
Alavi M, Visentin D, Deepandra T, Hunt G, Watson R, Cleary M Referencing to be tidied up 

later 

Chi-square for model fit in confirmatory factor analysis 

1. What is model fit?  

Confirmatory Factor Analysis (CFA) aims to confirm a theoretical model using empirical data 

and is an element of the broader multivariate technique Structural Equation Modelling (SEM) 

(Alavi et al., 2020). A fundamental characteristic of CFA is its hypothesis driven approach 

(Brown, 2015). The researcher first establishes a hypothesis regarding the model structure 

expressed as particular factor(s) underlying a set of items. Analysis is then performed to 

determine how much of the covariance between the items would be captured by the 

hypothesized factor structure. In addition to assessing the covariance captured by the model 

evaluating the goodness of fit of the proposed model, which reflects how well the model fits 

the observed data, is a critical step in CFA (Hooper, Coughlan, & Mullen, 2008). 

Model fit is evaluated using a range of model fit indices which assess the relationship between 

the observed data and the data which would be expected from the model. Model fit indices can 

be used with either thresholds or hypothesis testing to reject or retain the proposed model 

(Sarmento & Costa, 2019).  

2. Categories of model fit indices 

There are two types of fit indices available for CFA; global and local fit indices (Brown, 2015; 

Kline, 2005). Global model fit indices attempt to quantify the overall recovery of the observed 

data without considering specific components of the mean and covariance structure. In addition 

to global fit indices, local fit indices are evaluated to examine model components including 

factor correlations, inter-item residual covariance, and suggested model re-specification 

statistics. 
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Global model fit indices fall into three categories: absolute, incremental (also known as 

comparative or relative), and parsimony fit indices (Hooper et al., 2008; Kline, 2005). Absolute 

fit indices assess the overall theoretical model against the observed data. They are often a 

function of the test statistic, which quantifies global fit to the population covariance structure. 

Absolute fit indices can also be a function of the model residuals. They assess how well the 

model fits the data compared to no model. In addition to the chi-square (χ2) statistic other 

examples of absolute fit indices are , Goodness-of-Fit Index (GFI), Adjusted Goodness-of-Fit 

Index (AGFI), Root Mean Square Error of Approximation (RMSEA) , Root Mean Square 

Residual (RMR) and Standardized Root Mean Square Residual (SRMR) (K G Jöreskog & 

Sörbom, 1989; Steiger, 2007).  

Incremental fit indices compare a candidate model against a baseline model. The baseline 

model is a minimal model that specifies no relationships between the variables and contains 

only variances for observed variables. Hence, the baseline model represents the hypothesis that 

there are no meaningful relationships between variables. Incremental fit indices represent the 

improved fit for the model compared to the assumption of independence of variables. Examples 

are Comparative Fit Index (CFI), Normed-Fit Index (NFI)  and Non-Normed Fit Index (NNFI) 

(Bentler & Bonett, 1980)(Bentler, 1990).  

As parameters are added to a model, the model fit will improve. Parsimonious fit indices aim 

to address this issue for more complex models by adding a penalty for the inclusion of 

additional parameters. This introduces a trade-off of between model fit and degrees of freedom. 

Parsimony Goodness-of-Fit Index (PGFI) (Mulaik et al., 1989) and the Parsimony Normed Fit 

Index (PNFI) (James, Mulaik, & Brett, 1982) are examples. It is not expected that all indices 

would be used or reported in fitting any hypothesized model. The application of each fit index 

depends on the purpose of analysis and characteristics of the fit indices.  

