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Abstract

This paper makes three diverse contributions. First, whereas the extant literature esti-
mates a single elasticity of substitution/complementarity from an input distance function, we
calculate a range of elasticities. Second, we make a substantive contribution to the literature
on bank input substitution/complementarity because somewhat surprisingly there has been
very little work on this issue. Third, our analysis of the substitutability /complementarity
of deposit types for U.S. banks in 2008 — 2015 (crisis and beyond), vis-a-vis 1992 — 2007
(pre-crisis), is, to the best of our knowledge, the first to consider the effect of structural
change on elasticities of substitution/complementarity. To account for the extent of the
heterogeneity in the U.S. banking industry we estimate random coefficients models, as op-
posed to standard fixed parameter models. The key empirical findings are the changes in
the substitutability /complementarity of the quantities of particular pairs of deposit types
between the two sample periods, which points to changes in depositors’ preferences across
banks’ deposit portfolios. To illustrate, for savings deposits, which are characterized by flex-
ibility and liquidity, and time deposits, which are less so and thus have higher interest rates,
we find significantly lower quantity complementarity in 2008 — 2015. From this finding we
can conclude that savings and time deposits have become more distinct, which we suggest
should be reflected in banks’ strategic management of their deposit portfolios.
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1 Introduction

The financial crisis was a watershed as it marked the beginning of a period of great change that
involved various policies and reforms to moderate the resulting Great Recession and reduce the
risk of a similar crisis in the future. Among other things, during this period there were marked
changes in depositors’ preferences across U.S. banks’ deposit portfolios. This is evident from
figure 1, which presents for the U.S. banking system for 1992 —2015 three disaggregations of real
total deposits into different deposit categories.! To illustrate, panel B of this figure reveals that
savings deposits increased sharply since the crisis circa 2008, while time deposits have declined
steadily. Here we analyze this and other crisis induced changes in depositors’ preferences, and
such an analysis can be used to inform the deposit management of U.S. banks. In the next section
we motivate our analysis by discussing the crisis induced U.S. banking system developments in
the context of the roles they may have played in the changing relationships between deposit
categories. Since in the intermediation approach to banking (Sealey and Lindley, 1977) deposits
are viewed as inputs in the production process of the banking firm, we approach our analysis
from the perspective of changes in input elasticities of substitution and complementarity for

pairs of deposit types.
[Insert figure 1 about here]

Rather than calculate elasticities of substitution and complementarity from a cost function,
which is common in the literature (e.g., Berndt and Wood, 1975, Athanasios et al., 1990, and
Michaelides et al., 2015), we calculate these elasticities from an input distance function (IDF).
In contrast to the multiple input and single output production function, the IDF technology is in
terms of multiple inputs being used to produce multiple outputs. To analyze changes in deposit
type substitution/complementarity, we must estimate an IDF because although our data set for
U.S. banks is extremely rich, input price data is not available for all the deposit types in figure
1 for a cost function analysis. Directly from a fitted IDF therefore we obtain primal elasticities
of complementarity, which measure the degree of substitutability /complementarity between the
quantities of a pair of inputs. Having estimated an IDF and without the need to estimate its dual
cost function, by drawing on this duality and following some simple rearranging we obtain dual
elasticities of substitution, which measure the degree of price substitutability /complementarity
between a pair of inputs. In other words, dual elasticities of substitution that we would obtain
directly from a cost function are obtained indirectly from an IDF. Additionally, as the rate of
interest on a deposit type is taken to be the price paid by a bank to attract deposits, by obtaining
dual elasticities of substitution indirectly from an IDF we circumvent the non-standard case of
non-interest bearing deposits whose price is zero, which from panel C of figure 1 we can see is
a non-negligible deposit category.

Our paper makes three diverse contributions. The first involves extending the study by
Stern (2010), who derives the shadow elasticity of complementarity and shows how to cal-
culate it from a fitted IDF. In contrast, instead of estimating a single elasticity of substitu-

tion/complementarity from an IDF, to foster comparisons we demonstrate how to compute a

! This data is available from the Federal Deposit Insurance Corporation (FDIC) and is provided in the Reports
of Condition and Income (i.e., Call Reports) that U.S. banks are required to complete.



wider range of elasticities, which are a mix of symmetric and asymmetric elasticities.? Our
analysis also reaffirms the importance of the long-established theoretical literature on elastic-
ities of substitution and complementarity for applications to contemporary issues in banking
and other areas. We compute the following six elasticities of substitution and complementarity,
which we present and discuss in detail in due course: (i) Antonelli elasticity of complemen-
tarity (AEC); (ii) Allen-Uzawa elasticity of substitution (AES); (iii) Morishima elasticity of
substitution (MES); (iv) Morishima elasticity of complementarity (MEC); (v) shadow elasticity
of substitution (SES); and (vi) shadow elasticity of complementarity (SEC), where the extant
literature focuses on calculating only the SEC from an IDF. To calculate these six elasticities
we adopt a schematic approach that is based on the AEC because from the AEC we obtain the
AES, MEC and SEC, and from the AES we calculate the SES and the MES.

We calculate a wide range of elasticities of substitution and complementarity because dif-
ferent elasticity measures provide different information. To illustrate, an AEC or MEC (both
of which are obtained directly from the IDF and are therefore primal elasticities) > 0 (< 0)
indicates that two inputs are quantity, ¢, complements (substitutes). An AES or MES (both of
which are obtained indirectly from the IDF and are therefore dual elasticities) > 0 (< 0) indi-
cates that two inputs are price, p, substitutes (complements).?> The SEC and the SES, on the
other hand, measure the degree of difficulty of ¢ substitution and p substitution, respectively
(Stern, 2011). This raises the issue of what information we are most interested in. For our
purposes we are particularly interested in the AEC and AES and to a lesser extent the MEC
and MES. This is because based on a point Stern (2011) makes about the appropriateness of
the Morishima measures depending on the number of inputs in the analysis, the Allen-Uzawa
measures are more relevant to our empirical setting (see the application for further discussion
of this).

Furthermore, assuming a systematic two-stage bank decision-making process on deposit type
substitution/complementarity, we are interested in the AEC, AES, MEC and MES because they
can be used in the first stage to inform which deposit types are substitutes/complements. Given
this knowledge, in the second stage the SEC and SES can be used to inform how viable it is to
substitute between deposit types. As we elaborate on next, this is in the context of the paucity of
studies that consider elasticities of substitution/complementarity for deposit types. We therefore
focus on informing the first stage of this decision-making process as this is the logical approach
to develop this small body of literature. We do though report empirical estimates of the SEC
and SES for completeness and to acknowledge the role they can play in the second stage of the
process.

As we have touched on, our second contribution is to significantly add to the literature
on bank input substitution. Despite there being a prominent related literature on bank effi-
ciency and productivity, as well as a number of empirical applications of elasticities of substi-

tution/complementarity in other areas, Athanasios et al. (1990) and Michaelides et al. (2015)

2Moreover, all the elasticities of substitution and complementarity we compute are net elasticities because
they are net of an output quantity change as output is held constant. In contrast, gross elasticities measure input
substitution/complementarity when the output level is permitted to change.

3 An increase in a ¢ substitute (complement) reduces (increases) the marginal product of the other substitutable
(complementary) input. Two inputs are p substitutes (complements) if, when the price of one input rises, the
quantity of the other increases (decreases).



are the only studies on bank input substitution. A legacy of the seminal application on input
substitution by Berndt and Wood (1975) is that subsequent applications have been concen-
trated in the same area and thus focus on substitution between the energy and capital inputs
in industrial production. The prevalence of this type of application prompted the meta-analysis
of reported elasticities between energy and capital by Koetse et al. (2008).

