 204 
compound heterozygosity in the patient. Western blotting demonstrated complete absence of ARPC1B 205 
and raised ARPC1A in platelets22(Fig. 3c). ARPC1B mRNA was almost absent from mononuclear cells in 206 
the patient and was reduced in a clinically unaffected sister carrying the frameshift mutation 207 
(Supplementary Note 1). An allele specific expression assay demonstrated that the promoter deletion 208 
essentially abolished mRNA expression (Supplementary Note 1). ARPC1B is part of the Arp2/3 complex 209 
necessary for normal actin assembly in immune cells23, and monocyte-derived macrophages from the 210 
patient had an absence of podosomes, phenocopying deficiency of the Arp2/3 regulator WASp (Fig. 3d). 211 

While examples of bi-allelic coding variants have been described as causing PID (e.g.24,25), here we 212 
demonstrate the utility of WGS for detecting compound heterozygosity for a coding variant and a non-213 
coding CRE deletion - a further advantage of a WGS approach to PID diagnosis. Improvements in analysis 214 
methodology, cohort size and better annotation of regulatory regions will be required to explore the 215 
non-coding genome more fully and discover further disease-causing genetic variants.   216 

 217 
GWAS of the WGS cohort reveals PID-associated loci 218 

The diverse clinical phenotype and variable within-family disease penetrance of PID may be in part due 219 
to stochastic events (e.g. unpredictable pathogen transmission) but may also have a genetic basis. We 220 
therefore performed a GWAS of common SNPs (minor allele frequency (MAF)>0.05), restricted to 733 221 
AD-PID cases (Fig. 1a) to reduce phenotypic heterogeneity (see Methods), and 9,225 unrelated NBR-RD 222 
controls, and performed a fixed effect meta-analysis of this AD-PID GWAS with a previous CVID study 223 
ImmunoChip study  (778 cases, 10,999 controls)8. This strengthened known MHC and 16p13.13 224 
associations8, and found suggestive associations including at 3p24.1 within the promoter region of 225 
EOMES and at 18p11.21 proximal to PTPN2 . We also examined SNPs of intermediate frequency 226 
(0.005<MAF<0.05) in AD-PID, identifying TNFRSF13B p.Cys104Arg variant26 (OR=4.04, P = 1.37x10-12) 227 
(Fig. 4a, Extended Data Table 3, Extended Data Fig. 6, Supplementary Note 3). Conditional analysis of 228 
the MHC locus revealed independent signals at the Class I and Class II regions, driven by amino-acid 229 
changes in the HLA-B and HLA-DRB1 genes known to impact upon peptide binding (Extended Data Fig. 230 
7). We next examined the enrichment of non-MHC AD-PID associations in 9 other diseases, finding 231 
enrichment for allergic and immune-mediated diseases (IMD), suggesting that dysregulation of common 232 
pathways contributes to susceptibility to both (Supplementary Note 4). 233 

 234 
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GWAS data allows identification of candidate monogenic PID genes and disease-modifying variants 235 

To investigate whether loci identified by GWAS of AD-PID and other IMD might be used to prioritize 236 
novel candidate monogenic PID genes, we used the data-driven pcHiC omnibus gene score (COGS) 237 
approach21 (Methods, Supplementary Table 4). We selected six protein-coding genes with above 238 
average prioritisation scores in one or more diseases (Fig. 4b), and identified a single protein truncating 239 
variant in each of ETS1, SOCS1 and PTPN2 genes, all occurring exclusively in PID patients. SOCS1 and 240 
PTPN2 variants were analysed further. 241 
 242 
SOCS1 limits phosphorylation of targets including STAT1, and is a key regulator of IFN-γ signalling27. The 243 
patient with a heterozygous de-novo protein-truncating SOCS1 variant (p.Met161Alafs*46) presented 244 
with CVID complicated by lung and liver inflammation. GeneMatcher28 identified an independent 245 
pedigree with a protein truncating variant p.Tyr64* in SOCS1. All patients showed low/normal numbers 246 
of B cells, a Th1-skewed memory CD4+ population and reduced T regulatory (Treg) cells (Supplementary 247 
Note 1). Socs1 haploinsufficient mice also demonstrate B lymphopenia27,29, a Th1 skew, decreased 248 
Tregs30 and immune-mediated liver inflammation31. In patients’ T cell blasts, SOCS1 was reduced and 249 
IFN-γ induced STAT1 phosphorylation was increased (Fig. 4c). Taken together this is consistent with 250 
SOCS1 haploinsufficiency causing PID. The initial patient also carried the SOCS1 pcHiC-linked 16p13.13 251 
risk-allele identified in the AD-PID GWAS (Supplementary Note 3) in trans with the novel SOCS1-252 
truncating variant (Supplementary Note 1); such compound heterozygosity suggests common and rare 253 
variants might combine to impact upon disease phenotype, a possibility explored further below. 254 

A more detailed example of an interplay between rare and common variants is provided by a family 255 
containing PTPN2 variants (Fig. 4d). PTPN2 encodes the non-receptor T-cell protein tyrosine 256 
phosphatase (TC-PTP) that negatively regulates immune responses by dephosphorylation of proteins 257 
mediating cytokine signalling. PTPN2 deficient mice are B cell lymphopenic32,33 and haematopoietic 258 
deletion leads to B and T cell proliferation and autoimmunity34. A novel premature stop-gain at p.Glu291 259 
was identified in a “sporadic” case presenting with CVID at age 20; he had B lymphopenia, low IgG, 260 
rheumatoid-like polyarthropathy, severe recurrent bacterial infections, splenomegaly and inflammatory 261 
lung disease. His mother, also heterozygous for the PTPN2 truncating variant, had systemic lupus 262 
erythematosus (SLE), insulin-dependent diabetes mellitus, hypothyroidism and autoimmune 263 
neutropenia (Supplementary Note 1). Gain-of-function variants in STAT1 can present as CVID 264 
(Supplementary Table 1) and TC-PTP, like SOCS1, reduces phosphorylated STAT1 (Fig. 4e). Both mother 265 
and son demonstrated reduced T cell TC-PTP expression and STAT1 hyperphosphorylation, more 266 
pronounced in the index case and similar to both SOCS1 haploinsufficient and STAT1 GOF patients (Fig. 267 
4f). Thus PTPN2 haploinsufficiency represents a new cause of PID that acts, at least in part, through 268 
increased phosphorylation of STAT1. Reports that use of the Janus Kinase 1 and 2 inhibitor ruxolitinib is 269 
effective in controlling autoimmunity in STAT1-GOF patients35, suggests it might be effective in SOCS1 270 
and PTPN2 deficiency. 271 

