
International  Journal  of

Environmental Research

and Public Health

Article

Performance Analysis of Boosting Classifiers in
Recognizing Activities of Daily Living

Saifur Rahman 1,*, Muhammad Irfan 1 , Mohsin Raza 2, Khawaja Moyeezullah Ghori 3 ,
Shumayla Yaqoob 3 and Muhammad Awais 4,*

1 Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia;
miditta@nu.edu.sa

2 Department of Computer and Information Sciences, Northumbria University,
Newcastle-upon-Tyne NE1 8ST, UK; mohsinraza119@gmail.com

3 Department of Computer Science, National University of Modern Languages, Islamabad 44000, Pakistan;
mghouri@numl.edu.pk (K.M.G.); shumaylayaqoob@gmail.com (S.Y.)

4 Faculty of Medicine and Health, School of Psychology, University of Leeds, Leeds LS2 9JT, UK
* Correspondence: srrahman@nu.edu.sa (S.R.); mawais@ieee.org (M.A.)

Received: 22 January 2020; Accepted: 5 February 2020; Published: 8 February 2020
����������
�������

Abstract: Physical activity is essential for physical and mental health, and its absence is highly
associated with severe health conditions and disorders. Therefore, tracking activities of daily living
can help promote quality of life. Wearable sensors in this regard can provide a reliable and economical
means of tracking such activities, and such sensors are readily available in smartphones and watches.
This study is the first of its kind to develop a wearable sensor-based physical activity classification
system using a special class of supervised machine learning approaches called boosting algorithms.
The study presents the performance analysis of several boosting algorithms (extreme gradient
boosting—XGB, light gradient boosting machine—LGBM, gradient boosting—GB, cat boosting—CB
and AdaBoost) in a fair and unbiased performance way using uniform dataset, feature set, feature
selection method, performance metric and cross-validation techniques. The study utilizes the
Smartphone-based dataset of thirty individuals. The results showed that the proposed method could
accurately classify the activities of daily living with very high performance (above 90%). These
findings suggest the strength of the proposed system in classifying activity of daily living using only
the smartphone sensor’s data and can assist in reducing the physical inactivity patterns to promote a
healthier lifestyle and wellbeing.

Keywords: activities of daily living; boosting classifiers; machine learning; performance; physical
activity classification

1. Introduction

World health organizations defined physical activity as any body movement that requires energy
expenditure to perform any task originated through the musculoskeletal system [1]. Physical activity
is quite essential for human beings to carry on their daily living routine work. Activities are the
movements that the body does all day long. Picking up fruits, cleaning the house, sitting, standing,
walking and lying are examples of activities of daily living (ADLs). Physical activity should not be
confused with exercise since it is a sub-branch of physical activity. Exercise is a set of well-planned,
structured and repetitive actions where we plan to move a specific part of the body, such as lower
or upper limbs, and the movement is repeated, for example, lifting the weight ten times in a row.
Similarly, brisk walking for at least 10 min is considered exercise [2]. Thus, exercise is an intentional
effort to raise the heart rate, raise muscles and increase the flexibility of the body. However, both
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physical activity and exercise are essential in promoting a healthier lifestyle and wellbeing. Everyone
needs exercise and activity each day. Therefore, incorporating ADLs and exercise in our daily routine
can protect the human body from severe health conditions and diseases, such as cardiovascular disease,
high risk of falling, dementia, obesity and depression [3].

Obesity is one of the leading medical issues in the modern world. The primary reason for obesity
is an inactive lifestyle. Obesity has become a global epidemic, and the world health organizations
are warning that one-third of the world population is now obese or overweight. Almost 10% of total
medical costs in the USA are related to obesity issues [4,5]. Mainly, one in three adults or one in six
children is obese in the USA. Obesity is one of the major causes of death in the USA [6,7]. It was
reported in [8,9] that nearly 20,000 people die every year in Saudi Arabia due to obesity. Additionally,
36% of the Saudi population is obese, and almost 69% of Saudi people are overweight [10–13]. One of
the main reasons for the significant number of obese in Saudi Arabia is its climate. The temperature
remains high during day time, and people choose to drive cars rather than walking and doing physical
activity. Obesity is linked with other diseases such as heart disease, diabetes, depression and dementia.
Adopting a healthy lifestyle, selecting healthy food and having regular physical exercise and physical
activity can reduce the risk of obesity [14].

