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Abstract: Hosted in carbonate and crystalline basement rocks below regional 

unconformities, fissure-fill networks are a widely recognized, but relatively little described 

near-surface phenomenon (<1-2km). Faults and fractures in otherwise tight Devonian 

carbonate basement rocks of the Tor Bay region, Devon, are associated with the 

development of millimetre- to decametre-wide fissures containing red early Permian 

sedimentary material, vuggy calcite mineralisation and wall-rock collapse breccias. These 

features preserve evidence concerning the style and history of fault deformation and 

reactivation in near surface settings, and on fluid-related processes such as elutriation 

and/or mineralization. Field observations, palaeostress analysis, and fracture topology 

analyses show that the rift-related faults and fractures created a network of long-lived open 

cavities during the early Permian development of the Portland-Wight Basin. Once formed, 

they were subjected to episodic, likely seismically-induced fluid fluxing events and local 

karstification. The large, well-connected networks of naturally propped fractures were - and 

possibly still are - important fluid migration pathways within otherwise low permeability 

host rocks. These structures are likely equivalent to those observed in many other rift-

related, near-surface tectonic settings, and suggest that the Tor Bay outcrops can be used as 

a global analogue for sub-unconformity open fissure systems hosted in low permeability 

basement rocks. 

 
Supplementary material: Appendix A is available at 
https://doi.org/10.6084/m9.figshare.c.5023103 
 
 

Cavern systems are widely developed across a range of scales in carbonate sequences 

worldwide and are known to be sustained as open features to depths greater than 2km due 

to the cohesion and relatively high tensile strength of most lithified limestones (e.g. Smart 
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et al. 1988; van Gent et al. 2010). Many modern examples are associated with younger 

sedimentary fills and low temperature carbonate mineralization. These  features are known 

to strongly control present-day fluid flow pathways and processes and, more generally, the 

hydraulic behaviour of carbonates in the near subsurface (e.g. Popov et al. 2009).   

Ancient and modern carbonate cavity systems are commonly referred to as ‘karst’ 

features and their formation mechanisms are typically attributed substantially to dissolution 

processes. However, very similar features are also recognised in other strong host rocks 

fractured in near surface environments (<1-2km depth), such as basalts (e.g. Angelier & 

Mechler 1977; Schlische & Ackermann 1995; Walker et al. 2011) and crystalline basement 

(e.g. Beacom et al. 1999; Siddoway & Gehrels 2014; Holdsworth et al. 2019). In most of 

these cases, solution processes are relatively minor or absent. Theoretical considerations 

and analogue modelling studies show that the relatively high strength of carbonate or 

crystalline rocks will tend to favour the formation of sub-vertical dilational fissures in the 

near surface during rift-related normal or strike-slip faulting episodes (Figs 1a-c; e.g. Sibson 

1996; Ferrill & Morris 2003; van Gent et al. 2010; von Hagke et al. 2019). We should 

therefore expect such features to be widely preserved in ancient settings where fractured 

carbonates (or crystalline basement) form a basement that was exposed at the 

palaeosurface below regional erosional unconformities during the early stages of rifting, 

prior to burial. Given the frequent global development of hydrocarbon and geothermal 

reservoirs in fractured carbonates located close to regional erosional unconformities in the 

subsurface (Yang et al. 2014; Narayan et al. 2018), these fault-related fissure systems are 

likely to be of potential economic significance. 

Massively dilated, ancient examples of carbonate-hosted fault zones are already 

known, for example the folded Tertiary carbonates in the UAE and Oman (van Gent et al. 
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2010), where they are filled with carbonate veins, fractured wall rocks and laminated 

sediment fills. Similar normal fault fissure fills – thought to be Triassic to early Jurassic age 

based on fossil evidence - are widely recognised in the fractured Carboniferous limestone 

basement that underlies the regional post-Variscan unconformity in the Bristol Channel 

Basin (e.g. Wall & Jenkyns 2004; Wright et al. 2009; Woodcock et al. 2014 - see their figure 

13). 

