
The impact of different rainfall products on
landscape modelling simulations
Christopher J. Skinner,1* Nadav Peleg,2 Niall Quinn,3 Tom J. Coulthard,1 Peter Molnar2 and Jim Freer3,4
1 Energy and Environment Institute, University of Hull, Hull, UK
2 ETH Zurich, Institute of Environmental Engineering, Zurich, Switzerland
3 School of Geographical Sciences, University of Bristol, Bristol, UK
4 Cabot Institute, University of Bristol, Bristol, UK

Received 21 June 2019; Revised 28 April 2020; Accepted 29 April 2020

*Correspondence to: Christopher J. Skinner, Energy and Environment Institute, University of Hull, Hull HU6 7RX, UK. E-mail: c.skinner@hull.ac.uk
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.

ABSTRACT: Rainfall products can contain significantly different spatiotemporal estimates, depending on their underlying data and
final constructed resolution. Commonly used products, such as rain gauges, rain gauge networks, and weather radar, differ in their
information content regarding intensities, spatial variability, and natural climatic variability, therefore producing different estimates.
Landscape evolution models (LEMs) simulate the geomorphic changes in landscapes, and current models can simulate timeframes
from event level to millions of years and some use rainfall inputs to drive them. However, the impact of different rainfall products
on LEM outputs has never been considered. This study uses the STREAP rainfall generator, calibrated using commonly used rainfall
observation products, to produce longer rainfall records than the observations to drive the CAESAR-Lisflood LEM to examine how
differences in rainfall products affect simulated landscapes. The results show that the simulation of changes to basin geomorphology
is sensitive to the differences between rainfall products, with these differences expressed linearly in discharges but non-linearly in
sediment yields. Furthermore, when applied over a 1500-year period, large differences in the simulated long profiles were observed,
with the simulations producing greater sediment yields showing erosion extending further downstream. This suggests that the choice
of rainfall product to drive LEMs has a large impact on the final simulated landscapes. The combination of rainfall generator model
and LEMs represents a potentially powerful method for assessing the impacts of rainfall product differences on landscapes and their
short- and long-term evolution. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
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Introduction

Landscape evolution models (LEMs; see review by Tucker and
Hancock, 2010) are tools for understanding the role
large-scale processes have in the long-term development of
the Earth’s surface (103–106 years). LEMs are most often oper-
ated in an exploratory manner, employing careful simplifica-
tions of physical laws to maximize computational efficiency
(Tucker and Hancock, 2010). Recently, the increase in compu-
tational power available has allowed for increasing complexity
and detail to be simulated (Coulthard et al., 2013), yet under-
standing output uncertainties and sensitivities of these models
to differences between input data has received far less treat-
ment (Coulthard and Skinner, 2016; Hancock et al., 2016;
Skinner et al., 2017; Chandra et al., 2019).
Rainfall, both spatially and temporally, is considered a major

source of input uncertainty in hydrological modelling (Keijsers
et al., 2011; McMillan et al., 2011, 2012; Peleg et al., 2017a).
Measurements of rainfall are made using a variety of methods
that produce estimations of the spatial and temporal distribu-
tion of rainfall, and these different techniques are referred to
herein as rainfall products. Rainfall products can be formed

from single-point observations (e.g. rain gauge), extrapolated
using interpolation of many points in space (networks of rain
gauges, disdrometers, etc.), or spatially estimated using remote
sensing techniques (i.e. weather radar and satellite). For each of
the products, differences in the estimates, spatially and tempo-
rally, are expected (e.g. Ciach, 2003; Villarini et al., 2008;
Villarini and Krajewski, 2010; Peleg et al., 2013).

Rain gauges are able to provide an estimate of rainfall inten-
sity at a single point, and when used in a network the spatial
pattern of rainfall can be estimated using spatial interpolation
methods (e.g. kriging) – these spatial datasets contain uncer-
tainties originating from the point measurements, the interpola-
tion (dependent on the density and design of the network), the
terrain of the catchment, the spatial distribution of rainfall, and
the interpolation method selected (e.g. Hofstra et al., 2009; Mc-
Millan et al., 2011). Weather radar is a useful technique for es-
timating the distribution of a rain field over a large area (Berne
and Krajewski, 2013). Weather radar systems measure the
backscattered signal and use it as a proxy for rainfall. Quantita-
tive precipitation estimation from weather radar is considered
to be highly uncertain, but the quality has improved in recent
years, even allowing the study of extreme rainfall intensities
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(e.g. Marra and Morin, 2015; Marra et al., 2017). In combina-
tion, rain gauges and weather radar can provide a more
detailed view of the properties of a rain field, with the added
value of spatial coverage provided by the radar, especially
between gauges.
Given the length of many LEM simulations, the impact of

