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Optimization of pH as a Strategy to Improve Enzymatic Saccharification 

of Wheat Straw for Enhancing Bioethanol Production  

 

Abstract 

In this work, wheat straw (WS) was used as a lignocellulosic substrate to investigate the 

influence of pH on enzymatic saccharification. The optimum enzymatic hydrolysis 

occurred at pH range 5.8 – 6.0, instead of 4.8 - 5.0 as has been widely reported in research. 

Two enzymes cocktails, Celluclast®  1.5L with Novozymes 188, Cellic® CTec2 and endo-

1, 4-β-Xylanase, were used for the pH investigation over a pH range of 3.0 – 7.0. The 

highest concentration of total reduced sugar was found at pH 6.0 for all the different 

enzymes used in this study. The total reduced sugar produced from the enzymatic 

saccharification at pH 6.0 was found to be 7.0, 7.4 and 10.8 (g L-1) for Celluclast®  1.5L 

with Novozymes 188, endo-1, 4-β-Xylanase and Cellic® CTec2, respectively. By 

increasing the pH from 4.8 to 6.0, the total reduced sugar yield increased by 25% for 

Celluclast®  1.5L with Novozymes 188 and endo-1, 4-β-Xylanase and 21% for Cellic® 

CTec2. The results from this study indicate that WS hydrolysis can be improved 

significantly by elevating the pH at which the reaction occurs to the range of 5.8 to 6.0. 

 

Keywords: Wheat straw, Hydrolysis, pH effect, Sugar yield. 

Introduction  

Environmental degradation and the universal need for energy has raised the demand for 

clean, easily available and renewable energy sources to replace fossil fuel. The use of 

conventional fossil fuels as a major energy source has increased greenhouse gas emissions 

leading to global warming (Talebnia et al., 2010, Yang et al., 2013). Among the renewable 

energy sources, bioethanol has been of great interest in recent decades. There are many raw 

materials which can be used as resources for bio-ethanol production such as; molasses, 

corn and sugarcane. With the rising debate of food versus fuel, lignocellulosic waste 

present a very good raw material for bioethanol production (Govumoni et al., 2013, Sarkar 

et al., 2012). Bioethanol fuel production from lignocellulosic waste obtained from crops, 

wood and agricultural residues represent a promising resource for a sustainable bioethanol 

fuel production due to the low cost and large quantity available worldwide (Avci et al., 

2013, Talebnia et al., 2010). Among the variety of lignocellulosic materials, agricultural 

residues such as wheat straw (WS) stands as an important candidate for large scale 

bioethanol production. This can be attributed to its sustainability, abundance and the large 

content of cellulose contrasted with a low lignin content (Qiu et al., 2017). According to 

statistics, WS which is a by-product from wheat production is one of the largest biomass 

feedstock in the world with a total production of approximately 690 kilotons in 2009, 

reaching 730 million tons in 2014 (Zheng et al., 2018). As a result, WS serves as a main 

appropriate lignocellulosic feedstock for bioenergy in the 21st century. 
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WS cells mainly consist of three different polymers namely cellulose, hemicellulose and 

lignin (de Assis Castro et al., 2017). The bioconversion of lignocellulosic to cellulosic 

biofuel via a reduced sugar (fermentable sugars) platform involves three key steps. The 

first step is pre-treatment, followed by enzymatic saccharification or catalytic conversion 

of reduced sugar and finally fermentation, the last step in the ethanol production line (Lan 

et al., 2013).  

Enzymatic saccharification has been considered as a fundamental and the highest cost step 

in bioconversion of lignocelluloses. Few studies have been carried out using lignocellulosic 

substrates (instead of standard cellulose substrates) to find the optimum pH value for 

enzymatic hydrolysis (Lan et al., 2013). The majority of studies conducted on the 

enzymatic hydrolysis of lignocelluloses using Trichoderma reesei (i.e Celluclast®  1.5L) 

were performed at pH 4.8 and at a temperatures around 50 °C. These conditions were 

considered as the optimum condition for hydrolysis based on laboratory enzyme activities 

using model substrates, i.e., pure cellulose (Lan et al., 2013). The condition used  for 

lignocelluloses enzymatic hydrolysis with endo-1, 4-β-Xylanase  are quite similar to those 

commonly reported  for Celluclast®  1.5L with Novozymes 188, which include a 

temperature of 50 °C and pH 4.8-5.0 (Yang et al., 2015, Maitan-Alfenas et al., 2015). 

Similarly, although the recommended pH range for Cellic Cellic® CTec2 by Sigma 

Aldrich (Novozymes) is 5.0 – 5.5, pH 4.8 or 5.0 is the most commonly reported in the 

literature (Procentese et al., 2017, Sun et al., 2018). Celluclast®  1.5L with Novozymes 

188 and Cellic Cellic® CTec2 are among the most used enzymes for cellulose hydrolysis, 

whiles endo-1, 4-β-Xylanase is for hemicellulose hydrolysis (Avci et al., 2013, Oladi and 

Aita, 2018, Jørgensen et al., 2007, Kumar et al., 2008).  