The index case, but not his mother, carried the G allele of variant rs2847297 at the PTPN2 locus, an 272 
expression quantitative trait locus (eQTL)36 previously associated with rheumatoid arthritis37.  His 273 
brother, healthy apart from severe allergic nasal polyposis, was heterozygous at rs2847297 and did not 274 
inherit the rare variant (Fig. 4d). Allele-specific expression analysis demonstrated reduced PTPN2 275 
transcription from the rs2847297-G allele, explaining the lower expression of TC-PTP and greater 276 
persistence of pSTAT1 in the index case compared to his mother (Fig. 4g).  This could explain the 277 
variable disease penetrance in this family, with PTPN2 haploinsufficiency alone driving autoimmunity in 278 
the mother, but the additional impact of the common variant on the index case causing 279 
immunodeficiency. The family illustrates the strength of cohort-wide WGS approach to PID diagnosis, by 280 
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revealing both a new monogenic cause of disease, and how the interplay between common and rare 281 
genetic variants may contribute to the variable clinical phenotypes of PID. 282 

In summary, we show that cohort-based WGS in PID is a powerful approach to provide diagnosis of 283 
known genetic defects, and discover new coding and non-coding variants associated with disease 284 
(comparison of WGS with other methodologies; Supplementary Note 5). Improved analysis 285 
methodology and better integration of parallel datasets, such as GWAS and cell surface or metabolic 286 
immunophenotyping, will allow further exploration of the non-coding space, enhancing diagnostic yield. 287 
Such an approach promises to transform our understanding of genotype-phenotype relationships in PID 288 
and related immune-mediated conditions, and could redefine the clinical boundaries of 289 
immunodeficiency, add to our understanding of human immunology, and ultimately improve patient 290 
outcomes. 291 

 292 
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Figure Legends 374 

 375 
Figure 1. Description of the immunodeficiency cohort and disease associations in coding regions. (a) 376 
Number of index cases recruited under different phenotypic categories (red – adult cases, blue – 377 
paediatric cases, lighter shade – sporadic (no family history of PID), darker shade - family history of PID). 378 
CVID – Common variable immunodeficiency, CID – combined immunodeficiency,  and SCID – severe 379 
combined immunodeficiency. (b) Number of index cases with malignancy, autoimmunity and CD4+ 380 
lymphopenia. (black bar – total number of cases, blue bar - number of cases with AD-PID phenotype). (c) 381 
Number of patients with reported genetic findings subdivided by gene. Previously reported variants are 382 
those identified as immune disease-causing in the HGMD-Pro database.  383 

Figure 2. Discovery of novel PID genes in a large cohort WGS analysis. (a) BeviMed assessment of 384 
enrichment for candidate disease-causing variants in individual genes, in the PID cohort relative to the 385 
rest of the NBR-RD cohort (cases n=886, controls n= 9,284). The top 25 candidate genes are shown. 386 
Genes highlighted in yellow are those flagged as potentially confounded by population stratification (see 387 
Supplementary Note 2). Prioritized genes known to cause PID according to the International Union of 388 
Immunological Societies (IUIS) in 2015 (blue)10 and 2017 (red)3. (b) Pedigrees of 3 unrelated kindreds 389 
with damaging IVNS1ABP variants and linear protein position of variants. (c) Western blot of IVNS1ABP 390 
and GAPDH in whole cell lysates of PBMCs. (Top) Representative blot from A.II.1 (P) and Control (C). For 391 
gel source data, see Supplementary Figure 1. (Bottom) Graph of relative IVNS1ABP normalized to 392 
GAPDH. (representative of 4 independent experiments). (d) Immunophenotyping of CD3+ T cells, CD4+, 393 
CD8+ T cells, and CD19+ B cells in C = healthy controls (n=20) and P = IVNS1ABP patients (n=4). 394 
(e) Assessment of CD127 and PD-1 expression in naïve T cells. (Left) Representative gating of naïve 395 
(CD45RA+ CD62L+) CD4+ T cells in a control and B.II.1.(Middle) FACS histograms of PD-1 and CD127 from 396 
controls and IVNS1ABP patients (B.II.1 and A.II.1). (Right) PD-1 and CD127 mean fluorescence intensity 397 
(MFI) values from controls (C, n=20) and patients (P, n=4). All tests two-sided Mann Whitney U. Lines 398 
present means, bars = S.E.M. 399 

Figure 3. Assessment of WGS data for regulatory region deletions that impact upon PID. (a) Genomic 400 
configuration of the ARPC1B gene locus highlighting the compound heterozygous gene variants. ExAC 401 
shows that the non-coding deletion is outside of the exome-targeted regions. (b) Pedigree of patient in 402 
(a) and co-segregation of ARPC1B genotype (wt – wild-type, del – deletion, fs – frameshift). (c) Western 403 
blot of ARPC1A and ARPC1B in neutrophil and platelet lysates from the patient (P) and control (C, n=1). 404 
For gel source data, see Supplementary Figure 1. (d) Podosomes were identified by staining adherent, 405 
fixed monocyte-derived macrophages for vinculin, phalloidin and the nuclear stain DAPI. Quantification 406 
was performed by counting podosomes on at least 100 cells per sample from 10 fields of view at 60x 407 
magnification. 408 

Figure 4. Antibody deficiency (AD-PID) GWAS identifies common variants that mediate disease risk 409 
and suggests novel monogenic candidate genes. (a) A composite Manhattan plot for the AD-PID GWAS. 410 
Blue – common variants (MAF>0.05) analysed in this study (NBR-RD) only (cases n=773, controls 411 
n=9,225), red – variants from fixed effects meta-analysis with data from Li et al. (cases n=1,511, controls 412 
n=20,224); and purple – genome-wide significant low frequency (0.005<MAF<0.05) variants in 413 
TNFRSF13B locus. Loci of interest are labelled with putative causal protein coding gene names. (b) COGS 414 
prioritisation scores of candidate monogenic causes of PID using previous autoimmune targeted 415 
genotyping studies (Supplementary Table 4) across suggestive AD-PID loci (n=4). For clarity, only 416 
diseases prioritising one or more genes are shown. CEL – coeliac disease, CRO- Crohn’s disease, UC – 417 
ulcerative colitis, MS – multiple sclerosis, PBC – primary biliary cirrhosis and T1D – type 1 diabetes (c) 418 
Graph of relative pSTAT1 and SOCS1 in lysates made from 2 hour IFN-γ treated T cell blasts from SOCS1 419 
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mutation patients and controls. (Lines present mean, error bars=S.E.M.)  (d) The pedigree of the PTPN2 420 
mutation patient. Carriers of the rs2847297-G risk allele are indicated. (e) Simplified model of how 421 
SOCS1 and TC-PTP limit the phosphorylated-STAT1 triggered by interferon signalling. (f) Graph of 422 
relative PTPN2 and pSTAT1 from the indicated patients and controls, in lysates made from T cell blasts 423 
incubated ± IFN-γ for 2 hours. (PTPN2 normalized to tubulin level, pSTAT1 normalised to STAT1 levels, 424 
representative of 2 independent experiments) 425 