differences in the driving rainfall product used might seem
trivial, however, research has shown that simulated
geomorphic processes and sediment output from LEMs can be
sensitive to the spatial and temporal resolution of rainfall
inputs. Coulthard and Skinner (2016) showed that increased
rainfall intensities, which may be hidden within averaged
longer timesteps, or spatial averaging, led to greater first-order
stream incision and second/third-order stream aggradation for
the same rainfall totals. Therefore, Coulthard and Skinner (2016)
suggested that the patterns of erosion and deposition predicted
by LEMs are highly likely to be affected by uncertainties and
variabilities in rainfall products. Coulthard et al. (2012b)
showed that basins acted as a ‘geomorphic multiplier’, with a
non-linear relationship between rainfall, discharge, and
sediment transport acting to exponentially amplify the effects
of increases in rainfall on sediment yield.
As landscape evolution operates over timescales spanning

tens to millions of years, the choice of rainfall product with
which to drive a LEM is often motivated by the requirement
for an indicative record of rainfall to sample from. However,
because rainfall observation records often lack the required
temporal coverage, one approach has been to use as long
as possible a record from a nearby rain gauge (even if lo-
cated tens of kilometres away) and loop it to the required
length (e.g. Coulthard et al., 2000; Hancock, 2009; Hancock
et al., 2010, 2011, 2015; Hancock and Coulthard, 2012;
Saynor et al., 2012; Poeppl et al., 2013; Hoober
et al., 2017). This clearly introduces several limitations as cli-
mate variability is reduced to the length of the record and in-
troducing non-stationarity (e.g. climate change) can only be
represented basically (e.g. by altering rainfall totals). A rain-
fall times series produced in this way will never contain
higher extremes than those observed in the record, which is
unrealistic. Rainfall generator models present an alternative
way to derive long-term rainfall records (Wilks and
Wilby, 1999; Smith et al., 2014) and can be used to produce
ensembles of synthetic rainfall calibrated using the climate
variability and spatiotemporal characteristics from observed
rainfall products. Rainfall generators have been used previ-
ously to produce time series of basin-averaged precipitation
rates for LEMs (Tucker and Bras, 2000; Coulthard
et al., 2012a; Howard et al., 2016; Coulthard and Van De
Wiel, 2017; Hancock et al., 2017), with no spatial distribu-
tion, and there has been no appraisal of how different
methods of rainfall simulation, ergo rainfall products, can al-
ter model outcomes.
This study aims to test how the different spatiotemporal es-

timates associated with different rainfall observation tech-
niques impact on simulations of changes to basin
geomorphology as they cascade through to LEM outputs.
Three starting rainfall products will be used: (i) a single rain
gauge product; (ii) an interpolated gridded rain field based
on a rain gauge network; and (iii) weather radar observations.
50-Year records were produced by looping and bootstrapping
(i), and using (ii) and (iii) to calibrate the STREAP weather
generator (Paschalis et al., 2013; Peleg et al., 2017b) and to
derive 30 ensemble members at a 1 h/1 km resolution. Whilst
not a complete uncertainty evaluation of all plausible rainfall
scenarios, we can start to quantify the impact and thus
sensitivities to the LEM outputs driven by these different
products.

Methods and Data

Study catchment

The study area was the Upper Swale catchment, UK (Figure 1),
which has an area of 181 km2 and an elevation range between
182 and 712m. There is a strong orographic rainfall gradient
across the catchment, with mean annual rainfalls of 1000mm
in the north-east and up to 1940mm in the south-west. The
catchment has been chosen as it has been widely used in pre-
vious studies testing the CAESAR-Lisflood model (Coulthard
and Macklin, 2001; Coulthard et al., 2012b; Coulthard and
Van De Wiel, 2013; Coulthard and Skinner, 2016; Skinner
et al., 2017), and it has good coverage of the rainfall products.

In order to measure spatial patterns of simulated geomorphic
change, the catchment was subdivided into areas based on
stream orders derived from the proportion of the catchment
drained, as per Skinner et al. (2017).

Rainfall products: Single gauge, gauge network,
and weather radar

Three rainfall products were examined. The first (Tow) is based
on a relatively long record from a single rain gauge located
2 km south-west of the study area, at a 1 h timestep. Even
though this is the closest available gauge to the catchment, it
is located in a topographically higher area with a greater mean
annual rainfall than much of the catchment (see Figure A4 in
the online Supporting Information A) – the record was not ad-
justed to account for this. It provided a 30-year record, how-
ever, years with more than 2000 missing hours (83 days) of
observations were excluded from the analysis, reducing the re-
cord to 24 years (removing 1987–1993, 1995–2009, 2011, and
2014). This product reflects intensities sampled from a single
point, therefore providing no representation of the spatial rain-
fall field, thus rainfall intensities were assumed to be uniformly
distributed across the catchment.