Lignocellulosic substrates differ from pure cellulosic substrates in terms of physical and 

chemical compositions and structures. The presence of the hydrophobic lignin is 

considered a vital factor which inhibits the enzymatic hydrolysis of cellulose (Rajput and 

Visvanathan, 2018). The mechanism by which lignin alters the hydrolysis process depends 

on the adsorption of cellulase on to lignin rather than cellulose via ionic bond interactions, 

hydrogen bond interactions and hydrophobic interactions (Nakagame et al., 2011). To 

solve this problem some researchers have modified the  lignin surface using acid groups 

such as carboxylic and sulfonic to increase the hydrophilicity of the lignin (Nakagame et 

al., 2011). This reduces the non-productive (non-specific) binding to cellulase which limits 

the yield of cellulose hydrolysis during the biochemical reaction of the lignocellulosic 

biomass (Mansfield et al., 1999).  

Lignin is considered as a phenolic polymer with three main hydroxycinnamoyl alcohols: 

sinapyl, coniferyl and p-coumaryl alcohols. During the pre-treatment, these alcohols might 

be polymerized to guaiacyl, syringyl and p-hydroxyphenyl moieties (Bonawitz and 

Chapple, 2010). Both cellulases and hemicellulases are affected by lignin-derived phenols 

during enzymatic hydrolysis (dos Santos et al., 2018). Moreover, the exposed lignin present 

in the lignocellulosic biomass after pre-treatment affects the enzymes by absorbing them 

(Selig et al., 2007). Many binding mechanisms between enzymes and lignin have been 

suggested related to hydrophobic, electrostatic and carbohydrate interactions (Sammond et 
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al., 2014). pH is an important factor as it alters the surface hydrophobicity by inducing a 

surface charge, this can also affect electrostatic interaction between lignin and cellulose. 

(Lan et al., 2013). 

The aim of the research in this paper was to investigate the optimal pH range for different 

commercial enzyme cocktails that gives maximal lignocellulosic saccharfication during the 

enzymatic hydrolysis for the WS as a lignocelluloses substrates instead of the pure 

cellulosic substrate. The optimum pH for pure cellulosic substrate is established to be 4.8 

which is also widely used as the optimum pH for lignocellulosic substrates during 

enzymatic hydrolysis. This study highlights that the optimum pH for pure cellulosic 

substrate (i.e whatman filter paper) is not necessarily the optimum pH for lignocellulosic 

materials during enzymatic hydrolysis.  

Experimental 

Materials and Methods 

Celluclast® ® 1.5 L, Novozyme 188 (β-glucosidase) and endo-1, 4-β-Xylanase were 

purchased from Sigma-Aldrich Co., UK, while Cellic® CTec2 enzyme was garrulously 

provided by Novozymes Biotechnology Co., Ltd (Tianjin, China). The enzymes activities 

were measured according to the standard procedure (Ghose, 1987). The Celluclast® ® 1.5 

L and Cellic® CTec2 cellulase activities were and found to be 74 filter paper unit (FPU) 

mL-1 and 140 (FPU) mL-1 respectively, the Novozyme activity was 760 cellobiase unit 

(CBU)  mL-1 and the endo-1, 4-β-Xylanas activity is 7700 Ug-1  Sodium citrate buffer, 

sugar standards (glucose, xylose, galactose, mannose, arabinose, cellobiose), hydrochloric 

acid, sodium hydroxide, sodium azide, Whatman no. 1 filter paper strip, 3, 5-

dinitrosalicylic (DNS) acid and Rochelle salt (sodium potassium tartrate tetrahydrate) were 

purchased from Fisher Scientific, UK. All experiments in this study were conducted using 

WS generously supplied from a local farm in Driffield, East Riding of Yorkshire, UK 

(Harvest Summer 2017). 

Raw material preparation 

To remove the surface dirt the WS was washed with distilled water several times until the 

residue colour become white. The washed WS was then dissected into smaller parts using 

a knife blender (Luvele Power-Plus Blender | 2200w, UK) and milled using a laboratory 

ceramic desk grinder (Waldner, Biotech GMBH). The milled straw was then sieved (AS-

200 control, Retsch GmbH) to get uniform particle sizes within a range more than 2000 to 

less than 250 µm and dried at 35º C ± (2 °C) in a drying cabinet for 24 hrs. The moisture 

content was determined according to NREL protocol and found to be in the range of 8-10 % 

(Sluiter et al., 2008). 

Enzymatic hydrolysis assay 

The dried WS biomass was enzymatically hydrolysed to release monomeric sugars from 

cellulosic materials. This was achieved using 1g of dried WS in 50 mL of buffer solution 

(sodium citrate 0.05 M) allowing a total working volume of 50 mL. Prior to hydrolysis, 

0.02% w/w sodium azide was added to the samples, before addition of the enzyme, to 

inhibit the microbial growth as this may consume the monomeric sugar produced and 
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inhibit the enzyme's activity (da Costa Lopes et al., 2013, Qi et al., 2009). The samples 

were incubated for 60 minutes at (50 ºC, 200 rpm) in a laboratory shaker/incubator (Orbital 

incubator SI 500, Stuart, UK).  The hydrolysis proceeded under mild conditions (50 ºC, 

200 rpm) in the shaker/incubator for 94 hrs. The pH of the buffer solution was adjusted 

between 3.0 – 7.0 using 1M sodium hydroxide and 1M hydrochloric acid. 