  426 
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Methods 427 

PID cohort 428 

The PID patients and their family members were recruited by specialists in clinical immunology across 26 429 
hospitals in the UK, and one each from the Netherlands, France and Germany. The recruitment criteria 430 
were intentionally broad, and included the following: clinical diagnosis of common variable 431 
immunodeficiency disorder (CVID) according to internationally established criteria (Extended Data Table 432 
1); extreme autoimmunity; or recurrent and/or unusual severe infections suggestive of defective innate 433 
or cell-mediated immunity. Patients with known secondary immunodeficiencies caused by cancer or HIV 434 
infection were excluded. Although screening for more common and obvious genetic causes of PID prior 435 
to enrolment into this WGS study was encouraged, it was not a requirement. Consequently, a minority 436 
of patients (16%) had some prior genetic testing, from single gene Sanger sequencing or MLPA to a gene 437 
panel screen. Paediatric and familial cases were less frequent in our cohort, in part reflecting that 438 
genetic testing is more frequently performed in more severe cases: 31% of paediatric onset cases had 439 
prior genetic testing compared to 10% of adult index cases (Extended Data Fig. 2). 440 

To expedite recruitment a minimal clinical dataset was required for enrolment, though more detail was 441 
often provided. There was a large variety in patients’ phenotypes, from simple “chest infections” to 442 
complex syndromic features, and the collected phenotypic data of the sequenced individuals ranged 443 
from assigned disease category only to detailed clinical synopsis and immunophenotyping data. The 444 
clinical subsets used to subdivide PID patients were based on ESID definitions, as shown in Extended 445 
Data Table 1. The final PID cohort that we sequenced comprised of 886 index cases, 88 affected 446 
relatives, and 344 family members unaffected at the time of recruitment. 447 

To facilitate GWAS analysis by grouping patients with a degree of phenotypic coherence while excluding 448 
some distinct and very rare clinical subtypes of PID that may have different aetiologies, a group of 449 
patients was determined to have antibody deficiency-associated PID (AD-PID). This group comprised 733 450 
of the 886 unrelated index cases, and included all patients with CID, CVID or Antibody Defect ticked on 451 
the recruitment form, together with patients requiring IgG replacement therapy and those with 452 
specified low levels of IgG/A/M. SCID patients satisfying these AD criteria were not assigned to the AD-453 
PID cohort. 454 

WGS data processing 455 

Details of DNA sample processing, whole genome sequencing, data processing pipeline, quality checks, 456 
alignment and variant calling, ancestry and relatedness estimation, variant normalisation and 457 
annotation, large deletion calling and filtering, and allele frequency calculations, are described in38. 458 
Briefly, DNA or whole blood EDTA samples were processed and quality checked according to standard 459 
laboratory practices and shipped on dry ice to the sequencing provider (Illumina Inc, Great Chesterford, 460 
UK). Illumina Inc performed further QC array genotyping, before fragmenting the samples to 450bp 461 
fragments and processing with the Illumina TruSeq DNA PCR-Free Sample Preparation kit (Illumina Inc., 462 
San Diego, CA, USA). Over the three-year duration of the sequencing phase of the project, different 463 
instruments and read lengths were used: for each sample, either 100bp reads on three HiSeq2500 lanes; 464 
or 125bp reads on two HiSeq2500 lanes; or 150bp reads on a single HiSeq X lane. Each delivered 465 
genome had a minimum 15X coverage over at least 95% of the reference autosomes. Illumina 466 
performed the alignment to GRCh37 genome build and SNV/InDel calling using their Isaac software, 467 
while large deletions were called with their Manta and Canvas algorithms. The WGS data files were 468 
received at the University of Cambridge High Performance Computing Service (HPC) for further QC and 469 
processing by our Pipeline team. 470 

For each sample, we estimated the sex karyotype and computed pair-wise kinship coefficients (full 471 
methods described in 47), which allowed us to identify sample swaps and unintended duplicates, assign 472 
ethnicities, generate networks of closely related individuals (sometimes undeclared relatives from 473 
across different disease domains) and a maximal unrelated sample set (for the purposes of allele 474 
frequency estimation and control dataset in case-control analyses). Variants in the gVCF files were 475 
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normalised and loaded into an HBase database, where Overall Pass Rate (OPR) was computed within 476 
each of the three read length batches, and the lowest of these OPR values (minOPR) assigned to each 477 
variant. The rare variant analyses presented here are based on SNVs/InDels with minOPR>0.98. Variants 478 
were annotated with Sequence Ontology terms according to their predicted consequences, their 479 
frequencies in other genomic databases (gnomAD, UK10K, 1000 Genomes), if they have been associated 480 
with a disease according to the HGMD Pro database, and internal metrics (AN, AC, AF, OPR). 481 

Large deletions (those >50bp in length, defined by Illumina) were merged and analysed collectively, as 482 
described in38. Briefly, sample-level calls by the two algorithms, Manta (which uses read and mate-pair 483 
alignment information) and Canvas (which relies on read depth and is optimised for calls >1kb in length), 484 
were combined according to a set of rules38 to generate a high quality set for each sample (and a large 485 
number across the project was visually inspected to ensure reasonably high specificity). To exclude 486 
common deletions from further rare variant analyses, we included only those that were observed in 487 
fewer than 3% of the samples, as described previously39. 488 

Diagnostic reporting 489 

We screened all genes in the International Union of Immunological Societies (IUIS) 2015 classification for 490 
previously reported or likely pathogenic variants. SNVs and small InDels were filtered based on the 491 
following criteria: OPR>0.95; having a protein-truncating consequence, gnomAD AF<0.001 and internal 492 
AF<0.01; or present in the HGMD Pro database as DM variant. Large deletions called by both Canvas and 493 
Manta algorithms, passing standard Illumina quality filters, overlapping at least one exon, and classified 494 
as rare by the SVH method were included in the analysis. In order to aid variant interpretation and 495 
consistency in reporting, phenotypes were translated into Human Phenotype Ontology (HPO) terms as 496 
much as possible. Multi-Disciplinary Team (MDT) then reviewed each variant for evidence of 497 
pathogenicity and contribution to the phenotype, and classified them according to the American College 498 
of Medical Genetics (ACMG) guidelines11. Only variants classified as Pathogenic or Likely Pathogenic 499 
were systematically reported, but individual rare (gnomAD AF<0.001) or novel missense variants that 500 
BeviMed analysis (see below) highlighted as having a posterior probability of pathogenicity >0.2 were 501 
additionally considered as Variants of Unknown Significance (VUS). If the MDT decided that they were 502 
likely to be pathogenic and contribute to the phenotype, they were also reported (Supplementary Table 503 
2). All variants and breakpoints of large deletions reported in this study were confirmed by Sanger 504 
sequencing using standard protocols.  505 