The second product (TBR) aims to address the lack of spatial
coverage in the single-gauge approach above by interpolating
the point data from a network of rain gauges to produce a dis-
tributed and gridded rain field estimation (McMillan
et al., 2011). The gridded interpolated rainfall data was derived
from a tipping bucket rain gauge (TBR) network at 1 h/1 km res-
olution, as described by Blenkinsop et al. (2017).

The third product (NIMROD) is derived from a rain radar net-
work (UK NIMROD Composite product; Met Office, 2003),
provided at a 5min/2 km resolution, which was aggregated to
a 1 h timestep.

Despite a much longer record being available for the TBR
product (from 1990), both TBR and NIMROD were limited in
length to a 6-year period where records for both the TBR and
the NIMROD were available (2006–2011). This was so that it
would be possible to directly compare their relative abilities
in capturing the spatial rain field and point intensities over the
same time period, using them in the calibration of STREAP,
and subsequently propagating the impacts on changes to basin
geomorphology.

An example of the spatial differences in rainfall intensity be-
tween the three products is shown in Figure 2, which illustrates
the most extreme hourly rainfall intensities that were observed
by the three products.

Further in-depth analysis of the differences between the ob-
servation products can be found in the online Supporting Infor-
mation A, however, to summarize, the three products differed
in their spatiotemporal representation of rainfall over the catch-
ment. The Tow rain gauge record contained more information
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on the natural variability of climate due to the length of the re-
cord, but only supplied this information for a single point – this
point is just outside the catchment in the area of highest annual
rainfall (1940mm based off TBR). Point rainfall intensity esti-
mates from the NIMROD weather radar are considered less ac-
curate (not reported here) compared with rain gauges (Cecinati
et al., 2017), but the weather radar supplies valuable informa-
tion on the spatial structure of rainfall. Lastly, produced from in-
terpolation of a network of ground rain gauges, rainfall intensity
estimates from TBR were likely more reliable than the estimates

from the weather radar (Lewis et al., 2018), however, the spatial
structure of the rainfall is smoothed compared to the radar
(Jewell and Gaussiat, 2015), especially as the interpolation in-
cluded no rain gauges from within the catchment itself.

STREAP rainfall generator

The STREAP (space–time realizations of areal precipitation)
model is used to generate gridded rainfall at high spatial

FIGURE 2. The largest hourly rainfall intensity (19/06/2007, 19:00) as recorded by the uniform Tow rain gauge (left), the distributed NIMROD
weather radar (middle), and TBR (right) products. μ is areal rainfall intensity (i.e. the average rainfall over the field), CV is the spatial rainfall coefficient
of variation (standard deviation of the rainfall intensities over the field divided by the areal rainfall intensity), and max is the maximum rainfall intensity
observed in that rain field. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 1. The elevations of the Upper Swale catchment, UK (top) and watershed orders (bottom). [Colour figure can be viewed at
wileyonlinelibrary.com]
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(sub-kilometre) and temporal (minute) resolution. The model
was originally developed by Paschalis et al. (2013) and was de-
veloped further by Peleg et al. (2017b). It has been applied for
several hydrological applications (e.g. over a large rural catch-
ment for flood investigations – Paschalis et al., 2014, to simu-
late extreme rainfall intensity over small scales – Peleg
et al., 2018, and to study the impacts of spatial and climatolog-
ical rainfall variability in urban drainage – Peleg et al., 2017a),
and was applied with the CAESAR-Lisflood model to study the
landscape sensitivity to extreme rainfall events in the context of
climate change (Peleg et al., 2020b). STREAP reproduces the
storm arrival process (i.e. the length of the storm and
intra-storm periods), the temporal evolution of the storm (i.e.
the areal intensity over the catchment and the fraction of wet
areas), and the space–time structure of rainfall (i.e. intermittent
rain fields). The model is ideal for LEM studies as it can be used
to produce ensembles of synthetic rainfall reflecting the rainfall
natural variability (assuming climate is stationary) from rela-
tively short observation records, whilst reproducing the spatio-
temporal characteristics of the rain fields.

CAESAR-Lisflood landscape evolution model

CAESAR-Lisflood is a LEM based on a regular grid that has been
used extensively to simulate river basin morphodynamics over
a wide range of time (1–10000 years) and spatial (0.02–
1000 km2) scales (Skinner and Coulthard, 2017). The model
can operate in a catchment mode where a spatially distributed
rainfall input is converted into surface runoff using the
TOPMODEL hydrological model (Beven and Kirkby, 1979),
and this is routed across the grid using LISFLOOD-FP (Bates
et al., 2010), which generates flow depths and velocities. An
active-layer system is used to simulate fluvial erosion and the
model can handle up to nine grain sizes. The initial inception
of the CAESAR model was to explore the impact large-scale
processes have on the long-term evolution of landscapes
(>1000 years), however, the incorporation of the
LISFLOOD-FP hydraulic code (Coulthard et al., 2013) enabled
full hydrodynamics and validated inundation patterns and ve-
locities to be simulated. Consequently, CAESAR-Lisflood is
ideal to test the impact differences in high (temporal and spa-
tial)-resolution rain data have on model outputs and on
changes to basin geomorphology.
To assess the model’s sensitivity to rainfall observation uncer-