The lack of physical activity may also cause dementia and Alzheimer’s disease [15,16]. The brain
gets benefits from regular physical movement of the body. Scientists working on brain health have
revealed a fantastic link between brain health and body activity. Daily activity triggers the growth of
new blood vessels in the brain, allowing the brain to receive larger blood supply. It spurs the creation
of new neurons in the brain’s memory centre. Studies in older adults have shown that regular aerobic
exercise can improve cognitive function and slows the cognitive decline. Therefore, to maintain brain
memory, peoples may consider starting and continuing a consistent healthy workout. Studies have
shown that regular exercise can improve the mood and reduce the symptoms of anxiety, depression
and dementia. It can even make you more resilient to stress [17–19].

2. Overview of Boosting Algorithms and Their Use in Physical Activity Classification Research

A recent development in the miniature sensing devices, considering their computational power,
data storage capabilities, wear-ability and ease of use, made it possible to use them for activity
monitoring. As a consequence, several activities tracking systems were developed using the
accelerometer and gyroscope sensors to provide the acceleration and angular velocity measurements
that can eventually assist in better quantification and profiling of ADLs. This section provides an
overview of recent developments in the domain of physical activity classification (PAC) to classify
ADLs using the boosting family of machine learning classifiers. It also provides the limitations of
existing boosting-based PAC systems.

2.1. Boosting Algorithms

Supervised machine learning classifiers can be categorized into multiple types. These types
include naïve Bayes, linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA),
generalized linear models, stochastic gradient descent, support vector machine (SVM), linear support
vector classifier (Linear SVC) decision trees, neural network models, nearest neighbours and ensemble
methods. The ensemble methods combine weak learners to create strong learners. The objective
of these predictive models is to improve the overall accuracy rate. This can be achieved using two
strategies. One of the strategies is the use of feature engineering, and the other strategy is the use
of boosting algorithms. Boosting algorithms concentrate on those training observations which end
up having misclassifications. There are five vastly used boosting methods, which include AdaBoost,
CatBoost, LightGBM, XGBoost and gradient boosting. The basic hierarchy of supervised machine
learning classifiers is shown in Figure 1.
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2.1.1. Adaboost

Adaptive boosting (AdaBoost) initially assigns equal weights to each training observation. It uses
multiple weak models and assigns higher weights to those observations for which misclassification
was observed. As it uses multiple weak models, combining the results of the decision boundaries
achieved during multiple iterations, the accuracy of the misclassified observations is improved, and
hence the accuracy of the overall iterations is also improved.

The weak models are evaluated using the error rate as given in (1):

εt = Pri∼Dt [ht(xi) , yi] =
∑

i:ht(xi),yi

Dt(i) (1)

where εt is the weighted error estimate, Pri∼Dt is the probability of the random example i to the
distribution Dt, ht are the hypotheses of the weak learner, xi is the training observation, yi is the target
variable, t is the iteration number. The prediction error is one if the classification is wrong and 0 if the
classification is correct.

2.1.2. Gradient Boosting

Gradient boosting (GB) [20] sequentially creates new models from an ensemble of weak models
with the idea that each new model can minimize the loss function. This loss function is measured by
gradient descent method. With the use of the loss function, each new model fits more accurately with
the observations, and thus the overall accuracy is improved. However, boosting needs to be eventually
stopped; otherwise, the model will tend to overfit. The stopping criteria can be a threshold on the
accuracy of predictions or a maximum number of models created.