To investigate the pH effect on different enzymes, a cocktail of Celluclast®  1.5 L with an 

activity loading of 15 FPU g-1 DM and Novozyme 188 with an activity loading of 30 CBU 

g-1 DM was used. Additionally, xylanase enzyme with an activity loading of 1540 U g-1 

DM was used for the pH investigation. The commercial cellulose enzyme cocktail Cellic® 

CTec2 with an activity loading of 15 FPU g-1 DM was also selected for these experiments. 

The enzymatic hydrolysis was carried for 94 hrs, but it was found that after 72 hrs the total 

reduced sugar yield did not change, therefore 72 hrs was used as the end of the hydrolysis 

instead of 94 hrs. Aliquots of the hydrolysate were withdrawn every 24 hrs from the 

hydrolysis to check the total reduced sugar residue. These aliquots were boiled for 5 

minutes to stop the enzymes activity and were then centrifuged (centrifuge 5702, 

Eppendorf, UK) at 4500 rpm for 5 minutes. The supernatants were sampled for total 

reduced sugar analysis using  3,5-dinitrosalicylic acid (DNS) reagent as described below 

(Miller, 1959). All the hydrolysis experiments were carried out in triplicate to ensure 

reproducibility.  

Analytical methods 

The raw WS carbohydrate composition, reduced sugar yield and carbohydrate composition 

in different WS samples were determined with the help of standard laboratory analytical 

procedure. The details of the analysis are as follows: 

Raw wheat straw composition using HPLC 

The carbohydrate composition of raw WS was determined by the NREL standard protocol 

(Sluiter et al., 2010). Oven-dried WS (0.3 g) was hydrolyzed with 3 mL of 72 % sulfuric 

acid for 60 minutes at 30 ºC in a water bath. The samples were then diluted with 84 mL of 

deionized water to an acid concentration of 4 % and autoclaved for another 60 minutes at 

121 ºC. The hydrolysis liquor was neutralized using solid calcium carbonate to pH (5.0 – 

6.0) and centrifuged for 10 minutes at 4400 rpm. The supernatant was filtered by passing 

through a 2 µm filter paper and collected for the determination of the carbohydrates and 

lignin composition. High performance liquid chromatography (HPLC, Nexera-1, 

Shimadzu) with a UV detection at 280 nm was used to determine the carbohydrates 

composition. The instrument was equipped with a Shodex sugar SP0810 column, the 

separation was carried out at 80º C. Deionized water was used as an eluent in a flow rate 

of 0.6 mL minute-1 with 20 µm injected sample volume. The WS composition was 41 % 

cellulose, 33 % hemicellulose, 18 % lignin and 8% others. 

Sugar analysis- 

Total reduced sugar yield using UV/Visible 

The DNS method was used to measure the reduced sugar yield, by mixing 3 mL of DNS 

reagent and 1 mL of sodium citrate buffer (0.05M) with 0.5 mL of hydrolysate 
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supernatants. This mixture was submerged into a boiling water bath for 5 minutes then 

cooled to room temperature in a water-ice bath. 1.5 mL of sodium citrate buffer (0.05 M) 

and 3 mL of DNS reagent was used as a blank. All analyses were carried out in triplicate 

using Bibby Scientific™ 7305 Model UV/Visible Spectrophotometer at 540 nm 

wavelength. A calibration curve was obtained for glucose as it is the major product from 

WS.  The calibration curve equation is Y = 0.3098 X + 0.0618 with R2 = 0.9957, where Y 

represents absorbance and X represents the total reduced sugar concentration 

(1mg/0.5mL). 

Composition analysis using GC-MS 

The sugar extracted at the end of hydrolysis was centrifuged at 4400 rpm for 5 minutes and 

filtered through 0.2 µm filter paper. The samples were then evaporated to dryness, treated 

with 300 µL of methoxyamine hydrochloride solution in pyridine at a concentration of 20 

mg mL-1 and incubated at 37º C for 90 minutes. Aliquots equal to 300µL of n-Methyl-n-

(trimethylsilyl) trifluoroacetamide (MSTFA) were added and incubated for another 60 

minutes at the same temperature. The reduced sugar was then analyzed by gas 

chromatography–mass spectrometry (GC-MS) using an Agilent 6890 plus GC with a 

5973N MS, (Agilent Technologies, Palo Alto, CA, USA) equipped with a Restek column 

(30 m × 0.25 mm × 0.25 μm, RxI-5MS, Bellafonte, PA, USA). The GC oven temperature 

was kept constant for 1 minute at 70 °C and gradually increased at a fixed rate of 5 °C 

minute-1 until 320 °C. The injection port and transfer line temperatures were 260 °C and 

280 °C, respectively. The carrier gas (helium) flow rate was 1 mL minute-1. The injection 

volume was 1.0 µL with a split injection ratio of 50:1. The data were recorded in the mass 

range of 50 – 500 m/z and the results were specified by comparison (cross match) with 

standards sugars (Yang et al., 2013). The average results of duplicate runs were reported. 

Results and Discussions 

pH evaluation before and after enzyme addition  

The main objective of this study was to investigate the effect of changing the pH during 

the enzyme hydrolysis, therefore pH values were measured before and after addition of the 

enzymes. The measured pH values are reported in Table 1 for both before and after addition 

of the enzymes to the suspension (buffer solution and WS). Since the pH value increased 

as a result of adding the enzymes, the pH of the solutions were adjusted back to the original 

pH values, this is reported as pH-adjusted in Table 1. The results reported in Table 1 are 

the average of three replicates for each enzymes and pH- value. 