In this paper, we describe in detail the nature and significance of fissure systems 

filled with sedimentary material, breccia and calcite-dominated mineral deposits hosted in 

fractured Devonian limestones cropping out on the western onshore flanks of the offshore 

Portland-Wight Basin in Torbay, SW England (Fig. 2). We examine the diverse architecture of 

these fissure fills and their associations with rift-related normal faults, the nature and 

mechanisms of filling and discuss the significance of our findings for fluid flow and fluid 

reservoir development in the subsurface. 

 

Geological setting 

Regional context and stratigraphy  

Tor Bay in SW England lies within the English Riviera UNESCO Global Geopark, stretching 9 

km from Hope’s Nose (SX 94741 63546) southwards to Berry Head (SX 94563 56538) (Fig. 2).  

A structurally complex basement sequence of Devonian limestones and calcareous 

mudstones was deformed by during the Variscan Orogeny (Coward & McClay 1983). It 

includes, from oldest to youngest: the Early Devonian Meadfoot Group; Middle Devonian 

Nordon Formation; Brixham (or Torbay) Limestone Formation; and Late Devonian Saltern 
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Cove Formation (Strange 2001). Devonian basaltic tuffs  and intrusive dolerites occur at 

Saltern Cove, Black Head, and Oddicombe Beach (Fig. 2) (Ussher 1903).  

A little deformed and shallowly dipping (<10o ) cover sequence of red, early Permian 

sandstones and breccias outcrops mainly within the central part of the Tor Bay coast (Fig. 2) 

(George et al. 1927; Shannon 1928; Strange 2001). These rocks belong to the Torbay Breccia 

Formation, part of the Exeter Group (Ussher 1903; Henson 1971). They form a well-bedded 

sedimentary succession, starting with alluvial conglomerates and depositional breccias at 

the base, before sharply transitioning to younger cross-bedded and well sorted aeolian 

sandstones. The basement and cover are separated by a regional-scale, post-Variscan 

erosive angular unconformity known locally as the ‘Goodrington Unconformity’ (best 

exposed at SX 89539 58742). 

Extensive outcrops of Permo-Triassic and Jurassic sandstones occur along the South 

Devon-Dorset coastline to the east of Tor Bay, which also form key potential reservoir rocks 

in the offshore SW Approaches petroleum system (Shail & Leveridge 2009 and references 

therein). Though separated by the NW-SE trending Stickleback-Lustleigh fault zone, the Tor 

Bay area lies on the western flanks of the offshore Portland-Wight Basin (Fig. 2; Harvey et al. 

1994; Underhill & Stoneley 1998). The form of the Tor Bay coastline and margins of the 

offshore basin are significantly controlled by regional-scale, sub-vertical fault zones. 

 Pleistocene karst systems are widely developed in the Devonian limestones onshore 

(e.g. Kent's Cavern; Ussher 1903; Lundberg & McFarlane 2007), together with interglacial 

raised beach sediments (Strange 2001; Leveridge & Hartley 2003).  

Structural Evolution 

During the Variscan Orogeny, northward-directed contractional deformation led to the 

development of northward verging minor folds, cleavages and thrust faults in the Devonian 
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basement sequences (e.g. see Coward & McClay 1983). Following uplift, exhumation and 

regional erosion, the exposed limestone basement around Torbay experienced one or more 

phases of extensional tectonics, subsidence and sedimentation leading to the formation of  

large, steeply-dipping to sub-vertical NNE-SSW and E-W to ENE-WSW faults and the 

regional-scale Goodrington Unconformity (Harvey et al. 1994; Shail & Wilkinson 1994) (Fig. 

2). Permian extension here is thought to be related to post-orogenic collapse of the uplifted 

Variscan orogenic belt (Harvey et al. 1994; Ruffell & Shelton 2000). Some large basin-

bounding faults are seen onshore (e.g. at Crystal and Saltern coves), whilst others are 

inferred to lie just offshore with smaller fracture arrays occurring in aligned swarms and 

corridors throughout Tor Bay (Fig. 2). Open fissures associated with both fracture sets are 

known to be filled with zoned calcites, complex breccias, and significant volumes of red 

sedimentary material (e.g. Richter 1966).  