2.1.3. Lightgbm, Xgboost and Catboost

The structural difference between LightGBM [21] and XGBoost [22] is the way the best split
is computed. For LightGBM, Gradient-based one-side sampling (GOSS) is used to identify the
observations which can be used for computing the split. For XGBoost, a histogram-based algorithm
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filters the observations to be used for finding the split. The computation time of a histogram-based
algorithm is more than the GOSS; therefore, in terms of complexity, LightGBM is generally more
efficient as compared with XGBoost.

Another difference between them is the way each of the techniques handles categorical features.
Boost [23] uses a one-hot encoding scheme to convert the categorical values into numerical values. It also
enables users to supply the number of splits for a given categorical feature. An interesting observation
about CatBoost is that it performs best when the dataset has the categorical features; otherwise, its
performance is deteriorated on the absence of categorical features. A special algorithm [24] is used in
LightGBM for the conversion of categorical values into numerical values. Contrary to CatBoost and
LightGBM, XGBoost does not offer any conversion scheme for categorical features. All the categorical
features must be converted into numerical features in the preprocessing step before the data is trained
and tested for XGBoost. In general, XGBoost is slower as compared with LightGBM and CatBoost.

2.2. Use of Boosting Algorithms for PAC

The authors of [25] have used Adaboost as the base classifier for the recognition of five activities
using a smartphone. The activities classified were walking, sitting, standing, cycling and running.
Gyroscopes and acceleration sensors were used with the combination of smartphones for the collection
of data. They have used decision stump as the subclassified in Adaboost, which is a one-layer decision
tree that can classify based on a single feature of the observation. The authors conclude that they
achieved 98% accuracy with this model. However, this work was limited to classifying only five
activities. Similar work was performed in [26]. The authors have used decision trees and random
forest in combination with Adaboost to classify five activities, namely, standing up, standing, sitting
down, sitting and walking. They used decision tree and random forest classifiers as week learners
and utilized a publically available human activity recognition dataset [27], which is developed by
acceleration-based sensors placed on various body locations; (waist, right arm, left thigh and right
ankle. The paper concluded that accuracies of 99.87% and 99.9% were achieved for decision tree
and random forest, respectively. Precision and recall were the other performance evaluation metrics
used. Reiss et al. [28] have compared multiple variants of Adaboost for multi-class classification
in physical activity classification. Experiments were performed on eight different datasets from the
repository of the University of California, Irvine (UCI) [29]. The paper included the classification of
21 different physical positions and reported an overall accuracy of 77.78%. The authors concluded
that confidence-based variation of AdaBoost ConfAdaBoost.M1 outperformed the other variations of
Adaboost in seven of the eight selected datasets.

Gradient boosting has also been tested in physical activity classification. In [30], the authors have
experimented with gradient boosting and random forest in a dataset that contains data related to
free-living conditions. The data was collected from 36 persons using smartphones. A total of 59 features
were used in the dataset, while six positions were monitored, namely, standing, sitting, downstairs,
upstairs, jogging and walking. The paper concluded that the overall accuracies of 99.03% and 99.22%
were recorded for random forest and gradient boosting, respectively. Gradient boosting, Adaboost,
random forest and decision tree were used in somewhat a related problem of identification of feet
fidgeting [31]. This work has used accelerometers on shoes for the data collection of four positions of
legs which are generally categorized as fidgeting. This study concluded that random forest has the
highest accuracy among the other classifiers.