It was found that at low pH values, the change was higher after adding the enzymes than 

at high pH values due to the low acidity of the enzymes (pH 6.0-6.5). The highest increase 

in the pH value was noticed after adding the Ctec 2 to the pH 3 solution, with the pH value 

increasing from 3.0 to 3.61. Whiles the lowest change occurs after adding the Cellic® 

CTec2 to the solution with pH 7.0, the increase was very low and was neglected.
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Table 1: Measured pH values before and after addition of the enzymes and adjusted 

 

 

pH value at the end of enzymatic hydrolysis  

Due to the importance of the pH value, the pH at the start (0 hr) and at the end (72 hrs) of the 

enzymatic hydrolysis are shown in Figure 1 (a-c), for Celluclast®  1.5L with Novozymes 188, 

endo-1, 4-β-Xylanase and Cellic® CTec2  respectively. The experiments were repeated three 

times with the average results presented graphically in Figure 1. 

Figure 1(a) shows that for Celluclast®  1.5 l with Novozymes 188 there was a minor increase 

in pH at the end of the enzymatic hydrolysis. The difference in pH values were less than 0.17% 

at the maximum difference. On the other hand with endo-1, 4-β-Xylanase (Figure 1 (b)) there 

was an increase of 0.26% at the end of the enzymatic hydrolysis. A negligible change was 

observed after pH 4.0, and for pH 5.0 - 7.0, the pH value remained the same. The greatest 

change was seen for Cellic® CTec2 as shown in Figure 1 (c). Between pH 3.0 – 4.8, there was 

an increase in pH at the end of the enzymatic hydrolysis. The highest increase was found at pH 

3.0 where the pH increased from 3.0 at (0 hr) to 3.41 at (72 hrs). This means that there was 

approximately 13% increase in the pH value at the end of hydrolysis.  

Although both endo-1, 4-β-Xylanase and Ctec 2 show the highest difference in pH value at pH 

3.0, 3.5 and pH 3.0, 3.5, 4.0, 4.5 respectively, the difference is not very high and is within the 

error bar. Therefore, the adjusted pH value at (0 hr) and the final pH measured at each different 

pH point studied show no significant difference and can be assumed to be the same.   

 pH- After adding the enzymes pH- Adjusted 

pH before 

adding the 

enzymes 

Celluclast®  

1.5L + 

Novozymes 

188 

endo-1, 4-β-

Xylanase 

Cellic® 

CTec2 

Celluclast®  

1.5L + 

Novozymes 

188 

endo-1, 4-β-

Xylanase 

Cellic® 

CTec2 

3.00 3.55 ± 0.1 3.41 ± 0.07 3.61 ± 0.08 3.00 ± 0.01 2.99 ± 0.01 3.00 ± 0.01 

3.50 3.96 ± 0.07 3.85 ± 0.05 4.0 ± 0.1 3.49 ± 0.01 3.5 ± 0.01 3.50 ± 0.01 

4.00 4.40 ± 0.08 4.32 ± 0.08 4.42 ± 0.07 4.05 ± 0.01 4.02 ± 0.01 4.00 ± 0.01 

4.50 4.79 ± 0.05 4.79 ± 0.06 4.70 ± 0.09 4.52 ± 0.01 4.49 ± 0.01 4.50 ± 0.01 

4.80 5.10 ± 0.07 5.10 ± 0.06 5.20 ± 0.05 4.8 ± 0.01 4.79 ± 0.01 4.80 ± 0.01 

5.00 5.24 ± 0.07 5.20 ± 0.06 5.18 ± 0.05 5.00 ± 0.01 5.00 ± 0.01 5.03 ± 0.01 

5.50 5.70 ± 0.05 5.68 ± 0.04 5.63 ± 0.03 5.50 ± 0.01 5.49 ± 0.01 5.48 ± 0.01 

5.70 5.88 ± 0.05 5.81 ± 0.02 5.80 ± 0.03 5.69 ± 0.01 5.70 ± 0.01 5.70 ± 0.01 

6.00 6.15 ± 0.02 6.15 ± 0.02 6.13 ± 0.03 6.01 ± 0.01 6.00 ± 0.01 5.99 ± 0.01 

6.30 6.43 ± 0.04 6.40 ± 0.02 6.39 ± 0.02 6.30 ± 0.01 6.29 ± 0.01 6.29 ± 0.01 

6.50 6.60 ± 0.02 6.59 ± 0.01 6.55 ± 0.02 6.49 ± 0.01 6.51 ± 0.01 6.49 ± 0.01 

6.70 7.10 ± 0.02 6.77 ± 0.01 6.75 ± 0.03 7.00 ± 0.01 6.69 ± 0.01 7.00 ± 0.01 

7.00 7.20 ± 0.03 7.05 ± 0.01 7.03 ± 0.01 6.99 ± 0.01 7.00 ± 0.01 7.03 ± 0.01 
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Fig. 1. pH data corresponding to time intervals from 0 hr to 72 hrs during enzymatic                

hydrolysis using three different enzymes ((a) Celluclast®  1.5L with Novozymes 188, (b) 

endo-1, 4-β-Xylanase and (c) Cellic® CTec2). 
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Influence of WS particle size on reduced sugar yield 

WS particle size is a fundamental parameter that effects biomass digestion efficiency. It has 

been suggested that grinding the WS to a fine size, breaks down the lignin as well as increasing 

the surface area of the sample which gives the enzymes more accessibility and facilitates the 

biomass digestion (Hu et al., 2017).  