BeviMed 506 

We used BeviMed4 to evaluate the evidence for association, in genetically unrelated individuals, 507 
between case/control status and rare genetic variants in a locus. For each gene, we inferred a posterior 508 
probability of association (PPA) under Mendelian inheritance models (dominant and recessive), and 509 
different variant selection criteria ("moderate" and "high" impact variants based on functional 510 
consequences predicted by the Variant Effect Predictor40). We inferred a PPA across all association 511 
models and the mode of inheritance corresponding to the association model with the greatest posterior 512 
probability. We used MAF<0.001 and CADD>=10 as these were selection criteria for rare, likely 513 
pathogenic variants used in diagnostic reporting. Approximately 1% of all genes (276/31,35010) have 514 
previously been implicated as monogenic causes of PID, and we therefore assumed that a few hundred 515 
genes are causal of PID overall. We encoded this assumption conservatively, by assigning a prior 516 
probability of 0.01 to the association model for each gene. In addition, we used the default prior 517 
(mean=0.85) on the “penetrance” parameter, which represents disease risk for individuals carrying 518 
pathogenic configuration of alleles at a gene locus (see 4 for a detailed description of all parameters and 519 
their default values). We then gave all four combinations of inheritance model and variant selection 520 
criteria equal prior probability of association of 0.0025 (1/4 of 0.01). We used uniform priors to ensure 521 
that our results did not depend on any knowledge of previous gene or variant associations with disease. 522 
We obtained a BeviMed PPA for 31,350 genes in the human genome; the highest ranked genes are 523 
shown in Fig. 2a, Supplementary Note 2 and Supplementary Table 2. Overall, genes with BeviMed 524 
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PPA>0.1 were strongly enriched for known PID genes (odds ratio = 15.1, P = 3.1x10-8 Fisher’s Exact test), 525 
demonstrating that a statistical genetic association approach can identify genes causal for PID. 526 

Conditional on the association model with the highest posterior probability, the posterior probability 527 
that each rare variant is pathogenic was also computed. We used a variant-level posterior probability of 528 
pathogenicity >0.2 to select potentially pathogenic missense variants in known PID genes to report back. 529 
As detailed in Greene et al. (Figure 1 in 4) the method was calibrated as part of a simulation study 530 
estimating positive predictive value (1-FDR) given a fixed level of power. We then examined the 531 
relationship between BeviMed rank and `known’ gene status in the top fifty genes reported; genes with 532 
the highest PPA were significantly enriched for known genes (P<0.008 one-sided Wilcoxon rank-sum 533 
test). BeviMed’s sensitivity in prioritizing genes as causal, even if variants exist in only a few cases, is 534 
demonstrated by the observation that of the 8 IUIS-defined causal PID genes in the top 50 (all with a 535 
BeviMed PPA>0.2), 3 are driven by 2 or 3 cases, while 5 have between 4 and 16. 536 

As allele frequency datasets for non-Europeans are much smaller than for Europeans, potential false 537 
positives may be induced by the unintentional inclusion of rare variants observed only in non-European 538 
populations41.Furthermore, whilst the BeviMed analysis was restricted to the set of cases and controls 539 
carefully filtered to minimise relatedness, it remains possible that some associations could be false 540 
positives due to residual population stratification. We addressed this by flagging variants whose 541 
prioritisation was dependent upon cases with non-European ancestry. In addition, where identical ultra-542 
rare variants were shared between cases, we examined the possibility of cryptic relatedness by seeking 543 
direct evidence of shared genetic background (Supplementary Note 2). These procedures found that 544 
population stratification might contribute to the prioritization of 9 candidate genes among the top 25, 545 
as highlighted in Fig. 2a and Supplementary Table 2. Six of these were novel candidates, but that 3 were 546 
known causes of PID indicated that population stratification does not always generate false positives – 547 
and implicated genes should therefore be flagged rather than excluded from the list. This potential 548 
impact of population stratification underlines the importance of subsequent validation of prioritized 549 
genes in order to demonstrate causality. 550 

The BeviMed probabilistic model, based on dominant and recessive inheritance involving a mixture of 551 
pathogenic and benign variants, differs from other popular frequentist methods such as SKAT, and is 552 
well-suited to the rare disease scenario. When trained on our dataset, SKAT and BeviMed both 553 
identified NKFB1 as the gene with the strongest association signal, but BeviMed placed 8 IUIS 2017 PID 554 
genes in the top 50 results whilst SKAT placed 5, and ARPC1B was ranked 38th by BeviMed and 289th by 555 
SKAT (out of a total of 31,350 tested genes), consistent with the superiority of BeviMed over SKAT and 556 
related methods demonstrated in Greene et al.1. 557 

Immunohistochemistry: podosome analysis 558 

Frozen peripheral blood mononuclear cells (PBMCs) from healthy donors and patients were thawed and 559 
CD14+ cells selected using magnetic beads (Miltenyi). 2 x 105 cells/ well in a 24 well plate were seeded 560 
on 10ug/ml fibronectin-coated cover slips (R&D systems) in 500ul 20ng/ml macrophage colony 561 
stimulating factor (MCSF, Gibco) for 6 days to obtain monocyte-derived macrophages (MDMs). Cells 562 
were fixed with paraformaldehyde 4% (Thermo Fisher Scientific) for 10 minutes on ice followed by 8% 563 
for 20 minutes at room temperature, permeabilised with 0.1% triton (Sigma) for 5 minutes at room 564 
temperature and non-specific binding reduced by blocking with 5% BSA/PBS for 1 hour at room 565 
temperature. Cells were incubated with primary anti-vinculin antibody (Sigma 1:200) for 1 hour at room 566 
temperature, washed twice with PBS and incubated with secondary antibody conjugated to Alexa Fluor 567 
488 (1:500 Life Technologies) and phalloidin-conjugated to Alexa Fluor 633 (1:200 Thermo Fisher 568 
Scientific) for one hour at room temperature. Cells were washed twice with PBS and cover slips 569 
mounted onto slides using mounting solution with DAPI for nuclear staining (ProLong Diamond Antifade 570 
Mountant with DAPI, Life Technologies) overnight. Slides were imaged using Zeiss 710 confocal 571 
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microscope at 63x magnification and podosome analysis was carried out on at least 100 cells per sample 572 
from 10 fields of view.  573 