The authors of [32] have used wearable sensors to monitor running movements of 513 teenagers
to compare the performances of SVM, decision tree, k-nearest neighbours (KNN), random forest and
gradient boosted decision tree with the performance of their proposed optimized XGBoost model.
Their model is based on the algorithm for the optimization of the Bayesian hyperparameter. The model
classified the fitness level of each participant. The paper concluded that their proposed XGBoost model
outperformed the other classifiers. In a recent contribution, Zhang et al. [33] have used barometer,
gyroscope and accelerometer to record five movements of multi-floor indoor activities. The recorded
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movements were elevator taking, stair climbing, stillness, escalator taking and walking. The authors
have compared the performance of XGBoost with the performances of random forest, KNN, SVM,
multi-layer perceptron (MLP) and GBDT and claimed that XGBoost outperformed the other classifiers
with an overall accuracy of 84.41% and an F-score of 84.19%. Gao et al. [34] have recently proposed
a framework for human activity recognition that uses stack denoising autoencoder (SDAE) and
LightGBM. The authors have used three datasets with different activity modes, which were classified
into a static mode, dynamic mode and moving mode. They have compared the efficiency of their
proposed framework with the efficiencies of CNN and XGBoost and claimed that their proposed
framework outperformed the other classifiers with an overall accuracy of 95.99%. They also evaluated
their framework with precision, recall and F-1 score. The literate survey is summarized in Table 1 to
provide a better overview of recent advancements that happened in classifying ADLs by incorporating
the boosting-based classifiers within the context of PAC.

Table 1. Overview of the physical activity classification systems developed using boosting classifiers.

Author Sensor Activities Classifiers Metrics Result

Li et al. [25]
Gyroscopes,
acceleration
sensors

Walking, sitting,
standing, cycling and
running

Adaboost (base
classifier),
Decision Tree
(weak learner)

Accuracy 98%

Zubair et al.
[26] Accelerometer

Standing up, standing,
sitting down, sitting
and walking

Adaboost
(Decision Tree,
Random Forest)

Accuracy
99.9%

Accuracy of
Adaboost

Reiss et al.
[28] Accelerometer

Descending and
ascending stairs,
walking, cycling,
running, standing,
sitting and laying

Adaboost Accuracy 77.78%

Lee et al.
[30] Smartphones

Standing, sitting,
downstairs, upstairs,
jogging and walking

Gradient
boosting,
Random Forests

Accuracy 99.03%
99.22%

Esseiva et
al. [31] Accelerometers

Four positions of the
leg for feet fidgeting;
upper leg swinging, up
and down leg
bouncing, lower leg
swinging, foot jiggling

Gradient
boosting,
Adaboost,
random forest
and decision tree

Accuracy,
precision,

recall,
F-score

95% accuracy
for gradient

boosting

Guo et al.
[32] Smart bands

Four levels of fitness;
excellent, good,
medium, poor

XGBoost, F-measure 99% for
XGBoost

Zhang et al.
[33]

Barometer,
gyroscope and
accelerometer

Elevator taking, stair
climbing, stillness,
escalator taking and
walking

XGBoost, F-measure 84.19% for
XGBoost

Gao et al.
[34]

Accelerometer,
gyroscope,
magnetic and
pressure sensor

Static mode, dynamic
mode and moving
mode

SDAE with
LightGBM Accuracy 95.99%

2.3. Limitations In Existing Boosting-Based PAC Systems

In recent years, there has been active participation in the recognition of human activities.
Interestingly, the research community has paid attention to applying the boosting techniques for the
classification of physical activities. However, the performances of existing boosting classifiers based on
PAC systems are incomparable with each other, and existing studies are unable to provide a better
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insight into which algorithms perform better than others due to the inconsistencies involved in their
design process. The inconsistencies are as follows: different set of ADLs analysed (sitting, standing,
running, jogging, etc.), data collected over different populations (young, elderly, healthy, unhealthy),
difference in type of signals measured (acceleration signal, gyroscope signal, barometric pressure
signal), different sensor locations (waist, wrist, ankle, etc.), diversities in the feature-set analysed
(time, frequency, statistical descriptors, etc.), differences in cross-validation strategies for performance
evaluation (10 fold, leave one subjects out, etc.) and use of different performance metrics (accuracy,
f-measure, precision, recall, etc.). Although some studies in Table 1 are providing high accuracy, all
these differences make their performance incomparable. For example, Guo et al. [32] used the XGboost
classifier and achieved an f-measure score of 99%, while Zhang et al. [33] have achieved f-measure
of only 84.14% using the same classifier. Moreover, the impact of feature selection methods on the
performance of boosting classifiers is not studied systematically considering the domain of PAC, and
very little is known about how these classifiers behave when the feature selection stage is incorporated
before classification. To better address this issue, a benchmark analysis was carried out by Awais
et al. [35], which provides the sequence of steps that can be performed to provide a balanced and
unbiased performance analysis of different PAC systems using a different type of classifiers. This study
also investigates the performance of recently developed Catboost classifiers for PAC. Therefore, the
objectives of the present study are

1. To provide an insight into existing boosting-based PAC systems and to provide the limitations
and weaknesses of these systems in providing a fair and unbiased analysis.