tainty, both within and between products, all model parameters
were kept constant throughout the experiments. We used a
pre-calibrated CAESAR-Lisflood model of the Swale catchment,
UK, as used in several previous studies (e.g. Coulthard and
Skinner, 2016) and used the same digital elevation model
(DEM) derived from an air-borne LiDAR scan that had been
resampled to 50-m grid cells. The DEM and grain size distribu-
tions were ‘spun-up’ before the experiments using a 10-year
rainfall time series at 24 h/lumped (catchment-average) resolu-
tion based on the UK NIMROD 5km Composite dataset (Met
Office, 2003). It is important here to note that the model appli-
cation is intended as a testbed for the impacts of rainfall prod-
ucts, and therefore does not include any representation of
bedrock or vegetation that could alter the model sensitivity.

LEM ensemble simulations

The experimental procedure uses the different gridded rainfall
products described to calibrate STREAP. Each calibration is
used to produce a rainfall ensemble at a 1 h timestep and a
1 km spatial resolution. The generation of the ensembles

follows a common setup when exploring climate impacts in-
cluding stochastic uncertainties (e.g. Fatichi et al., 2016), with
each consisting of 30 individual realizations (to account for
the natural climate variability) and covering a period of
50 years (the upper length boundary allowing us to assume cli-
mate stationarity). Each ensemble is designed to show how the
different information provided by the TBR or NIMROD weather
radar rainfall products spatially influences the generated rain-
fall records – any differences, effectively a source of representa-
tive uncertainty, will then be observed through the model
cascade. Two records were generated using the Tow gauge: (i)
a simple looped record, used as a proxy for a typically used
rainfall product to allow comparison; and (ii) a bootstrapped
ensemble (of 30 realizations), generated by sampling with re-
placement of the original records by block bootstrapping of
the entire years, meaning that a specific year that was recorded
can appear numerous times or never in each realization. It is
possible to reduce the uncertainty in rainfall observations by
merging multiple products, using the most useful information
from each. Here, for example, a ‘merged’ rainfall record was
produced by calibrating STREAP using the best information
from the three original products: the temporal structure of rain-
fall follows that obtained from the Tow rain gauge, the spatial
structure of rainfall follows that obtained from the radar, and
rainfall intensities are adjusted to follow the TBR data (Table I).
The generated rainfall ensembles will henceforth be referred
to as products in their own right. The products used are shown
in Table I, and an example of a single 50-year realization for
each of the products is presented in Figure 3.

Whilst some difference in the discharge, sediment yields,
and landscape change will likely be observed between simula-
tions over the 50-year timeframe, longer simulation times will
make landscape changes more prominent. To overcome this
limitation, 1500-year records were produced – for TowLooped
and TowBoot this was done by repeating the 50-year record,
and for all other products all 30 ensemble realizations were
combined into one long record.

Finally, to ascertain the impact of the extra variability
afforded by the longer observation record with the Tow gauge,
a further test was performed with normalized rainfall means
and spatial representation. This was done using TowLoop,
and the first members of the sNIM and sTBR ensembles. The
two spatially distributed products were first lumped across the
domain and then TowLoop and sNIM were normalized to the
mean rainfall of sTBR. These three inputs were then used to
drive a 50-year simulation. The peak rainfall intensities in these
records were 13.7mmh�1 for TowLoop (adjusted from
17.5mmh�1), 6.0mmh�1 for sNIM (adjusted from 5.0mmh-
1), and 6.9 mm h�1 for sTBR.

Evaluation of STREAP Products

STREAP’s ability to reproduce the hourly areal rainfall was ex-
amined (Figure 4). The areal rainfall was well reproduced for
the Tow rain gauge (Figure 4a). The simulated rainfall for the
distributed rainfall products (gridded and radar, Figures 4b
and c) is in general also well reproduced, but the high rainfall
intensities (i.e. larger than the 95th percentiles) are
underestimated. It is worth highlighting this underestimation,
as it is these high rainfall intensities that can result in significant
geomorphic activity, and subsequently sediment yields may be
underestimated. The simulated spatial correlation of rainfall is a
bit higher than observed, but the differences are not significant
(see Figure A5 in the online Supporting Information B). More
details from the evaluation, such as the comparison of the
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annual areal rainfall variability between observed and simu-
lated products, can be found in the online Supporting Informa-
tion B.