Filtering strategy for candidate regulatory compound heterozygotes 574 

Being underpowered42 to detect single nucleotide variants affecting CREs, we limited our initial analysis 575 
to large deletions overlapping exon, promoter or ‘super-enhancer’ CREs of known PID genes (Extended 576 
Data Fig. 4). We selected uncommon (<0.03 frequency NIHR-RD BioResource cohort38) large deletion 577 
events (>50bp), occurring in PID index cases. We intersected these with a catalogue of of cis-regulatory 578 
elements linked to protein-coding genes, created by combining `super-enhancer’ and promoter (+/- 579 
500bp window around any protein coding gene transcriptional start site) annotations with promoter 580 
capture Hi-C data across 17 primary haematopoietic cell types21. Finally, we filtered these events so that 581 
only those with linked genes, containing a potentially high impact (CADD>20) rare (MAF<0.001) coding 582 
variant, within a previously reported pathogenic gene (IUIS 2017), were taken forward. Events 583 
in ARCPC1B, LRBA and DOCK8 were functionally validated. The LRBA cHET variants were confirmed to be 584 
in trans by sequencing the parents. Functional LRBA deficiency was demonstrated by impaired surface 585 
CTLA-4 expression on Treg cells (Extended Data Fig. 4). In the absence of the patient’s mother for 586 
sequencing, the DOCK8 variants were confirmed to be in trans by nanopore sequencing and phasing of 587 
merged long- and short-read data (see below and Extended Data Fig. 5). Functional DOCK8 deficiency 588 
was confirmed by a typical clinical phenotype (severe immunodeficiency with prominent wart infection), 589 
together with characteristic impaired ex-vivo CD8+, but preserved CD4+, T cell proliferation. The need 590 
for rapid bone marrow transplantation has precluded further phenotypic analysis of this patient. 591 

Phasing of DOCK8 variants 592 

In order to confirm the phase of two variants detected in the DOCK8 gene of a single individual, chr9:g. 593 
306626-358548del and chr9:463519G>A, long read sequencing was performed using the Oxford 594 
Nanopore Technologies PromethION platform. The DNA sample was prepared using the 1D ligation 595 
library prep kit (SQK-LSK109), and genomic libraries were sequenced using a R.9.4.1 PromethION 596 
flowcell. Raw signal data in FAST5 format was base called using Guppy (v2.3.5) to generate sequences in 597 
FASTQ format, which were then aligned against the GRCh37/hg19 human reference genome using 598 
minimap2 (v2.2). Average coverage was 14x and median read length was 4,558 ± 4,007. A high quality 599 
set of heterozygous genotypes for the sample was created by using only variants from the short read 600 
Illumina WGS data with a phred score of <20 (probability of correct genotype > 0.99). Haplotyping was 601 
then performed with Whatshap (v0.14.1) by using the long Nanopore reads to bridge across the 602 
informative genotypes from the short read data 603 
(https://whatshap.readthedocs.io/en/latest/index.html). We obtained a single high confidence 604 
haplotype block spanning the large deletion and the rare missense variant and showing that they were 605 
in trans (Extended data Fig. 5). 606 

AD-PID GWAS 607 

GWAS was performed both on the whole PID cohort (N cases = 886) and on a subset comprising AD-PID 608 
cases (N cases = 733); the results of the AD-PID analysis were less noisy, and had increased power to 609 
detect statistical associations despite a reduced sample size (Extended Data Fig. 6). We used 9,225 610 
unrelated samples from non-PID NBR-RD cohorts as controls. 611 

Variants selected from a merged VCF file were filtered to include bi-allelic SNPs with overall MAF>=0.05 612 
and minOPR=1 (100% pass rate across all WGS data for over 13,000 NBR participants). We ran PLINK 613 
logistic association test under an additive model. We adjusted for read length to guard against technical 614 
differences in genotype calls across the samples sequenced using 100bp, 125bp and 150bp reads, as 615 
Illumina chemistries changed throughout the duration of the project. We also used sex and first 10 616 
principal components from the ethnicity analysis as covariates, to mitigate against any population 617 
stratification effects. After filtering out SNPs with HWE p<10-6, we were left with the total of 4,993,945 618 
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analysed SNPs. There was minimal genomic inflation of the test statistic (lambda = 1.022), suggesting 619 
population substructure and sample relatedness had been appropriately accounted for. Linear mixed 620 
model (LMM) analysis, as implemented in the BOLT-LMM package43, is an alternative method of 621 
association testing correcting for population stratification. It was used to confirm the observed 622 
associations (Extended Data Table 3). After genomic control correction44  the only genome-wide 623 
significant (p<5x10-8) signal was at the MHC locus, with several suggestive (p<1x10-5) signals (Extended 624 
Data Fig. 6). We repeated the analysis with more relaxed SNP filtering criteria using 0.005 < MAF < 0.05 625 
and minOPR>0.95 (Extended Data Fig. 6). The only additional signal identified were the three 626 
TNFRSF13B variants shown in Supplementary Note 3.  627 

We obtained summary statistics data from the Li et al. CVID Immunochip case-control study8 and, after 628 
further genomic control correction (lambda = 1.039), performed a fixed effects meta-analysis on 95,417 629 
variants shared with our AD-PID GWAS. Genome-wide significant (p<5x10-8) signals were seen at the 630 
MHC and 16p13.13 loci, with several suggestive (p<1x10-5) signals (Extended Data Table 3). After meta-631 
analysis, we conditioned on the lead SNP in each of the genome-wide and suggestive loci by including it 632 
as an additional covariate in the logistic regression model in PLINK, to determine if the signal was driven 633 
by single or multiple hits at those loci. The only suggestion of multiple independent signals was at the 634 
MHC locus (Extended Data Fig. 7). 635 

MHC locus analyses 636 

We imputed classical HLA alleles using the method implemented in the SNP2HLA v1.0.3 package45, 637 
which uses Beagle v3.0.4 for imputation and the HapMap CEU reference panel. We imputed allele 638 
dosages and best-guess genotypes of 2-digit and 4-digit classical HLA alleles, as well as amino acids of 639 
the MHC locus genes HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1 and HLA-DQB1. We tested the 640 
association of both allele dosages and genotypes using the logistic regression implemented in PLINK, 641 
and obtained similar results. We then used the best-guess genotypes to perform the conditional analysis 642 
(see above), since conditioning is not implemented in PLINK in a model with allele dosages. We repeated 643 
the conditional analyses as described above. The results of the sequential conditioning on the two lead 644 
classical alleles and amino acids within the Class I and Class II regions are shown in Extended Data Fig. 7. 645 

Allele Specific Expression  646 

RNA and gDNA were extracted from PBMCs using the AllPrep kit (Qiagen) as per the manufacturer’s 647 
instructions. RNA was reverse transcribed to make cDNA using the SuperScriptTM VILOTMcDNA synthesis 648 
kit with appropriate minus reverse transcriptase controls, as per the manufacturer’s instructions. The 649 
region of interest in the gDNA and 1:10 diluted cDNA was amplified using Phusion (Thermo Fisher) and 650 
the following primers on a G-Storm thermal cycler with 30 seconds at 98oC then 35 cycles of 98oC 10 651 
seconds, 60oC 30 seconds, 72oC 15 seconds. 652 

ARPC1B 653 

The region of interest spanning the frameshift variant was amplified using the following primers: 654 
Forward: GGGTACATGGCGTCTGTTTC / Reverse: CACCAGGCTGTTGTCTGTGA 655 