Following a period of tectonic quiescence in the Triassic, active rifting resumed 

during the Jurassic. This extension was centred offshore to the E of Tor Bay, generating large 

sedimentary depocentres off the Dorset coast in the Portland-Wight Basin (Underhill & 

Stoneley 1998). Unequivocal evidence for this phase of extension is not observed within the 

study area as there are no exposed Jurassic rocks onshore, but it is clearly seen offshore in 

seismic reflection profiles (e.g. see Underhill & Stoneley 1998).  

A later Cenozoic disconformity occurs in the Eocene-Oligocene strata of southern 

Britain and reflects a further period of regional uplift. At around this time, several 

kilometres of sinistral strike slip motion are thought to have occurred along the regional  

NW-SE Sticklepath-Lustleigh Fault Zone (Fig. 2; Holloway & Chadwick 1986). This NW-SE 

fault zone presently separates the onshore Tor Bay area from the offshore Portland-Wight 

Basin located further to the E (Fig. 2). 
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Field and laboratory methods 

Fractures systems and their fills were studied at 14 localities around Tor Bay (Fig. 2) where 

they are well exposed in the Devonian carbonate basement located close to the 

Goodrington Unconformity in coastal cliffs, wave-cut platforms, and quarries (Fig. 2). 

Structural geometries were recorded through the collection of orientation data, with brittle 

fault kinematics measured from: offsets of markers in the host rocks, the local preservation 

of slickenline lineations, and the preservation of asymmetric shear criteria such as en-

echelon veins and slickenline steps (Petit 1987). The relative ages of fractures and their 

associated fills were ascertained in the field from observation of cross-cutting relationships. 

In exceptionally well exposed cliff sections and rock platforms, observations and 

interpretations were also made using low-level areal images collected using a drone.  

Representative samples of oriented hand specimens were collected from mineral and 

sediment fills of fractures and were used to study the microstructure and relative-age 

relationships of mineralization and cementation using transmitted light optical microscopy. 

As many of the fracture systems studied include faults with slickenline lineations, we 

used palaeostress inversion techniques to determine an approximation of the stress 

conditions responsible for their formation. This was carried out using WinTensor software 

(Delvaux & Sperner 2003), which utilises both the PBT axes method and the improved Right 

Dihedron method of Angelier & Mechler (1977) and Delvaux et al. (1995). These techniques 

have a consistent assumption that the slip vector data recorded in the field is parallel to the 

ideal shear component of the resolved stress tensor (Wallace 1951; Bott 1959). They are 

most appropriate where the host rock is mechanically isotropic, fault displacements are 
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small, and where data is measured across a broad range of fault plane orientations (Angelier 

1991). 

In order to quantify fracture connectivity and volume of sediment fills in the 

Devonian basement, a drone-based orthorectified virtual outcrop model (VOM) was created 

for one very well exposed rock platform at Shoalstone Beach (Fig. 2) with an effective 

viewing resolution of 1-2cm. This was then interpreted manually and “ground-truthed” 

during subsequent fieldwork, to generate a fracture trace map which was used to quantify 

fracture attributes, both manually and using the FracPaQ MatLab extension (Healy et al. 

2017). The relative connectivity of the fracture network was determined using fracture 

topology (for details see Sanderson & Nixon 2015), a characterisation technique that 

simplifies a 2D fault or fracture network into discrete branches and nodes. The ratios 

between different types of nodes (I-Y or Y-X), and branches can be used to determine the 

relative connectivity and spatial characteristics of the network. In addition, areal and 

volumetric calculations of the amounts of fracture fills were undertaken using the Image 

Processing toolbox of MatLab (see Supplementary Material). 

 

Post-Variscan fracture architectures and geological associations 

Brittle fractures are well-preserved, cross-cutting Devonian basement rocks and the 

lowermost parts (<5m above basement) of Permian cover sequences around Tor Bay. These 

structures are characteristically highly dilational in character and comprise three distinct 

void-like forms described below. 

Sub-vertical forms 

Steeply-dipping to sub-vertical structures are the dominant form around Tor Bay. Two 

categories occur – large normal faults with apertures of up to 40m; and 10-100m wide 
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fracture corridors made up of fractures that individually have apertures of <1m.  Note that 

throughout this paper, we use the term ‘aperture’ to refer to the width of a fracture 

including any fill, i.e. the ‘kinematic aperture’ of Ortega et al. (2006). 