The WS was ground using a ceramic disk and sieved to get different particle sizes ranging from 

less than 250 to more than 2000 µm. Then the range of samples with different particle size was 

subjected to enzymatic hydrolysis at pH 4.8 using (Celluclast®  1.5L + Novozymes 188, endo-

1, 4-β-Xylanase and Cellic® CTec2) for 94 hrs respectively. The hydrolysis was carried out 

for 24 hrs longer than the normal 72 hrs to ensure reaction completion.  

The reduced sugar yield was found to increase with smaller particle size as shown in Table 2. 

Grinding the WS to reduce the particle size increased the surface area and reduced the degree 

of crystallinity which gives more accessibility for enzymes and therefore increases the total 

reduced sugar yield (Silva et al., 2012). The total reduced sugar yield increased rapidly with 

time up to about 50 hrs then it begins to level out.  After 72 hrs, there was no significant increase 

in the total reduced sugar yield. It can clearly be seen that higher reduced sugar yield was 

obtained from the finest particle size for all the enzymes. Therefore the sample which gave the 

highest reduced sugar yield (less than 250 µm) at pH 4.8 was chosen to study the pH effect on 

total reduced sugar yield during enzymatic hydrolysis.  
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Table 2: Influence of different particle size on total reduced sugar yield (g L-1) at pH 4.8. 

 

Influence of pH on WS enzymatic hydrolysis using Celluclast®  1.5L with Novozymes 188 

Using the smallest particle size (less than 250 µm) 1 g of WS was enzymatically hydrolyzed 

using 50 mL of various pH (3.0 – 7.0) solutions at 50 ºC and 200 rpm. Celluclast®  1.5L with 

Novozymes 188 was subjected to pH study since they are widely used for lignocellulosic 

enzymatic hydrolysis (Hu et al., 2015, Lan et al., 2013). The total reduced sugar yield was 

obtained using the DNS method and plotted against the pH at the end of hydrolysis (72 hrs) as 

shown in Figure 2. 

  

  
Total reduced sugar produced (g L-1) 

 24 hrs 48 hrs 72 hrs 94 hrs 

C
el

lu
cl

as
t®

 
 

1
.5

L
 

+
 

N
o
v
o
zy

m
es

 1
8
8

 

>2000 µm 1.6 ± 0.28 3.2 ± 0.27 3.7 ± 0.28 3.7 ± 0.28 

200-1000 µm 1.8 ± 0.27 3.3 ± 0.29 3.9 ± 0.33 3.9 ± 0.33 

1000-710 µm 2.5 ± 0.29 3.6 ± 0.29 4.1 ± 0.32 4.1 ± 0.32 

710-500 µm 2.7 ± 0.31 3.8 ± 0.28 4.2 ± 0.3 4.2 ± 0.3 

500-250 µm 2.9 ± 0.25 4.1 ± 0.3 4.8 ± 0.34  4.8 ± 0.34  

<250 µm 3.2 ± 0.3 4.8 ± 0.38 5.2 ± 0.4 5.2 ± 0.4 

en
d
o
-1

, 
4
-β

- 
X

y
la

n
as

e >2000 µm 1.8 ± 0.26 3.2 ± 0.31 3.8 ± 0.25 3.8 ± 0.25 

200-1000 µm 1.9 ± 0.26 3.3 ± 0.3 3.9 ± 0.3 3.9 ± 0.3 

1000-710 µm 2.6 ± 0.28 3.7 ± 0.25 4.3 ± 0.35 4.3 ± 0.35 

710-500 µm 2.7 ± 0.33 3.9 ± 0.28 4.4 ± 0.22 4.4 ± 0.22 

500-250 µm 3.1 ± 0.32 4.2 ± 0.3 4.9 ± 0.29 4.9 ± 0.29 

<250 µm 3.5 ± 0.3 4.9 ± 0.27 5.5 ± 0.26 5.5 ± 0.26 

C
el

li
c®

 C
T

ec
2

 

>2000 µm 4.1 ± 0.51 5.2 ± 0.6 5.8 ± 0.54 5.8 ± 0.54 

200-1000 µm 4.3 ± 0.58 5.4 ± 0.59 6.0 ± 0.62 6.0 ± 0.62 

1000-710 µm 4.4 ± 0.62 5.9 ± 0.65 6.5 ± 0.6 6.5 ± 0.6 

710-500 µm 5.2 ± 0.62 6.7 ± 0.45 7.2 ± 0.52 7.2 ± 0.52 

500-250 µm 6.1 ± 0.56 7.5 ± 0.4 8.0 ± 0.51 8.0 ± 0.51 

<250 µm 6.5 ± 0.64 8.5 ± 0.6 8.8 ± 0.58 8.8 ± 0.58 
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Fig. 2. Total reduced sugars concentration for different pH solution at the end of the                   

hydrolysis (72 hrs). 
 

As can be seen from Figure 2, the highest reduced sugar yield was achieved between pH 5.7 – 

6.3 rather than at 4.8 as cited by most researchers (Lan et al., 2013). The total reduced sugar 

yield increased from 5.2 (g L-1) to 7.0 (g L-1) by changing the pH value from 4.8 to 6.0 

respectively.  