PCR products were run on a 3.5% agarose gel. Bands were cut out and product extracted using the QIA 656 
Quick Gel Extraction Kit (Qiagen), as per protocol. Expected products were confirmed by Sanger 657 
sequencing. 4ul fresh PCR product was used in a TOPO®cloning reaction (Invitrogen) and used to 658 
transform One Shot™ TOP10 chemically competent E. coli. These were cultured overnight then spread 659 
on LB agar plates. Individual colonies were picked and genotyped. ARPC1B mRNA expression was 660 
assessed using a Taqman gene expression assay with 18S and EEF1A1 as control genes. Each sample was 661 
run in triplicate for each gene with a no template control. PCR was run on a LightCycler® (Roche) with 2 662 
mins 50oC, 20 seconds 95oC then 45 cycles of 95oC 3 seconds, 60oC 30 seconds. 663 

PTPN2 664 

PTPN2 ASE protocol is modified from above. RNA and genomic DNA were extracted from PBMCs using 665 
the AllPrep Kit (Qiagen). RNA was treated with Turbo DNAse (Thermo) and reverse transcribed to 666 
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generate cDNA using the SuperScript IV VILO master mix (Thermo). The intronic region of interest in 667 
gDNA and cDNA was amplified by two nested PCR reactions using Phusion enzyme (Thermo). The 668 
primers (F1/R1) and nested primers (F2/R2) used were:  669 
Forward_1: aaagtctggagcaggcagag  / Reverse_1: tgggggaactggttatgctttc 670 
Forward_2: ggagctatgatcacgccacatg / Reverse_2: atgctttctggttgggctgac 671 

PCR products were run on a 1% agarose gel. Bands were cut out and product extracted using the QIA 672 
Quick Gel Extraction Kit (Qiagen), as per protocol. Expected products were confirmed by Sanger 673 
sequencing. 5ng fresh PCR product was used in a TOPO®cloning reaction (Invitrogen) and used to 674 
transform One Shot™ TOP10 chemically competent E. coli. These were cultured overnight then spread 675 
on LB agar plates. Individual colonies were picked and genotyped. PTPN2 mRNA expression was 676 
assessed using a Taqman SNP genotyping assay and on a LightCycler (Roche).  677 

PAGE and Western Blot analysis 678 

Samples were separated by SDS polyacrylamide gel electrophoresis and transferred onto a nitrocellulose 679 
membrane. Individual proteins were detected with antibodies p-STAT1, against STAT1, against SOCS1, 680 
against PTPN2 (Cell Signaling Technology, Inc. 3 Trask Lane, Danvers, MA 01923, USA), against ARPC1b 681 
(goat polyclonal antibodies, ThermoScientific, Rockford, IL, USA), against ARPC1a (rabbit polyclonal 682 
antibodies, Sigma, St Louis, USA) and against actin (mouse monoclonal antibody, Sigma). Secondary 683 
antibodies were either donkey-anti-goat-IgG IRDye 800CW, Goat-anti-mouse-IgG IRDye 800CW or 684 
Donkey-anti-rabbit-IgG IRDye 680CW (LI-COR Biosciences, Lincoln, NE, USA). Quantification of bound 685 
antibodies was performed on an Odyssey Infrared Imaging system (LI-COR Biosciences, Lincoln, NE, 686 
USA). Specifically, for IVNS1ABP, whole cell lysates of peripheral blood mononuclear cells were lysed on 687 
ice with LDS NuPAGE (Invitrogen) at a concentration of 105 cells per 15ul of LDS. Lysates were denatured 688 
at 70°C for 10 minutes then cooled. Lysates were loaded run on Bis-Tris 4-12% Protein Gels (Invitrogen) 689 
then transferred to a PVDF membrane (Invitrogen) using iBlot 2 Dry Blotting System (Thermo Fisher 690 
Scientific). Membranes were blocked with 5% milk in 5% tris-buffered saline with 0.01% Tween-20 691 
(TBST) for 1 hour at room temperature then incubated overnight with the primary antibodies anti-692 
GAPDH (Cell Signaling Technology) and anti-IVNS1ABP (Atlas Antibodies). Membranes were then 693 
washed 3x with TBST at room temperature then incubated with secondary anti-rabbit HRP-conjugated 694 
antibody (Cell Signaling Technology) for 1 hour. Membranes were then washed 3x with TBST and 1x with 695 
phosphate buffered saline. Membranes were then exposed with Pierce ECL Western Blotting Substrate 696 
(Thermo Fischer Scientific) and developed with CL-XPosure Film (Thermo Fischer Scientific). 697 

Flow cytometry 698 

Peripheral blood mononuclear cells were prepared for analysis by density centrifugation using 699 
Histopaque-1077 (Sigma-Aldrich). The following antibodies were used for flow cytometry 700 
immunophenotyping: CD3 – BV605 (Biolegend, San Diego, CA, USA), CD4 – APC-eFluor780 (eBioscience, 701 
San Diego, CA,USA), CD8 – BV650 (eBioscience, San Diego, CA,USA), CD25 – PE (eBioscience, San Diego, 702 
CA,USA), CD127 – APC (eBioscience, San Diego, CA,USA), CD45RA – PerCP-Cy5.5(eBioscience, San Diego, 703 
CA,USA, CD19 – BV450 (BD Bioscience, Franklin Lakes, NJ, USA) , CD27 – PE-Cy7 (eBioscience, San Diego, 704 
CA,USA, CD62L – APC-eF780 (eBioscience, San Diego, CA,USA, CXCR3 – FITC (Biolegend, San Diego, CA, 705 
USA), CXCR5 – AF488 (Biolegend, San Diego, CA, USA), CCR7 – PE (Biolegend, San Diego, CA, USA), PD-1 706 
– APC (eBioscience, San Diego, CA,USA), HLA-DR- eFluor450 (eBioscience, San Diego, CA, USA), IgD – 707 
FITC (BD Bioscience, Franklin Lakes, NJ, USA) . Flow cytometry analysis was performed on a BD 708 
LSRFortessa (BD Bioscience) with FACS Diva software (BD Bioscience) for acquisition, then analysis was 709 
performed with FlowJo software (LLC). 710 

AD-PID GWAS Enrichment 711 

Due to the size of the AD-PID cohort, we were unable to use LD-score regression46 to assess genetic 712 
correlation between distinct and related traits. We therefore adapted the previous enrichment method 713 
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`blockshifter`47 in order to assess evidence for the enrichment of AD-PID association signals in a 714 
compendium of 9 GWAS European Ancestry summary statistics was assembled from publicly available 715 
data. We removed the MHC region from all downstream analysis [GRCh37 chr6:25-45Mb]. To adjust for 716 
linkage disequilibrium (LD), we split the genome into 1cM recombination blocks based on HapMap 717 
recombination frequencies 48. For a given GWAS trait, for ݊	variants within LD block ܾ	we used 718 
Wakefield’s synthesis of asymptotic Bayes factors (aBF)49 to compute the posterior probability that the 719 ݅௧௛ variant is causal (ܲܲܥ ௜ܸ) under single causal variant assumptions50 :	720 PPCV௜ = aBF௜ߨ௜∑ ൫aBF௝ߨ௝൯ + 1௡௝ୀଵ  