Results

LEM rainfall–discharge–sediment cascade

The cumulative rainfall, river discharge, and sediment volumes
for all the products are shown in Figure 5. The cascade from the
rainfall (Figure 5a) to the discharge (Figure 5b) was observed to
be broadly linear, as observed previously (Coulthard
et al., 2012b). Each product showed a small increase in volume
in the conversion from rainfall to discharge that was caused by
the setting of a low flow threshold in the CAESAR-Lisflood
model (the model assumes that at discharges below the thresh-
old, the erosion and transport of sediment is negligible and in-
creases the model timestep to improve efficiency, assuming
hydrology is running in a steady state). The spread of the prod-
ucts, expressed as the range of values as a percentage of the
mean of the members, was similar for both rainfall and dis-
charge, with the spread for sTowMer slightly reducing in the
rainfall to discharge cascade (10.7 to 8.7%).
TowLoop, TowBoot, and sTowMer showed much greater

rainfall and discharge volumes (Figures 5a and b), and as was
expected the TowLoop and the mean of the gauge ensembles
were similar (rainfall = 1.6 × 1010 m3; discharge = 2.0 × 1010

m3). sTBR (mean of ensemble = 1.2 × 1010 and 1.4 × 1010 m3),
and sNIM (mean of ensemble = 9.6 × 1010 and 1.2 × 1010 m3)
showed lower volumes, with sNIM the lowest. Despite being
based on different observations of the same rainfall, the ensem-
bles of the two products showed no overlap after the first few
years of simulation. sTowMer (mean of ensemble = 1.4 × 1010

and 1.5 × 1010 m3) estimated greater volumes than all the other
gridded products, but less than TowLoop and TowBoot.
The sediment yields produced using each rainfall product

(Figure 5c) were more varied and complex than the hydrologi-
cal response (Figure 5b). The same pattern is seen, however,

with the Tow-based products having produced the most sedi-
ment yield (TowLoop = 1.7 × 106 m3), and sNIM the least (mean
of ensemble = 1.5 × 105 m3). Again, there was no overlap be-
tween the products after the first few years. sTowMer had a
mean cumulative sediment yield (7.3 × 105 m3), over four times
greater than sTBR and SNIM yet lower than TowBoot – there
was no overlap in range after the first few years.

In all instances the spread of ensembles, as a percentage of
the ensemble mean, was greater for sediment yields than for
discharges, with the greatest increase seen in sTowMer (dis-
charge = 8.5%; sediment yield = 28.8%). The spread of ensem-
bles was lower for products that did not use observations from
the Tow rain gauge as part of the calibration.

When standardized for rainfall means and spatial distribu-
tion, each input produced similar hydrological outputs
(TowLoop = 1.67 × 105 m3; sNIM = 1.63 × 105 m3; sTBR =
1.60 × 105 m3), yet diverging sediment yields (TowLoop =
9.87 × 105 m3; sNIM = 3.47 × 105 m3; sTBR = 2.65 × 105 m3).

Changes to basin geomorphology

Changes to basin geomorphology were assessed using the lon-
ger 1500-year simulations. Figure 6 shows the change in mean
elevations for different stream order sub-basins when the model
was driven by each of the rainfall products. The difference in
the scale of changes between the products is evident, with
TowLoop and TowBoot showing the greatest change. sTowMer
also shows greater changes than sNim and sTBR. By normaliz-
ing the changes as a proportion of the total changes, the differ-
ent spatial patterns between the products become clearer –
TowLoop and TowBoot show a dominance of change (erosion)
in the third-order region of the catchment, and also greater
changes in the fifth-order region, with a relatively low propor-
tion of change in the fourth-order region. This is in contrast to
sNIM and sTBR, which both show a much greater proportion
of change in the fourth-order region, a similar level to changes
in the third-order region, and less relative change in the
fifth-order region. sTowMer shows a mixture of the two

Table I. Summary of the rainfall products used to drive the CAESAR-Lisflood model

Designation Composition Abbreviations

Tow Tow gauge record (24 years) looped for 50 years and applied as a lumped estimate at 1 h timestep TowLoop

Gauge
Tow gauge record (24 years) bootstrapped to produce an ensemble of 30 individual 50-year realizations, applied as lumped
estimates at 1 h timestep TowBoot

Gridded
STREAP calibrated using the gridded TBR record (6 years) to generate an ensemble of 30 individual 50-year realizations,
applied at 1 h/1 km resolution sTBR

Radar
STREAP calibrated using the NIMROD record (6 years) to generate an ensemble of 30 individual 50-year realizations,
applied at 1 h/1 km resolution sNIM

Merged

STREAP calibrated using intensity information from the gridded TBR record (6 years), spatial information from the NIMROD
record (6 years), and climatic variability information from the Tow gauge (24 years) to generate an ensemble of 30
individual 50-year realizations, applied at 1 h/1 km resolution sTowMer

FIGURE 3. An example of a single 50-year realization, presented as a time series of the annual areal rainfall, derived from the Tow rain gauge (A),
the gridded TBR and NIMROD weather radar (B), and the merged product (C). [Colour figure can be viewed at wileyonlinelibrary.com]
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patterns, with third-order dominant, but more change in the
fourth than the fifth.