2. To provide a fair and unbiased performance comparison of boosting classifiers in profiling ADLs.
3. To study the impact of feature selection on the performance of boosting classifiers and to identify

which classifiers perform better than others with and without feature selection approach.

3. Materials and Methods

3.1. Dataset

The dataset used in this study is a publically available dataset [36] developed using the
waist-mounted smartphone. Thirty subjects participated in the data collection protocol, aged from
19 to 48 years. The activities of daily living (ADLs) performed by the subjects were sitting, standing,
walking, lying, stairs up and stairs down. The sampling frequency of accelerometer and gyroscope
data collected through the smartphone was 50 Hz. More details of the dataset are presented in Table 2.
Each column in Table 2 (except the percentage column) refers to the total number of window instances,
and each window instance contains 2.56 s of data recording. For example, walking activity contains
1722 window instances in the total dataset, and each window corresponds to 2.56 s.

Table 2. Overview of the physical activity classification systems developed using boosting classifiers.

Activity Type Total Dataset Percentage (Total Dataset) Train Split Test Split

Walk 1722 16.72% 1226 496
Upstairs 1544 14.99% 1073 471

Downstairs 1406 13.65% 986 420
Sit 1777 17.25% 1286 491

Stand 1906 18.51% 1374 532
Lie 1944 18.88% 1407 537

3.2. Feature Set

The feature set used to develop the PAC system is the same as reported in [36]. The acceleration
signals were decomposed into gravitational and body acceleration components using the Butterworth
filter of 3rd order. The angular speed and angular acceleration signals also resulted in five signals
obtained through accelerometer and gyroscope. The magnitude signals of these five signals were
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then derived, resulting in a total of ten signals. The frequency components of these signals were also
computed to better recognize the ADLs by exploring both the time and the frequency domain features.

Several features were extracted from these time and frequency signals across a window of 2.56 s,
resulting in 128 samples per window with an overlap of 50%. The features from the aforementioned
derived signals were mean, standard deviation, median, maximum, minimum, signal magnitude
area, signal energy, interquartile range, entropy, autoregression coefficients, correlation coefficients,
skewness, kurtosis, maximum frequency component and the angle between two vectors [36]. A total
of 561 features were extracted from the window of 2.56 s.

3.3. Feature Selection

We incorporated feature selection before the classification stage to get rid of correlated features,
as these have significant implications on the system performance and the computational complexity
of the system considering the real-time applications. Correlation-based features (CFS) were used in
this study to get rid of the redundant features. It is a statistical approach and provides a correlation
score, which can then infer how much linear dependency exists between two features. The higher
the correlation score between two features, the more linearly dependent the feature are with each
other. Similarly, the lower the correlation score is, the less dependent the features are with each other.
Therefore, low correlation features are eventually retained in the feature set, and highly correlated
features are dropped from the feature set to reduce the redundancy and dependency among the
features. In this paper, the correlation score of 0.8 was used as a threshold, and features above this
threshold were eliminated from the feature set.

3.4. Classification and Cross-Validation

A total of five boosting-based machine learning classifiers were used in this study to observe
their performances in classifying the ADLs. The classifiers are extreme gradient boosting (XGB), light
gradient boosting machine (LGBM), gradient boosting (GB), cat boosting (CB) and AdaBoost. Two
variants of AdaBoost were used, one using decision trees (ADA-DT) as a week learner and the other
using random forest (ADA-RF) as a week learner. The classifiers’ settings were maximum depth = 50,
minimum child weight = 1, number of estimators = 100, learning rate = 0.16 for XGB; maximum depth
= 50, learning rate = 0.1, number of estimators = 100 for LGBM; learning rate = 0.15, depth = 10, loss
function = multi class for CB; maximum depth = 10, number of estimators = 100 for ADA-DT; and
maximum depth = 100, number of estimators = 100 for ADA-RF.