To give further confirmation, the total reduced sugar yield was observed between 0 – 72 hrs at 

pH 4.8 and 6.0 and shown in Figure 3, which clearly indicates that the total reduced sugar yield 

for the WS substrate increased from 5.1 (g L-1) to 7.1 (g L-1)  (approximately 28 %).  
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Fig. 3. Total reduced sugars yield at the end of Hydrolysis (72 hrs) for pH 4.8 and 6.0. 

Influence of pH on WS enzymatic hydrolysis using endo-1, 4-β-Xylanase 

The experiment was repeated using the same conditions for the endo-1, 4-β-Xylanase enzyme 

as shown in Figure 4. Similarly to the previous enzyme cocktail, pH 4.8 – 5.0 is currently the 

preferred value for enzymatic hydrolysis (Avci et al., 2013). It can be seen that there was a 

detectable increase in total reduced sugar yield efficiency from 3.1 – 7.4 (g L-1) in the pH range 

of 3.0 – 6.0 with the optimum range being pH 5.7 – 6.0 instead of 4.8 as widely used by 

researchers.  
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Fig. 4. Total reduced sugars concentration for different pH solution at the end of the                 

hydrolysis (72 hrs). 

 

Figure 5 shows a similar trend in the change of total reduced sugar yield with time by using 

endo-1, 4-β- Xylanase. The total reduced sugar yield increased from 5.5 (g L-1) to 7.4 (g L-1) 

at pH 4.8 and 6.0, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Total reduced sugars yield at the end of hydrolysis (72 hrs) for pH 4.8 and 6.0 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 
 

Influence of pH on WS enzymatic hydrolysis using Cellic Cellic® CTec2  

Cellulase Cellic® CTec2 is a commercial enzyme cocktail which was also subjected to the 

optimum pH investigation. The WS was enzymatically hydrolyzed under the same 

experimental conditions as for the previous enzymes (Celluclast®  1.5L with Novozymes 188 

and endo-1, 4-β-Xylanase). Figure (6) shows the total reduced sugar yield plotted against the 

pH value at the end of enzymatic hydrolysis (72 hrs). 

By increasing the pH from 4.8 to 6.0, the total reduced sugar yield increased from 8.5 (g L-1) 

to 10.8 (g L-1(. The total reduced sugar yield for both pH 4.8 and 6.0 was also monitored with 

time during the hydrolysis, and the results are shown in Figure 7. The total reduced sugars yield 

from pH 4.8 and 6.0 behave similarly with time. The gap between the reduced sugar 

concentration was almost constant at 2.2 (g L-1) during the hydrolysis. Therefore, it is 

recommended to use pH 6.0 to achieve high reduced sugar yield from WS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Total reduced sugars concentration for different pH solution at the end of the                 

hydrolysis (72 hrs). 
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Fig. 7. Total reduced sugars yield at the end of Hydrolysis (72 hrs) for pH 4.8 and 6.0 

 

 

In summary, all the enzymes used in this study show an improvement after changing the pH.  

Figure 8 illustrates the total reduced sugar yield after enzymatic hydrolysis for the enzymes at 

pH 4.8 and 6.0. By changing the pH of the solution from 4.8 to 6.0, Celluclast®  1.5L with 

Novozymes 188 and endo-1, 4-β-Xylanase show an increase in the total reduced sugar yield 

from 5.2 (g L-1) to 7.0 (g L-1) and  5.5 (g L-1) to 7.4 (g L-1) respectively.  In the case of Cellic 

Ctec 2, the total reduced sugar increased from 8.5 (g L-1) to 10.8 (g L-1). 
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Fig. 8. Total reduced sugar yield for the enzymes at pH 4.8 and 6.0 

 

Conclusion 

The results of the present study indicate the optimum pH for enzymatic hydrolysis using 

different enzymes (Celluclast®  1.5L with Novozymes 188, endo-1, 4-β-Xylanase and Cellic® 

CTec2) is different from the range pH 4.8 – 5.0 used in most studies. The enzymatic hydrolysis 

was carried out for 94 hrs in the beginning, however, since there was no change in the reduced 

sugar yield after 72 hrs, here was no need to continue with enzymatic hydrolysis and the 

enzymatic hydrolysis was stopped after 72 hrs.  

The results obtained from this study indicate that the optimum pH for WS as a lignocellulosic 

substrate is higher than pH 4.8 which is exclusively used by almost all the existing literature. 

The enzymes activity test based on using pure cellulose substrate (Whatman paper) at pH 4.8 

as an optimum pH suggested by cellulase manufacturers is not necessarily the same optimum 

value for lignocellulosic (i.e. WS) substrate.  

Reducing the acidity in lignocellulosic substrates enzymatic hydrolysis might have an effect 

on reducing lignin inhibition of the activity of the enzyme, by reducing the lignin absorption 

of enzymes or affecting the lignin-cellulose binding and interaction by affecting the 

electrostatic charge of the lignocellulose, changing the pH could also have an effect on the 

lignin-derived phenols. 

All the enzymes which were used in this study show a significant improvement in total reduced 

sugar yield after changing the pH from 4.8 to 6.0, both Celluclast®  1.5L with Novozymes 188, 

endo-1, 4-β-Xylanase shows an increase of (25%) while Ctec 2 shows an increase of (21%).    