We extend both of the above studies on bank input substitution via our third contribution
as well as by: (i) using up-to-date data; (ii) computing a lot more types of elasticities; and (iii)
examining multiple rich disaggregations of total deposits. In contrast, Athanasios et al. (1990)
only calculate the AES and Michaelides et al. (2015) only compute the MES. Although the
latter is a recent study of U.S. banks the authors use data for the period 1989 — 2000. This is
because their focus is on the development and demonstration of a new econometric estimator
of a model rather than on issues relating to the financial crisis. Moreover, although both these
studies obviously account for deposits, only the latter disaggregates interest bearing deposits
into a portion of panel C in figure 1 (interest-bearing transaction and non-transaction accounts).
We, on the other hand, analyze all the different disaggregations of total deposits in figure 1.
The third contribution of our paper is that, to the best of our knowledge, we are the first to
analyze the effect of structural change on elasticities of substitution/complementarity. This is
because the major developments in the U.S. banking system in response to the crisis clearly
invoked structural change in the industry. This suggests that there is plenty of scope for other
applications of our approach because there are a lot of cases in banking industries where policy
intervention has initiated structural change, e.g., market deregulation/liberalization.

Finally, we note for various pairs of deposit types that a key empirical finding is the change
in their ¢ substitutes/complements classification between the pre-crisis period (1992 —2007) and
the period covering the crisis and beyond (2008—2015). To illustrate, for the pre-crisis period the
AEC for interest-bearing and non-interest-bearing deposits suggests that the quantities of these
deposit types are independent of one another. For the period covering the crisis and beyond,
however, the AEC indicates that the quantities of these two deposit types are substitutes, which
points to a change in depositors’ preferences between these two deposit categories. In light of
such findings an interesting area for further research would be to examine the determinants of
such changes in preferences between deposit types.

The remainder of this paper is organized as follows. To set the scene, in section 2 we discuss
the crisis induced U.S. banking system developments in the context of the roles they may have
played in the changing relationships between deposit types. Since a modeling framework needs
to be followed to calculate the elasticities of substitution and complementarity, we set out the
framework in section 3, which consists of two parts. In the first part we provide an overview of
the duality between the IDF and the cost function, as we rely on this duality to calculate the
dual elasticities of substitution. The second part discusses random coefficients modeling, as we
use this approach (rather than a standard fixed parameter model) to estimate the IDF to better
account for the extent of the heterogeneity between U.S. banks. In section 4 we present the
general form of the six elasticities of substitution and complementarity we calculate. Section
5 focuses on the empirical analysis of differences in the substitutability /complementarity of

deposit types between the pre-crisis period and the period covering the crisis and beyond.



Section 6 then concludes by putting into context some of our salient findings on deposit type
substitution and complementarity by describing some general banking situations that fit with

such findings.

2 U.S. Banking System Developments and the Changing Rela-
tionships between Deposit Types

We adopt a logical structure for the discussion in this section by considering the role that U.S.
banking system developments may have played in the changing relationships between the levels
of deposit types in figure 1 from the crisis onwards. At the outset we note that total deposits
trends upwards over the period 2008 — 2015 (see figure 2). This is because, despite the impact
of the crisis induced recession, the U.S. economy grew over this period, and, as a result, the
amount of U.S. currency in circulation increased (Rudebusch, 2018), which will have in part
manifested itself in the form of larger deposits. To illustrate, over this period U.S. real GDP
increased by 11.47% and the U.S. monetary base (MO) increased by a factor of 4.51. The
interesting issue for our purposes is when we compare figures 1 and 2, we can see that there are
clear similarities/differences between the changes since the crisis in the level of total deposits
and the levels of some deposit types. It is these similarities and differences that we focus on for

the most part in the remainder of this section.
[Insert figure 2 about here]

We can see from figure 1 that the 2008 crisis led to very similar immediate falls in non-
transaction accounts, savings deposits and interest bearing deposits (panels A-C of this figure,
respectively). The similarity between these immediate falls in the levels of these deposit types is
of course because the categories overlap (savings deposits of course form part of non-transaction
accounts and interest bearing deposits). Given the gravity of the crisis, striking features of these
three deposit categories are how relatively small and short-lived were, first, their falls in 2008
and, second, any subsequent fluctuations. This was followed by the start of relatively stable
upward trends in all three categories over the remainder of our study period. In the case of
non-transaction accounts and interest bearing deposits these upward trends closely resembled
their pre-crisis trends. In the latter portion of our study period, however, savings deposits rose
much faster than before the crisis.

It follows from the range of policy responses to the crisis that there are various reasons
for the above small and short-lived impacts on the levels of non-transaction accounts, saving
deposits and interest bearing deposits, and their subsequent relatively stable upward trends.
Notwithstanding this, we now turn to discuss how the evolution of the levels of these three
categories over the period covering the crisis and beyond may have been influenced by four

important crisis induced developments.

1. Quantitative Fasing (QF)
The typical monetary policy tool of the Federal Reserve is to use open market operations

to influence its short term policy rate, such that the federal funds effective rate coincides with



the Fed’s target for this rate, as chosen by the FOMC.* In doing so the Fed is able to directly
manipulate the supply of base money and indirectly control the total money supply.

The Fed’s typical expansionary policy tool of cutting its target for the federal funds rate was
not a feasible response to the crisis induced recession because the rate was already effectively
at its lower limit near zero. Additionally, given the depth of the Great Recession, leaving the
low federal funds rate unchanged would not on its own have revived output and employment
growth sufficiently. The Fed’s response therefore was to use unconventional monetary policy
(Kuttner, 2018), a key part of which was QE. QE involved three waves of substantial purchases
by the Fed of longer term agency backed securities to place downward pressure on longer term
interest rates to ease overall financial conditions. At the start of the crisis the Fed’s holding
of domestic securities was less than $1 trillion, but following the three waves the Fed’s balance
sheet increased to over $4 trillion. QE was instrumental in stimulating the economic recovery
and along with the growth in the recovery period there was the associated increase in the
monetary base. This increase in base money supply will have in part manifested itself through
larger deposits, which is consistent with the relatively stable upward trends in the post-crisis
period in the levels of non-transaction accounts, savings deposits and interest bearing deposits.

Savings deposits may have increased particularly fast in the first part of the recovery (2010
and 2011) because of the effect of the liquidity trap (i.e., a situation where typical monetary
policy using open market operations is ineffective because interest rates are low and savings
rates are high). In a liquidity trap funds are put into savings rather than bonds because
interest rates are expected to rise soon, which discourages holding bonds as it will push down
their prices. In 2010 and 2011 market investors anticipated that the federal funds rate would
soon rise (Rudebusch, 2018), but, as we will discuss further in 3. below, this turned out not to

be the case.

2. Insufficient Initial Stimulation of Bank Lending

A key feature of the crisis was the sudden end of the credit boom. Among other things,
markets for securitized assets (except for mortgage securities with government guarantees) shut
down, which tended to leave concerning levels of complex credit products and other illiquid
assets of uncertain value on the balance sheets of financial institutions. As a result, the U.S.
banking system was in need of a substantial injection of short term liquidity. The Fed took
steps to provide this liquidity by creating reserve balances for sound financial institutions using
a number of new facilities for auctioning credit. These new facilities included increasing the
term of discount window loans from overnight to 90 days and creating the Term Securities
Lending Facility, which auctions credit to depository institutions for up to three months.