Here ߨ௜ =  ௝are flat prior probabilities for a randomly selected variant from the genome to be causal 721ߨ
and we use the value 1x10-4 51. We sum over these PPCV within an LD block, ܾ to obtain the posterior 722 
probability that ܾ contains a single causal variant (PPCB).  723 

To compute enrichment for trait ݐ, we convert PPCBs into a binary label by applying a threshold such 724 
that ܲܲܤܥ௧ > 0.95. We apply these block labels for trait ݐ, to PPCBs (computed as described above) for 725 
our AD-PID cohort GWAS, using them to compute a non-parametric Wilcoxon rank sum statistic, W 726 
representing the enrichment. Whilst the aBF approach naturally adjusts for LD within a block, residual 727 
LD between blocks may exist. In order to adjust for this and other confounders (e.g. block size) we use a 728 
circularised permutation technique52 to compute Wnull. To do this, for a given chromosome, we select 729 
recombination blocks, and circularise such that beginning of the first block adjoins the end of the last. 730 
Permutation proceeds by rotating the block labels, but maintaining AD-PID PPCB assignment. In this way 731 
many permutations of Wnull can be computed whilst conserving the overall block structure.  732 

For each trait we used 104 permutations to compute adjusted Wilcoxon rank sum scores using wgsea 733 
[https://github.com/chr1swallace/wgsea] R package. For detailed method description see 734 
Supplementary Note 4. 735 

PID monogenic candidate gene prioritisation 736 

We hypothesised, given the genetic overlap with antibody associated PID, that common regulatory 737 
variation, elucidated through association studies of immune-mediated disease, might prioritise genes 738 
harbouring damaging LOF variants underlying PID.  Firstly, using summary statistics from our combined 739 
fixed effect meta-analysis of AD-PID, we compiled a list of densely genotyped ImmunoChip regions 740 
containing one or more variant where P<1x10-5. Next, we downloaded ImmunoChip (IC) summary 741 
statistics from ImmunoBase (accessed 30/07/2018) for all 11 available studies.  For each study we 742 
intersected PID suggestive regions, and used COGS (https://github.com/ollyburren/rCOGS) in 743 
conjunction with promoter-capture Hi-C datasets for 17 primary cell lines21,47 in order to prioritise genes.  744 
We filtered by COGS score to select protein coding genes with a COGS score > 0.5, obtaining a list of 11 745 
protein coding genes out of a total of 54 considered. 746 

We further hypothesised that genes harbouring rare LOF variation causal for PID would be intolerant to 747 
variation. We thus downloaded pLI scores53 and took the product between these and the COGS scores 748 
to compute an `overall’ prioritisation score across each trait and gene combination. We applied a final 749 
filter taking forward only those genes having an above average `overall’ score to obtain a final list of 6 750 
candidate genes (Fig. 4d).  Finally, we filtered the cohort for damaging rare (gnomAD AF<0.001) protein-751 
truncating variants (frameshift, splice-site, nonsense) within these genes in order to identify individuals 752 
for functional follow up. 753 

Statistical analyses 754 

Statistical analyses were carried out using R (v3.3.3 – “Another Canoe”) and Graphpad Prism (v7) unless 755 
otherwise stated. All common statistical tests are two-sided unless otherwise stated. No statistical 756 
methods were used to pre-determine sample size 757 

 758 
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Extended Data Figures and Tables 874 

Extended Data Figure 1 – Graphical abstract 875 

Extended Data Figure 2 – Genetic testing in the PID cohort prior to WGS recruitment, in sporadic 876 
versus familial cases. Any type of genetic test is included, such as single exon/gene sequencing, MLPA, 877 
or targeted gene panel/exome sequencing. The information was supplied on the referral form and is 878 
likely an underestimate of the number of patients with additional genetic testing.  879 

Extended Data Figure 3 – BeviMed simulation study of Positive Predictive Value (PPV) with increasing 880 
disease cohort size. We simulated genotypes at 25 rare variant sites in a hypothetical locus amongst 881 
20,000 controls and a further 1,000, 2,000, 3,000, 4,000 or 5,000 cases. We simulated that 0.2%, 0.3%, 882 
0.4% or 0.5% of the cases had the hypothetical locus as their causal locus. We distinguish between cases 883 
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due to the hypothetical locus (CHLs) and cases due to other loci (COLs). The allele frequency of 20 884 
variants was set to 1/10,000 amongst the cases and COLs. The allele frequency of the remaining 5 885 
variants was set to zero amongst the controls and COLs. One of the five variants was assigned a 886 
heterozygous genotype amongst the CTLs at random. Thus, we represent a dominant disorder caused by 887 
variants with full penetrance. As inference is typically performed across thousands of loci, with only a 888 
small number being causal, we assumed a mixture of 100 to 1 non-causal to causal loci. In order to 889 
compute the PPV for a given threshold on the posterior probability of association (PPA), we computed 890 
PPAs for 10,000 datasets without permutation of the case/control labels and 10,000 further datasets 891 
with a permutation of the case/control labels. We then sampled 1,000 PPAs from the permuted set and 892 
10 PPAs from the non-permuted set to compute the PPV obtained when the PP threshold was set to 893 
achieve 100% power. The mean over 2,000 repetitions of this procedure is shown on the y-axis. The x-894 
axis shows the number of cases in a hypothetical cohort. As the number of cases increases from 1,000 to 895 
5,000, the PPV increases above 87.5% irrespective of the proportion of cases with the same genetic 896 
aetiology. This demonstrates the utility of expanding the size of the PID case collection for detecting 897 
even very rare aetiologies resulting in the same broad phenotype as cases with different aetiologies. In 898 
practice, the PPV/power relationship may be much better, as the wealth of phenotypic information of 899 
the cases can allow subcategorization of cases to better approximate shared genetic aetiologies.  900 