3. The chi-square fit index 



The chi-square fit index assesses the fit between the hypothesised model and data from a set of 

measurement items (the observed variables). The model chi-square is the chi-square statistic 

obtained using maximum likelihood. When a model is estimated using maximum likelihood, 

the respective test statistic (i.e. likelihood ratio) is commonly used to assess the overall 

goodness of fit (K. G. Jöreskog, 1969; Maydeu-Olivares, Fairchild, & Hall, 2017). Assuming 

the hypothesised model is correctly specified, the likelihood ratio test statistic would approach 

a central chi-square distribution. The model chi-square test is the most commonly used global 

fit index in CFA and is also a component of several other fit indices. It tests the null hypothesis 

that the model-implied covariance matrix represents the population covariance. Generally, chi-

square is used as an absolute fit index, with a low chi-square value relative to the degrees of 

freedom (and higher p-value) indicating better model fit. Since the test is used to reject a null 

hypothesis representing perfect fit, chi-square is often referred to as a ‘badness of fit’ or ‘lack 

of fit index’ (Kline, 2005). 

Chi-square statistic using likelihood ratio tests can also be used to assess nested models, where 

the free parameters of one model are a subset of an alternative model. In this situation, the 

difference in model fit is expressed as the difference in model chi-square values, which is also 

distributed according to a chi-square distribution. The degrees of freedom for nested likelihood 

ratio tests are the added parameters for the less parsimonious model (Kline, 2005; Tomarken 

& Waller, 2003).  

As with all tests the assumptions of the chi-square model fit index must be met. These 

assumptions include multivariate normality of data, no systematic missing data, adequate 

sample size and correct model specification.  

4. Limitations for the chi-square model-fit-index 

There are limitations with using the chi-square statistic as a model fit index. Firstly, it is 

sensitive to sample size with larger sample sizes decreasing the p-value. The chi-square test 



can be ‘significant’ in cases where there is only a trivial misfit, especially in large samples 

(Babyak & Green, 2010). Overemphasis on model chi-square may lead to a preference for 

smaller samples in which the null hypothesis (of good fit) is not rejected. This is more likely 

to accept poor models and may yield inaccurate or imprecise parameter estimations. Parameter 

estimates should be given consideration rather than merely model fit indices, as they often hold 

substantive clinical interest.  

The model statistic does not always follow a chi-square distribution particularly in cases where 

data are not multivariate normal or when the sample size is small. As with any statistical test it 

is often interpreted as a binary result, in this case a fit or no-fit decision resulting in the model 

being rejected or retained. Assessment of the test statistic itself which indicates the degree to 

which a model is discrepant should be preferred.  

Chi-squared model fit is a non-parsimonious approach and hence the model fit improves as the 

model size increases (Schermelleh-Engel, Moosbrugger, & Müller, 2003). Increasing the 

number of parameters may provide unnecessarily complex models which are likely to be 

accepted than parsimonious ones. The complexity of the model needs to be considered when 

assessing model fit using chi-square.   

5. Summary and recommendations 

Given that the chi-squared fit statistic is affected by large samples, the ratio of the chi-square 

statistic to the respective degrees of freedom is preferred (Wheaton, Muthen, Alwin, & 

Summers, 1977). A ratio of ≤ 2 indicates a superior fit between the hypothesized model and 

the sample data (Cole, 1987). Nevertheless, the chi-square statistic can be useful when a CFA 

model fails to fit. It is common then to enter an exploratory phase which involves inspecting 

the modification indices of all the pairs of error terms and correlating those pairs with the 

largest indices until the model fits (Watson, Chen, Ip, Smith, Wong, & Deary, 2013). As better 

fitting models are achieved the fit indices and the RMSEA improve by increasing and 



decreasing, respectively. The chi-square statistic should decrease but in with large sample sizes 

it will most probably remain statistically significant. Considering the sensitivity of the chi-

square statistic to sample size, a wide variety of other indices have been suggested to assess 

model adequacy. In practice, the chi-square test is “not always the final word in assessing fit” 

(West, Taylor, & Wu, 2012, p. 211). Kline (2005) suggests that at a minimum the following 

indices should be reported and assessed in combination: chi-square; Root Mean Square Error 

of Approximation; Comparative Fit Index; and Standardized Root Mean Square Residual. The 

use of multiple fit indices provides a more holistic view of goodness-of-fit, accounting for 

sample size, model complexity and other considerations relevant to the particular study. 
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