Based on the results presented in this study, it is recommended that future work on enzymatic 

hydrolysis of WS as a lignocellulose substrate be conducted at a pH range of 5.8 – 6.0. 
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WS             Wheat Straw 

FPU            Filter Paper Unit 

DM             Dry Matter 

CBU           Cellobiase Unit 

DNS           3, 5-Dinitrosalicylic acid 

HPLC        High Performance Liquid Chromatography 

GC-MS      Gas chromatography–mass spectrometry 

UV              Ultraviolet 

MSTFA      n-Methyl-n-(trimethylsilyl) trifluoroacetamide 

List of nomenclature 

Y                 Absorbance 

X                 Concentration (mg 0.5mL-1)  

 

Declarations  

Availability of data and material  

All raw data used in this manuscript are available and could be supplied upon request 

Competing interests 

There are no conflicts to declare. 

 

Funding 

The Higher Committee for Education Development in Iraq  

Authors’ contributions  

All authors approved the final version of the manuscript for publication 

Acknowledgments 
The first author would like to thank the Higher Committee for Education Development in Iraq 

for fully funding his PhD study. The second author would like to thank Mustansiriyah 

University-Baghdad-Iraq for its support in the present work.  

 

References  

AVCI, A., SAHA, B. C., KENNEDY, G. J. & COTTA, M. A. 2013. Dilute sulfuric acid pretreatment of corn 
stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia 
coli FBR5 without detoxification. Bioresource technology, 142, 312-319. 

BONAWITZ, N. D. & CHAPPLE, C. 2010. The genetics of lignin biosynthesis: connecting genotype to 
phenotype. Annual review of genetics, 44, 337-363. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 
 

DA COSTA LOPES, A. M., JOÃO, K. G., RUBIK, D. F., BOGEL-ŁUKASIK, E., DUARTE, L. C., ANDREAUS, J. & 
BOGEL-ŁUKASIK, R. 2013. Pre-treatment of lignocellulosic biomass using ionic liquids: wheat 
straw fractionation. Bioresource technology, 142, 198-208. 

DE ASSIS CASTRO, R. C., FONSECA, B. G., DOS SANTOS, H. T. L., FERREIRA, I. S., MUSSATTO, S. I. & 
ROBERTO, I. C. 2017. Alkaline deacetylation as a strategy to improve sugars recovery and 
ethanol production from rice straw hemicellulose and cellulose. Industrial Crops and Products, 
106, 65-73. 

DOS SANTOS, A. C., XIMENES, E., KIM, Y. & LADISCH, M. R. 2018. Lignin–Enzyme Interactions in the 
Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology. 

GHOSE, T. 1987. Measurement of cellulase activities. Pure and applied Chemistry, 59, 257-268. 
GOVUMONI, S. P., KOTI, S., KOTHAGOUNI, S. Y., VENKATESHWAR, S. & LINGA, V. R. 2013. Evaluation 

of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol 
production. Carbohydrate polymers, 91, 646-650. 

HU, J., CHANDRA, R., ARANTES, V., GOURLAY, K., VAN DYK, J. S. & SADDLER, J. N. 2015. The addition 
of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid 
loadings. Bioresource technology, 186, 149-153. 

HU, J., JING, Y., ZHANG, Q., GUO, J. & LEE, D.-J. 2017. Enzyme hydrolysis kinetics of micro-grinded 
maize straws. Bioresource technology, 240, 177-180. 

JØRGENSEN, H., KRISTENSEN, J. B. & FELBY, C. 2007. Enzymatic conversion of lignocellulose into 
fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1, 
119-134. 

KUMAR, R., SINGH, S. & SINGH, O. V. 2008. Bioconversion of lignocellulosic biomass: biochemical and 
molecular perspectives. Journal of industrial microbiology & biotechnology, 35, 377-391. 

LAN, T., LOU, H. & ZHU, J. 2013. Enzymatic saccharification of lignocelluloses should be conducted at 
elevated pH 5.2–6.2. BioEnergy Research, 6, 476-485. 

MAITAN-ALFENAS, G. P., VISSER, E. M. & GUIMARÃES, V. M. 2015. Enzymatic hydrolysis of 
lignocellulosic biomass: converting food waste in valuable products. Current Opinion in Food 
Science, 1, 44-49. 

MANSFIELD, S. D., MOONEY, C. & SADDLER, J. N. 1999. Substrate and enzyme characteristics that limit 
cellulose hydrolysis. Biotechnology progress, 15, 804-816. 

MILLER, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical 
chemistry, 31, 426-428. 

NAKAGAME, S., CHANDRA, R. P., KADLA, J. F. & SADDLER, J. N. 2011. Enhancing the enzymatic 
hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the 
associated lignin. Biotechnology and bioengineering, 108, 538-548. 

OLADI, S. & AITA, G. M. 2018. Interactive effect of enzymes and surfactant on the cellulose digestibility 
of un-washed and washed dilute ammonia pretreated energy cane bagasse. Biomass and 
Bioenergy, 109, 221-230. 

PROCENTESE, A., RAGANATI, F., OLIVIERI, G., RUSSO, M. E. & MARZOCCHELLA, A. 2017. Pre-treatment 
and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. Biomass 
and bioenergy, 96, 172-179. 