The dataset was divided into two datasets (70%/30%, training/testing) to avoid any bias in training
and testing. Of the data, 70% was used to train the ML model, and the remaining 30% was used for
testing the performance of the proposed activity classification system.

The expressions to calculate precision and recall are provided in Equations (2) and (3). Precision
provides a measure of how accurate your model is in predicting the actual positives out of the total
positives predicted by your system. Recall provides the number of actual positives captured by our
model by classifying these as true positive.

F-measure can provide a balance between precision and recall, and it is preferred over accuracy
where data is unbalanced. Therefore, F-measure was utilized in this study as a performance metric to
provide a balanced and fair measure using the formula in (4).

Precision =
TP

TP + FP
× 100 (2)

Recall =
TP

TP + FN
× 100 (3)

F−measure = 2 ∗
Precision ∗Recall
Precision + Recall

× 100 (4)

where TP—True Positive, FP—False Positive, FN—False Negative.
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4. Result and Discussion

4.1. Overall Performance Analysis of Boosting Classifiers Used With and Without Feature Selection

4.1.1. Using All Feature Set

The performances of the six classifiers implemented in this study were computed using the
F-measure metric. The performance of each classifier was computed using both feature sets, without
feature selection, by using all the feature set obtained originally (All feat), and with feature selection,
by only utilizing the uncorrelated feature set obtained through CFS approach.

The overall performances of six classification algorithms to classify ADLs are depicted in Figure 2.
The best overall performance of 93.9% was achieved by GB and ADA (DT) classifiers, and the lowest
performance of 87.3% was obtained by the CB classifier using all the feature set. Moreover, the XGB,
LGBM and ADA (RF) classifiers also performed significantly well by achieving the overall performance
of above 90%, and the differences in performance of these classifiers are quite small (less than 1%). The
confusion matrix of the best classifier, i.e., GB, using all feature set is presented in Table 3.
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Table 3. Confusion matrix of best-performing classifier (GB) using all feature set.

Actual
Predicted

Walk Upstairs Downstairs Sit Stand Lie

Walk 486 6 4 0 0 0
Upstairs 29 435 6 1 0 0

Downstairs 7 26 386 0 1 0
Sit 0 2 0 424 65 0

Stand 0 0 0 32 500 0
Lie 0 0 0 0 0 537

4.1.2. Using Reduced Feature Set

The performance analysis of classification algorithms used in the study suggested that CFS-based
feature set had decreased overall performance of the majority of the classifiers, except for ADA (RF),
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where the performance was increased. Although the change (increase or decrease) in the performance
was not quite significant as compared with the performances achieved through the whole feature
set, the number of features was significantly reduced from 561 to 150 using the CFS approach (over
70% reduction in several features). The number of features has implications on the computational
complexity of the system [35,37]. A large number of features increases the computational complexity
of the system and makes the systems infeasible to operate in real-time scenarios. On the contrary,
the reduced feature set can significantly reduce the computational overheads and computational
complexity of the system, which can be implemented in real-time applications. The confusion matrix
of best-performing classifiers, all using the reduced CFS feature set, is presented in Table 4.

Table 4. Confusion matrix of best-performing classifier ADA(RF) using reduced feature set.