A key motivation of the Fed for this liquidity provision was to reduce banks’ funding stresses.
All else equal, such provision should make banks more willing to lend, thereby aiding the
economic recovery. In the initial years that followed the crisis, however, this increase in lending
did not materialize. A key reason for this was the introduction of a rate of interest on bank

reserves at the Fed, which at the time was somewhat above the overnight federal funds lending

4The federal funds effective rate is the weighted average of the overnight rates that depository institutions
(banks and credit unions) negotiate with one another, when those with surplus reserve balances at the Fed lend
on an uncollateralized basis to those that need larger balances.



rate. Also, in response to the crisis banks became acutely risk averse. The upshot was that
banks did not use large portions of their Fed reserves to finance lending, which were instead left
idle.

Since the epicenter of the crisis was the turn of the U.S. housing cycle and the associated rise
in delinquencies on subprime mortgages, which imposed substantial losses on many financial
institutions and shook investor confidence, other things being equal, there will have been more
post-crisis risk aversion from both lenders and borrowers towards mortgages vis-a-vis other
loans. This is evident from figure 3 because we can see that real estate lending in the U.S.
flatlined since the 2008 crisis, while there is clear evidence in 2012 of an upturn in aggregate net
loans and leases.” As a consequence, it is conceivable in the uncertain times during the crisis
and beyond that borrowers chose to keep the funds they planned to add to their borrowings for
spending and investment purposes liquid in deposit accounts. Such behavior is consistent with
the upward trends in non-transaction accounts, savings deposits and interest bearing deposits

that we observed above following the crisis (see figure 1).

[Insert figure 3 about here]

3. Low Federal Funds Rate Forward Guidance

While early in the recovery market investors anticipated that the federal funds rate would
soon rise, the severity of the recession and the conventional monetary policy shortfall (i.e.,
the shortfall between what the Fed could deliver with open market operations and what was
appropriate in such a deep recession) resulted in the Fed having a different view. The Fed was
instead of the opinion that a low federal funds rate was needed for an extended period, which was
conditional on the expected economic conditions going forward being realized. As Rudebusch
(2018) notes, on January 25, 2012, the FOMC conveyed this to investors when it stated that
‘economic conditions...are likely to warrant exceptionally low levels for the federal funds rate
at least through late 2014’. Given the depth of the recession and the conventional monetary
policy shortfall, in this forward guidance communication the FOMC provided more certainty
about the federal funds rate going forward than it would ordinarily do in such statements. The
FOMC provided this greater certainty to drive down longer term interest rates by pushing down
expectations of the federal funds rate going forward, and thereby promoting growth.

Growth is accompanied by an increase in the monetary base, which will have in part mani-
fested itself through the larger deposits we observed in the post-crisis period (i.e., the relatively
stable upward trends over this period in non-transaction accounts, savings deposits and interest
bearing deposits). By conveying that future short rates were likely to be low, the FOMC placed
downward pressure on the expectations components of the yields from longer term bonds by

reducing the averages of the expected short term interest rates over the maturities of the bonds.

4. Increase in the Level of Deposits Covered by Federal Insurance

From 1980 until the crisis, the per-depositor limit insured at each member bank by the
Federal Deposit Insurance Corporation (FDIC) was $100,000. The 1933 Banking Act created
the FDIC to restore trust in the U.S. banking system. This was because in the portion of the

’The data for figure 3 is available from the FDIC and is provided in the Call Reports.



Great Depression before the FDIC was formed more than one-third of banks failed and bank
runs were common. To restore the loss in depositor confidence due to the 2008 crisis and thereby
help stabilize the U.S. banking system, from October 3, 2008 to December 31, 2010, Congress
temporarily increased the per-depositor limit that was covered by the FDIC insurance fund to
$250, 000.

There had been a run on deposits at Washington Mutual and, as a result, Wachovia, and
increasing the per-depositor insurance limit was designed to guard against similar runs at other
banks. Washington Mutual failed on September 26, 2008 following a ten-day run on its deposits
and represented a large bank failure during the crisis with assets of $307 billion. This led to a
run on deposits at Wachovia, another large troubled bank, as depositors drew their accounts
below the $100, 000 insurance limit.

On May 20, 2009 the temporary increase in the per-depositor insurance limit to $250, 000 was
extended to December 31, 2013, and the 2010 Dodd-Frank Wall Street Reform and Consumer
Protection Act made this higher limit permanent. The permanent increase in the insurance limit
will have led to an increase in deposits, which is in line with the reasonably stable post-crisis
upward trends in the levels of non-transaction accounts, savings deposits and interest bearing
deposits that we observed in figure 1. The permanent increase in the insurance limit is a part
of Dodd-Frank that related to deposits to guard against a repeat of the banking instability in
the crisis. There are various other parts of Dodd-Frank that focus on other aspects of banks’
activities to prevent such instability in the future. For example, the Volcker Rule was designed
to prevent a repeat of the excessive risk taking by banks by preventing banks from using their
own accounts for various speculative trading activities that do not benefit their customers.

In contrast to the 2008 crisis leading to some fluctuations in, in particular, the levels of
non-transaction accounts and interest bearing deposits, it is evident from figure 1 that there are
some deposit types where there has been no such variability over our study period. Changes
in the levels of some deposit types have instead evolved steadily over time. Such changes and
our reasoning for these changes in depositors’ preferences are as follows. First, we can see from
panel A in figure 1 that the 2008 crisis marked the end of the gradual upward trend in the level
of other transaction and other non-transaction accounts, after which there was a flatlining of
this deposit type. It is conceivable that this flatlining is because the crisis prompted depositors
to be more conservative about non-traditional deposit types. This would lead to depositors
having a greater preference for core transaction and core non-transaction accounts, which is
consistent with the levels of both these accounts, and particularly the latter, trending upwards
in the post-crisis period (see panel A of figure 1).

Second, in the period covering the crisis and beyond, panel B of figure 1 reveals a non-
negligible downward trend in time deposits, which together with the marked upward trend in
savings deposits suggests that the crisis prompted a much greater preference for more liquid
deposits. Third and finally, it is evident from panel B of figure 1 that there is a diminishing
upward trend in savings deposits over the period 2002 — 2007. This is to be expected as
it is in line with the progression of the U.S. economy through the expansion phase of the

business cycle (2001:Q4 — 2007:Q3, inclusive), and towards the crisis induced recession phase



(2007:Q4 — 2009:Q2, inclusive).b

3 Modeling Framework: Input Distance and Cost Functions,

Duality and Estimation

Let = € RT be the set of K inputs, indexed k = 1, ..., K, that producers have at their disposal.
Now let y € RT be the set of M outputs, indexed m = 1,..., M, that producers use z to
produce. As we adopt an input-oriented approach, the production technology is characterized
by the input requirement set I(y) = {x € R* : x can produce y}. I(y) therefore describes
the sets of input vectors that are feasible for each output vector. A la McFadden (1978), we

represent the general form of this production technology using the IDF as follows:

D[(Z/,Jf):m)f\i.X{)\:%GI(y)Zl}, (1)

where the scalar A > 1 and Dj; denotes distance to the IDF. All points on the convex IDF
correspond to A = 1 and hence D; = 1 and represent minimum radial combinations of input
quantities that can be used to produce given output vectors. An IDF has the following five
properties (McFadden, 1978): (i) non-decreasing in x, d1n D;(y,z)/0Inzy = ex) > 0, where exy,
is the kth input elasticity; (ii) non-increasing in y, 01n D (y, z)/0Iny,, = eyn, < 0, where ey, is
the mth output elasticity; (iii) homogeneity of degree one in x, D;(y,x/xx) = Di(y,z)/xg; (iv)
concave and continuous in z; (v) By = — <Z%[:1 dlnDy(y,x)/0 lnym>7 = - (Z%zl eym>71
is the scale elasticity of the IDF representation of the production technology.