Table II shows statistics drawn from elevation and volume
changes at the individual cell level. The same differences ob-
served in Figure 6 are also evident here, with all values greater
for the products using the Tow rain gauge record. The mean el-
evation change across all cells appears low compared to the
values seen in Figure 6, but this indicates that high erosion in
the upper parts of the catchment is offset by deposition in the
fifth-order region, which is a larger area. By looking at the pro-
portion of the overall mean elevation change compared to the
total erosion across the catchment, it is possible to see what
proportion of eroded sediment is lost to the system at the catch-
ment outlet – this is greatest for the two products containing the
information from the Tow rain gauge.

Figure 7 shows the river profiles after 1500 years of simula-
tion, and the changes from the initial river profile. The differ-
ence in the scale of the changes is evident, as with Figure 6
and Table II, however, there is a difference in the transition
zone where the dominant change goes from erosion to deposi-
tion downstream. For sNIM and sTBR, the transition occurs
around 7000m downstream, after 7300m for sTowMer, and
8000m for TowLoop. The level of deposition tails off dramati-
cally towards the catchment outlet, with some minor erosion
at the edge of the model – this is possibly a result of a model pa-
rameter (which sets a fixed hydraulic slope at the edge of the
domain).

Discussion

Differences between products

The sensitivity of the CAESAR-Lisflood model to different rain-
fall products was assessed using the characteristics of different
rainfall observation products to calibrate a weather generator,
then using ensembles of generated rainfall as an input for
CAESAR-Lisflood. Differences in rainfall products occur as
each product observes rainfall differently, with different abilities
and spatial and temporal coverage. We have not assessed
CAESAR-Lisflood’s sensitivity to uncertainties associated with
individual products, such as observation error in rain gauges
or interpolation error in rain gauge networks, although many
of the observations made here would apply.

Our simulations show that the variation of rainfall rate had
the largest influence on landscape evolution in the tests – the
Tow rain gauge had the greatest variability in rainfall of the
products and the simulations that used rainfall derived from

FIGURE 4. Comparison between the observed (blue) and simulated (red) inverse-cumulative distribution functions of the areal rainfall at hourly res-
olution. 30-Year observed and simulated (gauge) records from Tow rain gauge are presented in (A). In (B) and (C), 6-year observed and simulated
(gridded and radar, respectively) records are shown. Internal boxes show differences at the upper quantiles. [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 5. Cumulative volume rainfall (a), discharge (b), and sedi-
ment yields (c), for each rainfall product over 50 years. Shaded areas in-
dicate the minimum and maximum bounds from the 30 ensemble
members. Symbols/lines denote the mean of the 30 ensemble members
(except for TowLoop). [Colour figure can be viewed at
wileyonlinelibrary.com]
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the Tow rain gauge consequently showed the greatest sediment
yields and changes in elevation. The difference in rainfall vari-
ability between TowLoop, sNIM, and sTBR was isolated as a
factor through spatially averaging a single ensemble member
from sNIM and sTBR to a catchment average, and standardiz-
ing the rainfall means of each – this produced cumulative dis-
charges where TowLoop was 2% greater than sNIM and 4%
greater than sTBR, yet cumulative sediment yields were 184%
greater than sNIM and 273% greater than sTBR. Even when
normalized, the Tow record contained higher rainfall intensities
in the upper quantiles of events compared to the other two
products, and it is these rare, high-intensity events that drive
much geomorphic activity. The normalized TowLoop produced
a sediment yield of 59% of the original. Rainfall variability, and
by extension discharge variability, is important to erosion rates
and changes to basin geomorphology (Deal et al., 2017;
Scherler et al., 2017), and here it has been identified as a key

sensitivity and source of uncertainty in LEMs. The spatial repre-
sentation of the rainfall is also important here, as the most ex-
treme values of rainfall are often associated with convective
storms that exist at a smaller spatial scale than the catchment.
When using the Tow gauge, there is no spatial representation,
so any observation of a storm is applied to the whole catch-
ment, yet for the other products the peak of the storm is
smoothed across the catchment. Typically, applying a spatially
distributed rainfall record at a coarser resolution (spatially or
temporally) results in a decrease in simulated sediment yields
(Coulthard and Skinner, 2016; Battista et al., 2019).