Extended Data Figure 4 – Candidate cHET filtering strategy and LRBA patient. (a) Filtering strategy to 901 
identify candidate compound heterozygous (cHET) pathogenic variants consisting of a rare coding 902 
variant in a PID-associated gene and a deletion of a cis-regulatory element for the same gene. (b) 903 
Regional plot of the compound heterozygous variants. Gene annotations for are taken from Ensembl 904 
Version 75, and the transcripts shown are those with mRNA identifiers in RefSeq (ENST00000357115 905 
and ENST00000510413). The position of each variant relative to the gene transcript is shown by a red 906 
bar, with the longer bar indicating the extent of the deleted region. Variant coordinates are shown for 907 
the GRCh37 genome build. (c) Pedigree of LRBA patient demonstrating phase of the causal variants. (d) 908 
FACS dotplot of CTLA-4 and FoxP3 expression in LRBA cHET patient and a healthy control (representative 909 
of 2 independent experiments). Numbers in black are the percentage in each quadrant. Numbers in red 910 
are the MFI of CTLA-4 staining in FoxP3 -ve and FoxP3 +ve cells. (e)  Normalised CTLA-4 expression, 911 
assessed as previously described in Hou et al. (Blood, 2017), in the LRBA cHET patient (n=1), healthy 912 
controls (n=8) and positive control CTLA-4 (n=4) and LRBA (n=3 deficient patients. Horizontal bars 913 
indicate mean +/- SEM. 914 

Extended Data Figure 5 - DOCK8 cHET patient. (a) Regional plot of the compound heterozygous 915 
variants. Gene annotations for are taken from Ensembl Version 75, and the transcripts shown are those 916 
with mRNA identifiers in RefSeq (ENST00000432829 and ENST00000469391). The position of each 917 
variant relative to the gene transcript is shown by a red bar, with the longer bar indicating the extent of 918 
the deleted region. Variant coordinates are shown for the GRCh37 genome build. (b) Photographs of the 919 
extensive HPV associated wart infection in the DOCK8 cHET patient. (c) cHET variant phasing. Top: 920 
cartoon representation of phasing using high quality heterozygous calls from short read WGS data and 921 
long-read nanopore sequencing data. Bottom panel: WGS and nanopore data from the DOCK8 patient. 922 
The two variants (large deletion and missense substitution) are shown in the bottom track (orange), and 923 
a single phase block (green) that spans the entire region between the two variants confirmed them to 924 
be in-trans. (d) Dye-dilution proliferation assessment in response to phytohaemagglutinin (PHA) and 925 
anti-CD3/28 beads in CD4+ and CD8+ T cells in patient and control cells (representative of 2 independent 926 
experiments). Staining was performed with CFSE dye (Invitrogen, Carlsbad, CA, USA) with the same 927 
additional fluorochrome markers as described in the flow cytometry methods section. 928 

Extended Data Figure 6 – Manhattan plots of (a) all-PID MAF>5%, (b) AD-PID MAF>5% and (c) AD-PID 929 
0.5%<MAF<5% GWAS results. Sample sizes: all-PID cases n=886; AD-PID cases n=733; controls n=9,225. 930 
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Each point represents an individual SNP association P-value, adjusted for genomic inflation. Only signals 931 
with P<1x10-2 are shown. None of the SNPs in plot (c) appear in the results of the common variant 932 
GWAS in (b), and are therefore additional signals gained from a GWAS including   variants of 933 
intermediate MAF. Red and blue lines represent genome-wide (P<5x10-8) and suggestive (P<1x10-5) 934 
associations, respectively. Note the additional genome-wide significant signal representing the 935 
TNFRSF13B locus, and several suggestive associations that only become apparent with variants in the 936 
0.5% - 5% MAF range shown in (c). Suggestive loci are indicated by the rsID of the lead SNP in each 937 
chromosome. Note that lead SNPs in AD-PID GWAS (b) may differ from meta-analysis lead SNPs.  938 

Extended Data Figure 7 – MHC locus conditional analyses in AD-PID GWAS (cases n=733, controls 939 
n=9,225). (a) Locuszoom association plots of AD-PID GWAS MHC locus initial (top) and conditional 940 
(middle, bottom) analyses results. The x and left y axes represent the chromosomal position and the -941 
log10 of the association P-value, respectively. Each point represents an analysed SNP, with the lead SNP 942 
indicated by a purple diamond and all other points coloured according to the strength of their LD with 943 
the lead SNP. Purple lines represent HapMap CEU population recombination hotspots. The bottom 944 
panel shows a selection of genes in the region, with over 150 genes omitted. Top: association plot of the 945 
most significant signal rs1265053, which is in the Class I region and close to HLA-B and HLA-C genes. 946 
Middle: plot showing the association remaining upon conditioning on rs1265053, with the strongest 947 
signal rs9273841 mapping to the Class II region close to HLA-DRB1 and HLA-DQA1 genes. Bottom: plot 948 
showing the association signal remaining upon conditioning on both rs1265053 and rs9273841. (b,c) 949 
MHC locus conditional analyses of the classical HLA alleles (b) and amino acids of individual HLA genes 950 
(c). Each point represents a single imputed classical allele or amino acid, with those marked in red 951 
indicating those added as covariates to the logistic regression model: the Class I signal (second row 952 
plots), the Class II signal (third row plots), and both Class I and Class II signals (bottom row plots). The 953 
HLA allele and amino acid shown in the bottom plots are those with the lowest P-value remaining after 954 
conditioning on both Class I and Class II signals; as there are no genome-wide significant signals 955 
remaining, the results suggest there are two independent signals at the MHC locus. (d) Protein 956 
modelling of two independent MHC locus signals: HLA-DRB1 residue E71 and HLA-B residue N114 using 957 
PDB 1BX2 and PDB 4QRQ respectively. Protein is depicted in white, highlighted residue in red, and 958 
peptide is in green. 959 

Extended Data Table 1 – ESID definition of PID subtypes. Participants were defined phenotypically to 960 
the groups: primary antibody deficiency, CVID, CID, severe autoimmunity/immune dysregulation, 961 
autoinflammatory syndrome, phagocyte disorder, and unspecified PID according to the European 962 
Society for Immunodeficiencies (ESID) registry diagnostic criteria (https://esid.org/Working-963 
Parties/Registry-Working-Party/Diagnosis-criteria). 964 

Extended Data Table 2 – Description of the NIHR BioResource - Primary Immunodeficiency cohort. 965 
High-level clinical description and relevant clinical features were provided by recruiting clinicians. Index 966 
cases are patients recruited as sporadic cases or probands in pedigrees, and determined to be 967 
genetically unrelated by pairwise comparisons of common SNP genotypes in the WGS data. Numbers in 968 
brackets refer to the percentage of index cases in each category. Total number of patients is the sum of 969 
index cases and any affected relatives sequenced in this study. 970 

 Extended Data Table 3 – Genome-wide significant (P<5x10-8) and suggestive (P<1x10-5) signals in our 971 
AD-PID and Li et al. (Nat Comm, 2015) CVID GWAS meta-analysis. The AD-PID WGS cohort included 733 972 
cases and 9225 controls, whereas the CVID Immunochip cohort included 778 cases and 10999 controls. 973 
The total number of shared meta-analysed variants was 95417. P-values are adjusted for individual 974 
study genomic inflation factor lambda. The selection of genes from each locus used in COGS analysis is 975 
described in Methods and Supplementary Note 3.     976 
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