The general form of the cost function can be represented as follows:

C(y,p) = min{pz : Di(y,z) > 1}, (2)

where p € R* is the set of K input prices and C = Zszl prxi is the expenditure on inputs.
Accordingly, there is a direct correspondence between the above five properties of Dy(y, z) and
the following five properties of C(y,p): (i) non-decreasing in y, dInC(y,p)/0Iny,, = ey, > 0;
(ii) non-decreasing in p, 1ln C(y, p)/0 Inpy = epr, > 0, where epy, is the kth input price elasticity;
(iii) homogeneity of degree one in p, C (y,p/pr) = C (y,p) /pr; (iv) concave and continuous in
p; (v) Ec = <E%:1 OInC(y,p)/0In ym) - = (Z%:l eym)_l is the scale elasticity of the cost
function representation of the production technology.

Given the duality between the IDF and the cost function, they are completely symmetric
in their treatment of input quantities and input prices conditional on the fixed output vector
(Shephard, 1970). The IDF can therefore be recovered from the cost function as follows:

Di(y, x) = min {px : C(y,p) = 1} . (3)

Applying Shephard’s lemma (Shephard, 1970) to the cost function yields the input demand
function for the kth input, Xj:

5The dates of these phases of U.S. business cycles are from the National Bureau of Economic Research
(https://www.nber.org/cycles.html).



_ 9C(y,p) _ 0InC(y,p) Cly,p)
Opk 0 lnpy Pk

The associated cost share equation for the kth input, Sk, is:

X5 . (4)

_ 9InC(y,p)

Sy = (5)

Consider the general form of the IDF in Eq. 6, a version of which we estimate in the empirical

Olnpy

analysis. The dependent variable is —x g, where lower case letters denote logged variables. We
obtain this dependent variable by applying property (iii) of an IDF from above and normalizing
the other inputs on the right-hand side by the input on the left.

—zrit = o + TLi (Tie, yir, t) + Vizite + it (6)

where

- - 1._ - 1 " -
TLi(Zit, yits t) = pit + Ct* + KiTir + Miyie + §m§t®¢mit + gyétl“iyz-t + 2, Piyit + O5Tirt + iyit.

In each cross-section there are N units, indexed ¢ = 1,..., N, that operate over 1" periods,
indexed t = 1,...,T, where we consider the typical case that is encountered when using firm
level data of large N and small T. «; is an intercept, which, as is the case for the other
parameters in Eq. 6, is for the ith unit. This is because Eq. 6 represents a random coefficients
specification, which, as we discuss in more detail further in this section, is well-suited to our very
heterogeneous sample of U.S. banks as it yields a richer set of parameter estimates than the fixed
parameters from standard fixed and random effects models. T'L;(Z;, yit, t) in Eq. 6 represents
the variable returns to scale translog approximation of the log of the IDF production technology.
ZTit = xir— T denotes the (1 x (K — 1)) vector of observations for the normalized logged inputs
and y;; is the (1 x M) vector of observations for the logged outputs. ¢ is a time trend and by
interacting the outputs and normalized inputs with ¢ technical change is non-neutral. z; is a
vector of observations for the variables that shift the IDF production technology and e; is the
idiosyncratic disturbance. p; and (; are regression parameters, x5, 1}, 05, 15 and v} are vectors
of regression parameters, and ©;, I'; and ®; are matrices of the regression parameters 6;, 7; and
¢;, respectively. It follows from the properties of the translog functional form (Christensen et
al., 1973) that Eq. 6 is twice differentiable with respect to a logged output and a normalized
logged input. The associated Hessians are symmetric because of the symmetry restrictions that
are imposed on O; and I'; (e.g., Ti1m = Ti m1)-

In our random coefficients model the heterogeneity between the banks is treated as stochastic
variation. Our model has a rich specification that permits two levels of latent variables pertain-
ing to a fixed component across all banks and a heterogenous random component for each bank.
With such a specification each bank has its own IDF with its own set of parameters to better
reflect the extent of the heterogeneity across U.S. banks. It is possible to estimate a full random
coeflicients model, as specified in Eq. 6, where each parameter is estimated for each bank, or a

partial random coefficients model, where the set of parameters for each bank is a mix of fixed
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parameters across all banks and parameters that are estimated for each bank. When using very
large data sets to estimate models with a quite a large number of variables, as is the case in this
paper, it is more practical to estimate a partial random coefficients model, otherwise estimation
time becomes infeasible. As we are interested in deposit type substitution/complementarity, we
therefore estimate an IDF for each bank with a set of random slopes for the first order deposit
types, &;, to reflect the heterogeneity in the banks’ technologies. &, C k; as k; also contains
fixed parameter estimates for non-deposit inputs. ¢, is distributed according to the following
(K — L) variate normal distribution, where K is the total number of inputs and L is the number

of non-deposit inputs:

& ~N(EQ), i=1,...,N. (7)

In Eq. 7 £ is the ((K — L) x 1) vector of parameter means and €2 is the (K — L) x (K — L))
positive definite covariance matrix. The model assumes that (§i|E, Q) and e are i.i.d. In the
empirical analysis we provide further justification for limiting the random coefficients modeling
to the first order deposit types. Note that we only touch on the approach to the random
coefficients modeling here as it is a standard approach. For a more detailed discussion of

random coefficients modeling see, among others, Cuthbertson et al. (1992).

4 Input Elasticities of Substitution and Complementarity from

an Input Distance Function

Turning now to a presentation of the six elasticities of substitution and complementarity that
we compute from a fitted IDF. For a synthesis of the literature on elasticities of substitution and
complementarity with reference to computation of the elasticities from a cost function see Stern
(2011). Our presentation of the elasticities, which also provides an insight into the evolution of

the literature, is in terms of two inputs z, and x, from the input vector x.

1. Symmetric Antonelli FElasticity of Complementarity (AEC): Blackorby and Russell
(1981) derive this elasticity and refer to it as the true dual of the AES under non-constant
returns to scale. Kim (2000), on the other hand, refers to this elasticity as the AEC, which is
the terminology we use here.” To measure the response to a change in the input quantity .
the formula for the AEC is as follows.

2 T
ape. - D10 R 1 omP(y,) (8)
© D) D) S, dlnw,

where applying Shephard’s lemma to the IDF yields the inverse input demand function for input
o, P, (y,z) = 0D1(y, x)/0z,, which measures the shadow price of the input. From the IDF we
also obtain the cost share equation for input *, S, = dIn D;(y, x)/01Inx,.

TKim (2000) attributes the AEC to Antonelli (1886) as it involves using the Antonelli substitution matrix,
which is the matrix of second order partial derivatives of a distance function (Deaton, 1979).
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In our empirical analysis we use the fitted IDF to compute the AEC,, as follows.

97,’,*0 + S@*Si,o

AFE *0 — ;
C Si,*si,o (9)

where 6; .o is the relevant element of ©; from T'L;(x, yi,t) in Eq. 6. At the sample mean
Six = Kix and S; o = Ko, where £« and k; o are the relevant elements of &} from T'L;(xit, Yit, t)-
This is because we use mean adjusted data and, as a result, the terms in the partial derivatives
of Eq. 6 that relate to the quadratic and interaction terms in T'L;(x, yit,t) are zero at the

sample mean.