Ultimately, there is no reliable method of directly observing
all characteristics of rainfall. No single product can be said to
be correct, or even more correct than another. Rather, each
product has its skill and deficiencies that must be balanced
by the user, often through combining the best elements of each.
This is what this study achieves with the calibration of the

FIGURE 6. (A) Changes in the mean elevation across the different stream orders after 1500 years of simulation using each of the STREAP rainfall
products. (B) The same changes normalized based on the proportion of total change within each of the stream orders. [Colour figure can be
viewed at wileyonlinelibrary.com]

Table II. Summary of mean elevation changes across the catchment by 50-m DEM cells over 1500 years of simulation

Elevation change sNIM sTBR TowLoop sTowMer

Sum of all cells (106 m3) �3.2 �3.6 �23.7 �12.2
Mean of all cells (m) �0.01 �0.01 �0.08 �0.04
Greatest depositional cells (m) 6.15 8.98 11.27 12.74
Greatest erosional cells (m) �17.83 �18.31 �54.99 �46.02
Sum of depositional cells (106 m3) 7.6 8.3 24.8 18.4
Sum of erosional cells (106 m3) �10.8 �11.9 �48.5 �30.6
Proportion of eroded material leaving catchment 0.3 0.3 0.49 0.4
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sTowMer product, taking intensity from the rain gauge network,
spatial and temporal coverage from the radar, and finally con-
ditioning the distribution of events using the longer record
afforded by the single gauge. This was by no means a novel ap-
proach for producing rainfall estimates, but it is for the applica-
tion to a LEM, and this merged product produced outputs that
were between those from the gauge ensemble and those of
the other two products – and showed greater variability than
sTBR and sNIM. Consequently, the additional variability from
the Tow gauge allowed for higher-intensity upper-quantile
events, increased discharges, and sediment yields, yet the bet-
ter representation of the rainfall gradient across the catchment
allowed by the information from the NIMROD and TBR net-
work removed the spatial bias that is seen in the Tow
only-based products (closer to the total produced by rainfall
mean normalized TowLoop).

Geomorphic multiplier

The term ‘geomorphic multiplier’ was coined in Coulthard
et al. (2012b) to describe the amplifying effect a catchment
has on the signal moving from rainfall to discharge to sediment
yield. For example, in Coulthard et al. (2012b) the predicted in-
crease in rainfall by 1.28 times for a single extreme event re-
sulted in estimated sediment yields over five times greater.
Sediment response to flow variation is complex, non-linear,
and difficult to predict (Gomez and Church, 1989; Cudden
and Hoey, 2003; Coulthard et al., 2007; Van De Wiel and

Coulthard, 2010). Field and laboratory observations have been
used to develop sediment transport formulas in an attempt to
quantify the relationship between flow velocities, shear stress,
and transport initiation, and they often feature a cubic term
linking changes in flow velocity to transport initiation. In the
model itself, the geomorphic multiplier is expressed through
the application of these physically derived equations (in this
case, Wilcock and Crowe, 2003). The importance of this is
clearly illustrated in our findings – where geomorphic re-
sponses to any differences between products are amplified. Ef-
fectively, as part of an uncertainty cascade, the geomorphic
multiplier is magnifying any upstream uncertainty before un-
certainty associated with the model (e.g. parameter uncer-
tainty) is accounted for, increasing overall sensitivity.

This is evident in the results, where the differences in the
rainfall transfer broadly linearly to the discharge yet resulting
in much greater, non-linear, differences in the sediment yields
(Figure 5). For example, both TowLoop and TowBoot produced
cumulative discharge totals that were 150% greater than sTBR,
yet cumulative sediment yields that were 1000% greater. A
large difference was also observed in the scale of changes to
the basin geomorphology (Figure 6).

Spatial divergence in geomorphic response and
equifinality

Some authors have discussed the possibility of a ‘geomorphic
equifinality’within LEMs (e.g. Hancock et al., 2016), suggesting

FIGURE 7. Stream profiles for the initial elevations and the final elevations after 1500 years of simulation (top), and changes from the initial eleva-
tion across the stream profile (bottom). [Colour figure can be viewed at wileyonlinelibrary.com]
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that landscape evolution is dominantly driven by the topogra-
phy of the landscape itself, and thus LEMs are robust to input
uncertainties over long-term simulations (e.g. Willgoose
et al., 1991a,b; Howard, 1994; Howard et al., 1994; Hancock
et al., 2016). This concept would suggest that, regardless of dif-
ferences in the rainfall products used here, given enough time,
each would produce the same spatial pattern of geomorphic
change, albeit to different extents. However, Figure 7 shows
that there are differences in the patterns of erosion and deposi-
tion, especially between the Tow-based products and those of
sNIM and sTBR, particularly in the third-order areas of the
catchment where the TowLooped and sTowMer showed deep
incision. One explanation would be that given enough time,
the sNIM and sTBR would eventually match these levels of in-
cision in third-order areas, however, for this to be the case it
would be expected that the proportion of eroded material leav-
ing the catchment would be the same, yet this is 0.30 for both
sNIM and sTBR, 0.49 for TowLoop, and 0.40 for TowMer
(Table II). The greater rainfall (volumes and intensities) provided
by the climatic information in the Tow rain gauge produced
greater stream powers within the catchment and consequently
a greater proportion of the eroded sediment is removed from
the system, causing the upstream area of erosion to extend fur-
ther downstream. As sNIM and sTBR did not generate these
greater stream powers, a greater proportion of the eroded sedi-
ment was deposited within the system, and this makes it un-
likely that given enough time, the river profiles will resemble
those for TowLoop and sTowMer. Therefore, our results should
provoke concern – there are some clear and sometimes large
differences (an order of magnitude) in the geomorphic response
to different products, even over short timescales, which could
potentially produce diverging landscapes over longer time-
scales than used in this study. Further work would be required
to understand to what extent rainfall product differences influ-
ence the outputs of tests across different timeframes.