QI, B., CHEN, X., SHEN, F., SU, Y. & WAN, Y. 2009. Optimization of enzymatic hydrolysis of wheat straw 
pretreated by alkaline peroxide using response surface methodology. Industrial & Engineering 
Chemistry Research, 48, 7346-7353. 

QIU, J., MA, L., SHEN, F., YANG, G., ZHANG, Y., DENG, S., ZHANG, J., ZENG, Y. & HU, Y. 2017. Pretreating 
wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and 
ethanol production at high solid loading. Bioresource Technology, 238, 174-181. 

RAJPUT, A. A. & VISVANATHAN, C. 2018. Effect of thermal pretreatment on chemical composition, 
physical structure and biogas production kinetics of wheat straw. Journal of environmental 
management, 221, 45-52. 

SAMMOND, D. W., YARBROUGH, J. M., MANSFIELD, E., BOMBLE, Y. J., HOBDEY, S. E., DECKER, S. R., 
TAYLOR, L. E., RESCH, M. G., BOZELL, J. J. & HIMMEL, M. E. 2014. Predicting enzyme adsorption 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 
 

to lignin films by calculating enzyme surface hydrophobicity. Journal of Biological Chemistry, 
jbc. M114. 573642. 

SARKAR, N., GHOSH, S. K., BANNERJEE, S. & AIKAT, K. 2012. Bioethanol production from agricultural 
wastes: an overview. Renewable energy, 37, 19-27. 

SELIG, M. J., VIAMAJALA, S., DECKER, S. R., TUCKER, M. P., HIMMEL, M. E. & VINZANT, T. B. 2007. 
Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards 
enzymatic hydrolysis of cellulose. Biotechnology progress, 23, 1333-1339. 

SILVA, G. G. D., COUTURIER, M., BERRIN, J.-G., BULÉON, A. & ROUAU, X. 2012. Effects of grinding 
processes on enzymatic degradation of wheat straw. Bioresource technology, 103, 192-200. 

SLUITER, A., HAMES, B., HYMAN, D., PAYNE, C., RUIZ, R., SCARLATA, C., SLUITER, J., TEMPLETON, D. & 
WOLFE, J. 2008. Determination of total solids in biomass and total dissolved solids in liquid 
process samples. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report 
No. NREL/TP-510-42621, 1-6. 

SLUITER, A., HAMES, B., RUIZ, R., SCARLATA, C., SLUITER, J., TEMPLETON, D. & CROCKER, D. 2010. 
Determination of structural carbohydrates and lignin in biomass. Laboratory analytical 
procedure. 

SUN, F., MUKASEKURU, M. R., TAN, L., REN, J., HUANG, Z., REN, H. & ZHANG, Z. 2018. Optimization of 
on‐site cellulase preparation for efficient hydrolysis of atmospheric glycerol organosolv 
pretreated wheat straw. Journal of Chemical Technology & Biotechnology. 

TALEBNIA, F., KARAKASHEV, D. & ANGELIDAKI, I. 2010. Production of bioethanol from wheat straw: 
An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101, 
4744-4753. 

YANG, M., KUITTINEN, S., ZHANG, J., KEINÄNEN, M. & PAPPINEN, A. 2013. Effect of dilute acid 
pretreatment on the conversion of barley straw with grains to fermentable sugars. 
Bioresource Technology, 146, 444-450. 

YANG, M., ZHANG, J., KUITTINEN, S., VEPSÄLÄINEN, J., SOININEN, P., KEINÄNEN, M. & PAPPINEN, A. 
2015. Enhanced sugar production from pretreated barley straw by additive xylanase and 
surfactants in enzymatic hydrolysis for acetone–butanol–ethanol fermentation. Bioresource 
technology, 189, 131-137. 

ZHENG, Q., ZHOU, T., WANG, Y., CAO, X., WU, S., ZHAO, M., WANG, H., XU, M., ZHENG, B., ZHENG, J. 
& GUAN, X. 2018. Pretreatment of wheat straw leads to structural changes and improved 
enzymatic hydrolysis. Scientific Reports, 8, 1321. 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Optimization of pH as a Strategy to Improve Enzymatic Saccharification of Wheat 

Straw for Enhancing Bioethanol Production  

 

Abdulsattar, M.O.1, Abdulsattar, J.O.2, Greenway, G.M.3, Welham, K.J.3, Zein, S.H. 
1* 

 
1 School Department of Engineering and Computer Science, Chemical Engineering, University 

of Hull (UoH), Kingston Upon Hull HU6 7RX, UK.  

 
2 College of Science, Department of Chemistry, Mustansiriyah University, Baghdad, Iraq.  

 
3 School of Mathematics & Physical Sciences, University of Hull (UoH), Kingston Upon Hull 

HU6 7RX, UK.  

* = corresponding author E-mail: S.H.Zein@hull.ac.uk 

 

 

Title Page Click here to access/download;Title Page;title page.docx

mailto:S.H.Zein@hull.ac.uk
https://www.editorialmanager.com/jans/download.aspx?id=31784&guid=cf549dd8-4f52-4354-8844-6a341105b70a&scheme=1
https://www.editorialmanager.com/jans/download.aspx?id=31784&guid=cf549dd8-4f52-4354-8844-6a341105b70a&scheme=1