2. Symmetric Allen-Uzawa Elasticity of Substitution (AES): The AES is jointly due to
Allen (1934; 1938), who shows how to compute the AES from a production function (i.e., the
primal AES), and Uzawa (1962), who shows how to calculate the AES from a cost function
(i.e., the dual AES). Given the duality between the cost function and the IDF we compute the
dual AES in our empirical analysis. The formula for the dual AES to measure the response to
a change in input price p, is given in Eq. 10. This formula is valid not just for a single output,
which is how Allen (1938) presented the primal AES, but also multiple outputs.

a2C
Clu:n) Gpdy _ 1 9 Xo (3,p)

"9C(yp) Cwp) S,

AES,, = (10)

- A Olnp,

To obtain the AES,, in our empirical analysis we draw on Broer (2004) by obtaining the
matrix of AESs, AES,,, from the matrix of AECs, AEC,,, as follows.

S1 0 0 Sy 0 0
AES,. . _1_ 0 AEC,, . || 0
J 0 a Sk 0 ! 0 Sk 0
i 0 0 1 ] i 0 0 1 ]

(11)

where ¢ is a column vector of ones and the elements of AEC,, and S are computed as described

above (see Eq. 9).

3. Asymmetric Morishima Elasticity of Complementarity (MEC): The formula for the
MEC,, from Blackorby and Russell (1981) and Kim (2000) to measure the response to a change

in input quantity x is:

Oln (2B5n) 205

MEC. Oln (zo/xy) (12)
_ OlP(y,z) 9lnPi(y,z) (13)
N Oln x, Olnz,

From Eq. 13 we can see that the MEC is the difference between two input quantity elasticities

which are in terms of two inverse input demand functions. The M EC,, measures the optimal
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change in the shadow input price ratio when x, changes in the fixed input quantity ratio and
T, is allowed to adjust optimally by holding the price of input o constant. In our empirical
analysis we calculate the M EC,, using Eq. 13. This involves obtaining equations from Eq. 8
for AEC,oSx and AEC,S, and substituting in for the two terms on the right-hand side of Eq.
13, respectively.

4. Asymmetric Morishima FElasticity of Substitution (MES): The MES dates back to
Morishima (1967) and the formula for the MES in Blackorby and Russell (1975) for the optimal
response to a change in input price p, is:

o] , o] ,
dln ( C(;EDZ/*P)/ Ca'(pyop)>

MES,;, =
dln (pO/p*)

(14)

Following Blackorby and Russell (1989) Eq. 14 for a change in p. can be rewritten as:

92C(y,p) 8C(y,p)  02C(y,p) dC(y,p)
MES . *\ Op«Opo  Opx Op2 Ipo
oo 9C (y,p) 9C(y,p)

8}’)* 8])0
Oln X, (y,p)  IInX.(y,p)
0ln p, dlnp,

(15)

where X, (y,p) and X, (y,p) are factor input demand functions from Eq. 4. To compute the
MES,, in our empirical analysis we use the corresponding approach to calculate the M EC..
This involves using Eq. 10 to obtain equations for AE S0 5« and AFE S, S, and these equations
are then substituted into Eq. 15.

5. Symmetric Shadow Elasticity of Complementarity (SEC): The corresponding primal
elasticity of complementary to the dual SES, which is the final elasticity we present, is the SEC
(Stern, 2010). The SEC measures the optimal response of the shadow input price ratio to a
change in the ratio of two input quantities, holding any other input quantities, the quantity of
output and distance constant. As the SEC refers to movements along the input distance frontier
it has the appealing feature that it measures input substitution when production is technically
efficient. In contrast, the input quantity ratio is fixed for the AEC and the MEC so it is not
possible for one input quantity to change holding output constant unless distance changes. The
AEC and MEC do not therefore measure input substitution along the input distance frontier.
The formula for the SEC is:

0Dy (y,x) ;0D1(y,x)
dln ( 0T 4 / Ozxo
SEC., = |Dr
Oln (xo/xy)
__9°Dy(y,x) /022 + 232D1(w)/3$*3wo _ _0*Di(y,x)/0x2
9D (y,x) 0D (y,x) 9Dy (y,x) 0D (y,x) 9D (y,xz) 0D (y,x)
_ Ox % Ox % O % dxzo dzxo Ozxo (16)
= ) .

; +
(@D1(y2)/9w.)e " (OD1(y)/dwe)ae

Asin Eq. 17, the SEC can be shown to be the share-weighted average of three AECs (Stern,
2010), which is the result we use to calculate the SEC in our empirical analysis. To obtain Eq. 17:
(i) In Eq. 8 for the AEC,, AEC,, and AEC,, we set D(y,x) = 1 because input substitution
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occurs along the input distance frontier. We then substitute into the numerator of Eq. 16 to
obtain —AEC,,+2AEC,,—AEC,.. (ii) In the inverse demand functions for inputs * and o from
the IDF (e.g., Po = 0D(y,z)/0xs = (0lnD(y,z)/0lnx,) Di(y,x)/xs) we set Dy(y,x) =1
and drawing on the cost share equations from the IDF (e.g., So = 01ln D(y,x)/01nx,) we rewrite

and substitute in for each term in the denominator of Eq. 16 (e.g., Sio = m).

1

SEC*Q — ﬁ (—AEC** + QAEC*O - AECOO)
S«So Sx«So
_ S AEC 2AEC AEC 17
= S*+So( o + o 00) - (17)

6. Symmetric Shadow Elasticity of Substitution (SES): McFadden (1963) derived the
SES which Mundlak (1968) observes is the MES when cost is held constant. Whereas the
MES is asymmetric the SES is symmetric because of the constant cost requirement. Since the
SEC measures input substitution along the input distance frontier and the SES measures input
substitution along the isocost curve, it is clear that the SEC is the dual of the SES. The formula
for the SES is as follows.

oln <8%(1{k,p)/308§i,p))
SES,, = iC
dln (pO/p*)
_ O%C(yp)/Ops | 992C(y:p)/0psOpo _ O2C(y.p)/Ip3
9C(y,p) 9C (y,p) 9C(y,p) 9C(y,p) 9C(y,p) 9C(y,p)
o Opx Opx Opx 9po 9po 9po (18)
- 1 1 '

@C(wp) /0= T (0Cw:p)/0pa)po

Analogous to the above representation of the SEC, the SES can be expressed as the following
share-weighted average of three AESs, which is the result we use to compute the SES in our
empirical analysis. In brief given the analogous nature of the SES, we obtain Eq. 19 by first
setting C (y,p) = 1in Eq. 10 for the AES,,, AES,, and AES,,, and we then substitute into the
numerator of Eq. 18. We next set C (y,p) = 1 in the demand functions for inputs % and o and
using the cost share equations we rearrange and substitute in for each term in the denominator
of Eq. 18.

S*So

SESsw = 57——F5
Se+ 5o (

—AES,, + 2AES,o — AES..). (19)

5 Empirical Analysis

5.1 Data, Variables and Model Specifications

We estimate a number of specifications of the IDF for insured U.S. commercial banks for two time
periods using rich annual year-end unbalanced panel data. The first time period is 1992 — 2007
and the second is 2008 —2015. Following Vazquez and Federico (2015), who refer to 2001 — 2007
as capturing the evolution of bank financial conditions in the run up to the crisis and 2008 —2009
as the crisis period, we interpret our first sample as a pre-crisis period and we refer to our second

as a period that covers the crisis and beyond. Looking ahead to our fitted models, testing whole

14



sets of parameters from the models for the two periods against one another using a Wald test
justifies splitting the entire sample. See the presentation and analysis of our fitted IDFs in
subsection 5.2 for a discussion of these test results.