LEMs and climate change studies

The use of a rainfall generator model in combination with a
LEM presents some intriguing benefits going forward that have
not been explored here. The calibrations of a rainfall generator
model are based on observations and assumed to represent the
present climate. By altering the calibration parameters, includ-
ing altering the spatial structure of rainfall and locations of con-
vective events within catchments, possible future climate can
be generated (Peleg et al., 2019, 2020a). This has great poten-
tial for modelling future climate scenarios, where changes to
the type of rainfall an area receives are likely to occur. For ex-
ample, in the UK, climate predictions suggest that the fre-
quency and intensity of extreme convective events are likely
to increase disproportionately to changes in mean annual rain-
fall (Fowler and Ekström, 2009), and in Coulthard et al. (2012b)
these changes were shown to have a non-linear impact on sim-
ulated sediment yields. However, as the version of CAESAR ap-
plied in that study could only utilize catchment average rainfall
values, the impact is possibly underestimated, as representing
convective events in this way smooths out local rainfall intensi-
ties and this has been shown to influence sediment yields
(Coulthard and Skinner, 2016). This combination of a gridded
high-resolution rainfall generator model and LEM could be
used to investigate the impacts of convective events on catch-
ments at high spatial and temporal resolution.
However, there must be caution in their applications for

such. As in Coulthard et al. (2012b), we urge the geomorphic
community to embrace probabilistic methods, even for explor-
atory use. Owing to the uncertain nature of rainfall estimation

and the propagation of this uncertainty into downstream appli-
cations, relevant fields, such as meteorology and hydrology,
predominantly use probabilistic methods. Instead of
representing rainfall as a single deterministic input, an ensem-
ble of unique, yet equally probable, representations of rainfall
are used instead. These are often combined with downstream
models that also use probabilistic methods to represent model
uncertainty (e.g. parameter uncertainty), providing a large en-
semble output covering the range of probable outcomes. Both
Coulthard et al. (2012b) and this study made use of rainfall en-
sembles but have not applied them to a probabilistic represen-
tation of the model for a full uncertainty cascade. The
framework outlined by Pappenberger et al. (2005) could be
adapted/expanded to do this.

Wider implications

For the potential application of LEMs in forecasting, in a similar
way to hydrological models at present, several issues need to
be addressed. First, as discussed above, they currently do not
make use of probabilistic methods to assess uncertainty. Sec-
ond, the models display far greater sensitivity to the rainfall in-
put with regard to the choice of product (this study), resolution
of the data (Coulthard and Skinner, 2016), and changes to the
storm structure (Peleg et al., 2020b). Third, geomorphic models
retain a ‘memory’ of past events in a way hydrological models
do not, where an erroneous change to the landscape is retained
and will influence all future outputs. Fourth, there is a paucity
in both metrics and observation data suitable for assessing the
performance of the models (Tucker and Hancock, 2010). The
developments of high-performance and cloud computing re-
move some of the barriers to probabilistic modelling using
LEMs, yet it is likely that the barriers are challenging enough
to impede the application of LEMs in the same way as hydro-
logical models for decades to come. The development of the
next generation of LEMs should seek to address these issues
and also focus on determining what information can be ex-
tracted from the models that is of interest to stakeholders and
decision-makers and is also reliable (i.e. useful). Some previous
studies provide examples of what useful information can be ex-
tracted (e.g. Lane et al., 2007; Coulthard et al., 2012b).

Conclusions

Numerical models of geomorphic processes have been shown
to be sensitive to numerous factors, with these sensitivities often
being more acute than in models that simulate hydraulic pro-
cesses alone. Here, the sensitivity of model outputs to rainfall
inputs has been assessed using rainfall observations produced
by different methods, showing that whilst the differences be-
tween these products transfer linearly to the hydraulic outputs
from the model, the differences produced in the sediment
yields were non-linear, magnifying the differences between
the inputs. This poses a problem for the user as it is not possible
to state that any single product is correct, or even the most cor-
rect, with each having a different skill for observing different
characteristics of rainfall. The use of probabilistic methods to
represent rainfall in LEM studies should be common practice
in order to account for these uncertainties, and future develop-
ment of LEMs should focus on better handling the non-linear
uncertainty cascade resulting from the use of deterministic sed-
iment transport equations. The use of LEM and a rainfall gener-
ator in combination, with full accounting for uncertainties, has
the potential to provide useful information relating to the
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impact climate change will have on the landscape, and conse-
quently on society.
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