Actual
Predicted

Walk Up-Stairs Down-Stairs Sit Stand Lie

Walk 491 1 4 0 0 0
Upstairs 33 428 10 0 0 0

Downstairs 2 37 381 0 0 0
Sit 0 1 0 436 54 0

Stand 0 0 0 43 489 0
Lie 0 0 0 0 0 537

4.2. Performance Analysis of Individual ADL Classified by Boosting Classifiers

The performance of all the boosting classifiers was also computed to classify each ADL using all
feature set and using only CFS-based reduced feature set. The performances by each class of ADL for
the classifiers XGB, LGBM, GB, CB, ADA (DT) and ADA (RF) are depicted in Figures 3–8.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 10 of 16 
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4.2.1. Using All Feature Set

The best performance of above 96% was achieved by the ADA boost classifier using all feature
set to classify the walking activity, while the CB classifier performed the worst among all. All the
gradient boosting classifiers’ performances were quite close to that of ADA boost classifier with an
overall performance of above 92% in classifying the walking activity.

The GB classifier achieved the best performances of 92.55% and 94.61% in classifying the stairs
up and stairs down activities, respectively. The other classifiers also performed well in classifying
stairs up and stairs down with F-measure of above 90%, except for CB, whose performance was lowest
among all.

The sedentary ADLs, i.e., sitting, standing and lying, were best classified by ADA boost classifiers
using the all feature set, followed by the GB classifier. The performance of above 90% was achieved in
classifying the sitting and standing by the ADA boost classifiers. The other classifiers’ performances
were below 90%. All the classifiers accurately classified the lying class with excellent performance of
100%, including the CB classifier, whose performance was quite low in classifying the rest of the ADLs.
This could be because the orientation of accelerometer signals was significantly changed during the
lying stage when compared with other classes, thus helping in classifying lying accurately.

4.2.2. Using Reduced Feature Set

The performance by a class of each ADL was computed on the reduced feature set using all the
classifiers. The best performance by class was achieved using the ADA boost classifiers, while the next
best performer was GB classifier.

The ADA (RF) outperformed all the classifiers in classifying all the ADLs, i.e., walking, stairs up,
stairs down, sit, stand and lie.

These findings show the potential of using the reduced set of features to achieve the same
performance and can potentially reduce the computational complexity of the PAC system by up to 70%.
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4.3. Smartphone-Based Activity Profiling

The performances achieved to classify the ADLs through the GB classifier (using all the feature
set) and ADA (RF) classifier (using reduced feature set) are quite encouraging and suggest that
smartphone-based inertial sensors can provide a reliable measure to profile the ADLs. Smartphones
are easy to carry in daily life routine and do not create many issues regarding battery life, since it
is quite a routine matter to recharge the battery every day. Surprisingly, as an advantage, one can
keep track of each of the ADLs performed along the course of a day, to weeks, months and even years.
In this manner, one can adopt a heather lifestyle by incorporating more activity in their daily routines.
Activity profiling can also provide an accurate and reliable measure to healthcare infrastructure and
staff to provide well-informed interventions and therapies that can help the general population in
obtaining a better quality of life and wellbeing.

5. Conclusions

This study provides a fair and unbiased performance analysis of the boosting classifiers used
for physical activity classification. The study also investigates the performance of newly developed
CatBoost classifiers and how well they performs with and without feature selection scenarios. The
fair and unbiased performance analysis is accomplished by keeping the uniformity across the
studied population, set of ADLs performed, the sensor type, the sensor location, the feature set,
the cross-validation procedure and the performance metric. Gradient boosting classifier performed
best among all classifiers when analysed over the whole feature set, and the achieved performance
was around 94%. ADA boost classifier using the random forest as weak learner achieved the same
level of performance. However, the ADA (RF) used a significantly reduced feature set (over 70%
reduction) as compared with GB classifier while achieved the same performance in classifying ADLs.
The reduced feature set has implications in real-time implementation as this is directly linked with
the computational complexity of the system. The large feature set can increase the computational
complexity of the system, making it difficult for real-time implementations, while a reduced feature set
can potentially improve the computation complexity of the system, making real-time implementation
more feasible.

The study also come up with limitations. The main limitation is the context where ADLs are
performed. This dataset was developed in a relatively controlled environment, and it would be
interesting to see how the boosting-based classifiers perform when implemented on a dataset collected
in free-living conditions without any constraint on where and how the activities are performed.
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