We omit each bank-year from the two data sets where there was a missing observation for a
variable. The resulting data sets we use for the periods 1992 — 2007 and 2008 — 2015 are both
large, as they comprise 127,076 bank-year observations and 44,504 bank-year observations,
respectively. All the data for the variables was either extracted directly from the Reports
of Condition and Income (i.e., the Call Reports) of the Federal Reserve System, which we
obtain from the Federal Deposit Insurance Corporation (FDIC), or was constructed by the
authors using data from this source. All monetary volumes are deflated to 2005 prices using
the consumer price index.

To make appropriate comparisons we use the same set of variables to estimate the IDF for
each time period. The inputs and outputs in our IDF specifications are based on the Sealey
and Lindley (1977) intermediation approach to banking. We therefore assume, first, that banks
use the savings of consumers and firms to make investments and, second, that banks seek to
minimize the cost associated with the production of their outputs. In Table 1 we describe the
variables we use to estimate the models and provide summary statistics for these variables for
both sample periods. For each sample period we estimate three model specifications using three
outputs (y1 — y3), which reflect the lending and non-lending activities of the banks. These
three model specifications also have nine z variables that shift the IDF production technology
(21 —29). Model specifications 1 and 2 have five inputs and model specification 3 has four inputs.
All three model specifications include as inputs, the number of full-time equivalent employees
as the labor input, z1, and premises and fixed assets, xs. The remaining inputs in the three
model specifications represent different disaggregations of total deposits. For example, model
specification 1 disaggregates total deposits into transaction accounts, non-transaction accounts

and other transaction and other non-transaction accounts.
[Insert table 1 about here]

From inspecting the mean levels of the deposit types in table 1 we can see that there were
large increases between the periods 1992 — 2007 and 2008 — 2015. To illustrate, across the
eight deposit types we consider, the smallest percentage increase is the 33% rise in mean total
time deposits, while the largest percentage increase is the huge 218% rise in mean total savings
deposits.

Turning next to a discussion of the fitted IDF's, where all the inputs and outputs are logged.
We then mean adjust the inputs and outputs and the time trend so the associated first order

parameters can be interpreted as elasticities at the sample mean.

5.2 Discussion of the Estimated Input Distance Functions

The estimated IDFs for model specifications 1 — 3 for the period before the crisis (1992 — 2007)
and for the period covering the crisis and beyond (2008 — 2015) are presented in tables 2 — 4.
—x1 is the dependent variable for the reported IDFs and is also therefore the normalizing

input for these models. To recap, we account for the heterogeneity across the banks via a set
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of random intercepts and via a set of random slopes for a first order deposit type as we are
primarily interested in deposit type substitution/complementarity. All the other parameters are
the usual fixed estimates. Furthermore, from a practical perspective we only estimate random
slopes for the first order deposit types rather than for all the variables in the models so that
model run time does not become excessive.® For each first order deposit type we obtain a slope
parameter for each bank so to facilitate interpretation we report an average of these parameters
across the banks. We compute the associated t-statistic by dividing this average parameter by

the standard deviation of the parameters for the individual banks.
[Insert tables 2 — 4 about here]

For each bank the intercept and slope for each deposit type are made up of a fixed compo-
nent and a heterogeneous random component. In tables 2 — 4 the relevant standard deviation
indicates whether there is significant variation across the banks between the random compo-
nents of the coefficients on a first order deposit type. This variation across the banks in the
random components of the coefficients on a first order deposit type would be overlooked by a
fixed parameter model, whereas the widespread significant standard deviations for first order
deposit types in tables 2 — 4 provide support for random parameter modeling of these variables.
Moreover, fixed parameter models implicitly allow correlation between the intercept and the
regressors, but the model output from a random parameters model is more explicit about this
correlation. To illustrate, the correlations in tables 2 — 4 indicate that there are a number of
cases where there is significant correlation between the random components of the intercept and
a first order deposit type.

To ascertain whether the fitted models support splitting the entire sample, a Wald test is
used to test the null hypothesis of equality of the two sets of parameters for the pre-crisis period
and the period covering the crisis and beyond. For all three model specifications we reject the
null that the two sets of parameters are equal at the 0.1% level, which supports estimating
separate IDFs for 1992 — 2007 and 2008 — 2015.°

As expected the three fitted model specifications for both sample periods in tables 2 — 4
all yield negative output elasticities and positive input elasticities at the sample mean. We
can therefore conclude that at the sample mean all the fitted models satisfy the monotonicity
property of the translog IDF. From the estimates of model specifications 1 — 3 for 1992 — 2007
we observe evidence of moderate increasing returns to scale that lie within the narrow band of
1.07—1.09. Even though we find evidence of only moderate increasing returns Wald tests reveal
that in each case the returns are significantly different from 1 at the 0.1% level. This is because
the variances and covariances of the first order output parameters are particularly small. This
evidence of moderate increasing returns is consistent with a good proportion of the findings for
pre-crisis samples from two seminal studies of returns to scale in U.S. banking (Wheelock and
Wilson, 2001; 2012).

8With such large data sets for our sample periods and the large number of variables in each model, even when
we only estimate random slopes for the first order deposit types estimating a single model can take up to four
hours.

9Specifically, the three Wald tests clearly reject the null as the x? test statistics are extremely large as they
range from 12,106 — 17, 124.
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Interestingly, our three fitted model specifications for 2008 — 2015 all suggest that there are
larger increasing returns to scale in our second sample period. Our returns to scale estimates
for 2008 — 2015 lie within the narrow band of 1.19 — 1.21 and in each case are significantly
different from 1 at the 0.1% level. This suggests for the sample average bank that the same
proportionate increase in inputs in both sample periods would lead to a much bigger increase
in bank size in the latter period. The principal reason why we observe larger increasing returns
for our second sample period is because for each model specification the coefficient on total
securities (y2) is lower for the 2008 — 2015 period than 1992 — 2007.

The first order time trend parameters from the three model specifications for the 1992 —2007
sample period are all positive. These time trend parameters are of the order 0.005 — 0.007 and
are all significant at the 0.1% level. For the sample average bank this suggests that, on average,
the IDF shifts up annually by at least 0.5% due to technical progress. A positive estimate of
the first order time trend parameter is in line with our expectations and suggests that in this
respect 1992—2007 is a typical type of period. This is because annual technical progress is in line
with the prediction from production theory and is consistent with technical innovations in the
U.S. banking industry during this period, such as further formats for debit card transactions,
the introduction of online banking and asset securitization (Llewellyn, 2009; Frame and White,
2010).

The first order time trend parameters from the three model specifications for the 2008 —
2015 sample period range from —0.007 — (—0.005) and are all significant at the 0.1% level.
These negative estimates are at odds with production theory and inconsistent with technical
innovations in the industry over this period. Such innovations include enhanced automated
credit scoring and more widespread use of fintech technologies, e.g., the application of artificial
intelligence and machine learning in lending activities for marketing and account monitoring
purposes (Frame et al., 2018; Thakor, 2019). In this respect these estimates suggest that
2008 — 2015 is an atypical period, which of course is particularly true for the first portion of
this period. For 2008 — 2015, we posit that we obtain negative first order time trend parameters
because the negative effect of the deepening of the financial crisis on technical change more than
offset the positive effect of the technical innovations during this period.

We conclude our discussion of the fitted models by focusing on the salient results for the z
variables. With the exception of the bank asset market share (MS) variable, for each model
specification, the signs of the coefficients on the z variables that have a large and significant
effect remain unchanged between the two sample periods. Recall that the dependent variable for
all the fitted models is the negative logged labor input (—z1). For all three model specifications
the M S variable switches from having a large negative effect on the labor input over the period
1992 — 2007 to having a large positive effect in the 2008 — 2015 sample. Although it is clear from
figure 1 that the financial crisis is associated with changes in the levels of some deposit types, we
do not attribute the change in the effect of M S on the labor input to the crisis. Instead we posit
that the different effects of M'S in our two sample periods reflects the declining role of labor in
U.S. bank production over time. This is because in our latter sample period electronic banking
is much more prominent and following an increase in a bank’s M.S it would be better placed

to fund investment in electronic banking and, as a result, reduce its labor input. In contrast,
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during our earlier sample period labor had a bigger role in bank production and following an
increase in a bank’s M S' it would be in a better position to finance expansion by increasing its

labor input.

5.3 Discussion of Deposit Type Substitution and Complementarity

For model specifications 1 — 3 for the periods 1992 — 2007 and 2008 — 2015, we compute at the
sample mean from our fitted IDF's the six elasticities of substitution and complementarity we
presented in section 4 (AEC; SEC; MEC; AES; SES; MES). For pairs of deposit types these six
elasticities are presented in tables 5 — 7 and for the elasticities of complementarity we compute
the standard errors using the delta method.'”

As the theoretical literature on elasticities of substitution and complementarity is made
up of a series of elasticities that measure different relationships, we adopt a logical two-part
structure for our discussion that is based on a systematic two-stage bank decision-making process
on deposit type substitution/complementarity. In the first part we discuss, in particular, our
findings for the AEC and AES, as well as our MEC and MES results. We discuss these elasticity
results in the first part because they can be used in the first stage of the bank decision-making
process to inform which deposits are substitutes/complements. Moreover, in the first part of
the discussion we place the emphasis on the AEC (and AES) results to indicate if two deposit
types are ¢ substitutes/complements (p substitutes/complements). This is because, although
the MES and the MEC are appealing because they are asymmetric, as Stern (2011) notes, when
the production technology is characterized by more that two inputs, the MEC (MES) should not
be used to classify if two inputs are ¢ substitutes/complements (p substitutes/complements).'!
In all three of our model specifications there are more than two deposit types, which is why the
AEC and AES are more relevant to our empirical setting.

Given a bank’s knowledge from the first stage of the decision-making process, the second
stage of this process relates to how viable it is to substitute between deposit types. In the second
part of the discussion we therefore provide some analysis of our SEC and SES results, as these
elasticities measure the degree of difficulty of input substitution/complementarity. Given the
paucity of studies that consider elasticities of substitution/complementarity of deposit types,
we place the emphasis on the first part of our discussion, which informs the first stage of the
decision-making process, as this is the logical approach to develop further this small body of

literature.
[Insert tables 5 — 7 about here]

Table 5 reveals for the period before the crisis and the period covering the crisis and be-
yond that the AECs for each pair of deposit types from model specification 1 are positive

and significant at the 1% level or lower (i.e., pairwise combinations of transaction accounts,

'"The matrix inversion to compute the AES from the AEC (see Eq. 11) precludes calculating the standard
error of the AES using the delta method. This is also the case for the SES and the MES as they are calculated
from the AES. This could be addressed by computing the standard errors for the dual elasticities of substitution
by bootstrapping, although this is outside the scope of this paper.

1We still report the MEC and MES estimates for two reasons. First, to demonstrate how they should be
calculated in the two input case. Second, to appreciate any differences in the results on deposit type substitu-
tion/complementarity when using the more appropriate AEC and AES for our case with more than two inputs.
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non-transaction accounts, and other transaction and other non-transaction accounts (D1-D3,
respectively)). This indicates that each pair of deposit types in this model specification are
significant ¢ complements in both sample periods. The implication is that the small changes
we observe in panel A of figure 1 in the levels of these deposit types in the period covering
the crisis and beyond were not sufficient to change the ¢ complements classification for pairs of
these deposit types. These small changes in deposit levels are the temporary drop in transaction
accounts due to the crisis, and over the crisis period and beyond the flatlining of non-transaction
accounts and the slow rise in other transaction and other non-transaction accounts.

In contrast to our results from model specification 1, from model specification 2 there are
some cases where the ¢ substitutes/complements results differ between the two sample peri-
ods. Table 6 reports three such findings. (i) The AECs for savings deposits (D2) and other
deposits (D3) for 1992 — 2007 and 2008 — 2015 are significant at the 0.1% level and indicate g
complementarity and ¢ substitutability, respectively. (ii) The time deposits (D1) and D3 AECs
for the two sample periods have different signs, but neither is significant. (iii) The D1 and D2
AECs for the two sample periods are positive and significant indicating ¢ complementarity, but
whereas the AEC for 1992 — 2007 is significant at the 0.1% level, it is only significant at the 5%
level for 2008 — 2015. Of these three findings the most noteworthy is (i) and to a lesser extent
(iii). (i) is in line with the divergence of savings deposits and other deposits that we observe
from 2008 onwards in panel B of figure 1. This is due over this period to the steeper upward
trend in savings deposits and a fairly constant level of other deposits. (iii) is consistent with
the change in the relationship between time deposits and savings deposits that we observe from
2008 onwards in panel B of figure 1. This is due to from 2008 the steady declining trend in
time deposits and the steeper upward trend in saving deposits. Whether the trends in these
two deposit types from 2008 have continued beyond the end of our study period and have led
to these deposits becoming ¢ substitutes is an area for future research.

Interestingly, for the only pair of deposit types in model specification 3 (non-interest bearing
and interest bearing deposits), it is evident from Table 7 that the AEC for 1992 — 2007 is close
to zero and not significant, whereas for 2008 — 2015 it is negative and significant at the 0.1%
level indicating that these deposits types are g substitutes. This change in the relationship
between these deposit types is consistent with the changes from 2008 onwards in the levels of
these deposits in panel C of figure 1. To illustrate, non-interest bearing deposits go from being
fairly constant up to 2008 to being on a clear downward trend from thereon, whereas interest
bearing deposits, following some crisis induced fluctuations, revert to a path that resembles a
continuation of its steady pre-crisis upward trend. In terms of the economic intuition that may
explain these changes in the levels of these deposit types and why for 2008 — 2015 they are ¢
substitutes, it may be because in the uncertain times during the crisis and beyond, depositors
had a greater preference for liquid non-interest bearing deposits over more illiquid interest
bearing accounts.

Frondel and Schmidt (2002) note that when the MES is incorrectly applied to cases where
there are more than two inputs, the MES tends to classify inputs as p substitutes because the
own input price elasticity tends to be greater in absolute value than the cross price elasticities.

In line with this, we find that the MES is positive for every pair of deposit types, but there is
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no evidence to suggest that this classification of each pair of deposit types as p substitutes is
erroneous because all the AESs in tables 5 — 7 are also positive. Applying this to the case of
the MEC from an IDF, from the duality of cost and input distance functions, when there are
more than two inputs we should observe that the MEC from an IDF tends to classify inputs
as ¢ complements. Our results exclusively support this because for every pair of deposit types
we find that the MEC is positive. In contrast to our MES and AES results, however, this does
lead to some cases where the MEC would appear to incorrectly classify two deposit types as ¢
complements, while the AEC indicates that they are ¢ substitutes. For example, as we noted
above for savings deposits and other deposits for 2008 — 2015, the significant AEC indicates
that these deposit types are g substitutes.

Having discussed the ¢ and p substitutes/complements classifications of pairs of deposit
types, we now focus on the changes in the magnitudes of the elasticities between the two sample
periods. To this end, in figures 4 and 5 we present for the two sample periods radar diagrams
for the elasticities for model specifications 1 and 2.2 In these figures the blue radars relate
to the elasticities for 1992 — 2007 and the red radars relate to the elasticities for 2008 — 2015.
From figure 4 we can see for model specification 1 that the AEC (AES) for each pair of deposit
types is larger (smaller) in magnitude for 1992 — 2007, vis-a-vis 2008 — 2015. This is also the
case for model specification 2, with the exception of the AEC and AES for time deposits and
other deposits. Consistent with these results for time deposits and other deposits, for model
specification 3 we can see from table 7 that the AEC (AES) for interest bearing and non-interest
bearing deposits is smaller (larger) for 1992 — 2007 than we observe for 2008 — 2015.

[Insert figures 4 and 5 about here]

Building on figures 4 and 5, in table 8 we report z-scores for pairwise one-tailed tests of
elasticities of complementarity from a 2008 — 2015 model against the corresponding elasticity
from the 1992 — 2007 model. For an AEC that is larger or smaller for 2008 — 2015 than we
observe for 1992 — 2007, table 8 reveals that it is significantly larger or smaller at the 5% level or
lower, with the exception of one AEC from model specification 1 (between transaction accounts
and other transaction and other non-transaction accounts). For example, the AEC from model
specification 2 for time deposits and savings deposits for 1992 — 2007 is significantly larger
than for 2008 — 2015. This indicates that, although these two deposit types are significant ¢
complements in both sample periods, the degree of ¢ complementarity is significantly less in
the latter period. This finding is consistent with the change in the relationship between time
deposits and savings deposits that we observed above from 2008 onwards due to the steady

declining trend in time deposits and the steeper upward trend in savings deposits.
[Insert table 8 about here]

We have discussed how the elasticities we have analyzed thus far can inform the first stage

of a bank decision-making process on deposit type substitution/complementarity by indicating

2We suggest that radar diagrams of elasticities of substitution and complementarity are particularly useful to
compare several elasticity estimates. Model specification 3 comprises just two deposit types which is insufficient
to construct a radar diagram of the deposit elasticities. In this situation it is simple to compare the elasticities
by eyeballing the estimates.
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whether each pair of deposit types are ¢ and p substitutes/complements. Given the bank’s
knowledge from the first stage of this decision-making process, in the second stage of the
process it is perfectly reasonable for banks to consider the degree of difficulty of substitu-
tion/complementarity between a pair of deposit types. The degree of difficulty associated with
g and p substitution/complementarity between a pair of deposit types relates to the magni-
tudes of the SEC and SES, respectively. Tables 5 — 7 indicate for every pair of deposit types
for both sample periods that the SEC is positive, as theory requires, less than 1 and significant
at the 0.1% level. As all the SECs are less than 1 this suggests that there is limited ¢ substitu-
tion/complementarity possibilities between the pairs of deposit types. For every pair of deposit
types for both sample periods, tables 5 — 7 also reveal that the SES is positive and greater than
1, which indicates that there is plenty of scope for p substitution/complementarity.

We would expect there to be plenty of scope for p substitution/complementarity between
a pair of deposit types because the relationship between the price of a deposit type, which is
the rate of interest that a bank pays on the deposit account, and the quantity of the deposit
is well-defined from microeconomic theory. The quantity of a deposit type will therefore be
sensitive to a change in its price. It is in turn reasonable to think that the quantity of a deposit
type will be sensitive to a change in the price of another deposit type. In contrast, it is not
surprising we find that there is limited ¢ substitution/complementarity possibilities between
the pairs of deposit types because a change in the quantity of a deposit type may not change
the deposit type’s marginal product and the marginal products of other deposit types. The
reason is because if, for example, the quantity of a deposit type increases at a bank, it does not
necessarily follow that this will lead to an increase in one or more of the bank’s outputs (e.g.,
loans), and that it will also impact the relationships between the bank’s other deposit types and
its outputs. The bank may not use the increase in this input to increase its outputs and could
put the increase in the input to an alternative use to aid its financial condition, e.g., increase its
reserves at the Fed. We expand on this further in the next section where we conclude by putting
into context some of our salient findings on deposit type substitution and complementarity by

describing some general banking situations that fit with such findings.

6 Contextual Summary of the Salient Empirical Findings

Figure 1 suggests that the relationships between the levels of some deposit types differ between
the pre-crisis period and the period covering the crisis and beyond. The approach we adopt in
this paper to quantify any crisis induced changes in the relationships between pairs of deposit
types is to analyze if there has been changes in their substitutability /complementarity. It
is useful for banks to have such information because deposits are banks’ principal source of
funding for their lending activities. To indicate how such information may feature in a bank’s
decision-making, we suggest a logical two-stage bank decision-making process on deposit type
substitution/complementarity. In the first stage we suggest that banks may consider whether
pairs of deposit types are g and p substitutes/complements. Given this knowledge from the
first stage, in the second stage of the process we suggest that banks may consider the degree of

difficulty of ¢ and p substitution/complementarity between pairs of deposit types. The two key

21



general findings from our empirical analysis on the substitutability /complementarity of pairs of

deposit types in the context of banking situations that fit with these findings are as follows.

1. We only find some evidence, rather than widespread evidence, of changes in the ¢ substi-
tutes/complements classifications of pairs of deposit types between the pre-crisis period
and the period covering the crisis and beyond. Given the crisis was a watershed for the
U.S. banking industry, this evidence suggests that the ¢ substitutes/complements classi-
fication of a pair of deposits types may only change in response to a major development
in the industry. Since such developments do not occur regularly, the changes in the ¢
substitutes/complements classifications we discussed in the previous section are likely to

represent long-term changes in depositors’ preferences between deposit types.

2. In the final point in the previous section, we noted that it is not surprising we find that
there is limited ¢ substitution/complementarity possibilities between the pairs of deposit
types. This is because a change in the quantity of a deposit type may not change its own
marginal product and the marginal products of other deposit types. One reason we gave
for this was because if, for example, the quantity of a deposit type increases at a bank, the
bank may not choose to use the increase in this input to increase its outputs. It may instead
put the increase in the input to an alternative use to aid its financial condition by increasing
its capital. Another reason why we may observe limited ¢ substitution/complementarity
possibilities between pairs of deposit types is because a change in the quantity of a deposit
type at a bank may not be sufficient on its own to change its impact, and the impacts of
other deposit types, on the levels of the bank’s aggregate outputs in our models. Instead
a bank may use the aggregate level of its deposits, as opposed to the levels of deposit
categories, to inform decisions about the aggregate levels of its outputs. If this is the case,
it raises the issue why we find that a number of pairs of deposit types are ¢ complements
in one or both sample periods (e.g., transaction accounts and non-transaction accounts
in both sample periods). We suggest it is because changes in economic conditions may
have a similar impact on a pair of deposit types, as opposed to the deposit types being
directly related to one another. Even if a pair of deposit types are indirectly related, the
information that our analysis provides on which pairs of deposit types are ¢ complements

can be useful to banks in the strategic management of their deposit portfolios.
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