Large normal faults  

At Crystal Cove (SX 89656 58057) a 400m coastal section on the north side of Broadsands 

Beach exposes a linked array of three major, sub-vertical NNE-SSW faults with apertures up 

to 40m wide (Figs 3a-c). Red clastic sedimentary material intercalated with extensive vuggy 

calcite mineralisation fills the fault fissures (Figs 3c,e,f). A series of discrete slip surfaces with 

calcite slickenfibres (e.g. Fig. 3d) are recognised separating panels of sediment infill, 

brecciated basement wall rocks and dilatant calcite mineral fills (Fig 3b-f). Slickenfibres 

display normal dextral shear senses, with rakes varying from 63o to 90o, along planes which 

strike from 003o - 043o and dip 68o to 86o E (Fig. 3g). The aforementioned sediment fills are 

distinctly zoned, with each widening (increasing in aperture) towards the overlying 

palaeosurface unconformity in a “v” shape (e.g. Fig. 3c). These features likely formed as 

filled fissure cavities, each zone representing an individual dilatant opening event of the 

fissure. With each movement, the cavity widens creating new spaces that were infilled by 

sediment and/or by minerals precipitated from circulating hydrothermal or meteoric fluids. 

The repeated overprinting slickenfibres and zoned fills suggest repeated reactivation with 

synchronous shear and tensile fracturing behaviour close to the surface represented by the 

immediately adjacent base-Permian unconformity.  

Some 200m north of Crystal Cove, a small inlet called Shell Cove (Fig. 3a; SX 89643 

58217) preserves the unconformable contact between the Devonian limestone basement 

and the Permian clast-supported breccia and interbedded sandstone cover. The lowermost 

layers of this cover sequence are interpreted as flash-flood deposits and contain clasts of 
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the underlying limestone basement (Thomas 1909; Henson 1971). Sub-vertical NNE-SSW 

trending sandstone and breccia-filled fractures are seen to cut both the limestone basement 

and the lowest 2-3m of the overlying breccia. These rocks are then disconformably overlain 

by cross-bedded, finely laminated sandstone. It is difficult to demonstrate conclusively that 

the sedimentary material filling the fracture cavity is continuous with these Permian 

sandstones, but the lithologies are identical in composition, grain-size and rounding. We 

therefore suggest that the cross-bedded sandstone either forms the sediment source, or 

immediately post-dates the sediment fills in the underlying fractures and that both were 

deposited under similar environmental conditions.  

E-W major faults are best observed at Oddicombe Beach (SX 92645 66127) and 

Saltern Cove (SX 89543 58377) (Figs 2, 4). In the latter locality, a large E-W trending fault 

system is observed in the cliffs with an aperture of 14m, dipping steeply N (Fig 4a, b). It 

cross-cuts a small, S-dipping Variscan thrust that emplaces Brixham Limestone Formation 

over rocks of the younger Saltern Cove Formation. The limestone hangingwall of the thrust 

fault has undergone dissolution at the intersection between the thrust and normal fault. 

Calcite-bearing vugs (c. 2-15cm) have developed here (Fig. 4f), some of which have been 

filled geopetally by well-bedded red sandstone. A large limestone clast lies suspended in a 

matrix of zoned, sub-horizontally bedded red sandstones (Fig. 4a, c) suggesting that 

emplacement of the block was contemporaneous with red sediment infilling; it appears to 

have fallen downwards into the cavity from the hangingwall of the pre-existing thrust. The 

infilled cavity also contains entrained volcanic material (Figs 4d, e). 

Dilatant fault and fracture corridors 

Sub-parallel corridors 10’s to 100’s of metres wide are best exposed in plan view at 

Shoalstone Beach, and in cross section at Berry Head Quarry (Fig. 2; Richter 1966; Wall & 
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Jenkyns 2004; Woodcock et al. 2014). Other important, though less well-developed 

examples occur at Hope’s Nose. These fractures typically have apertures of 5-15cm, but 

have been observed as narrow as a few millimetres and as wide as 4.5m. 

At Berry Head Quarry (SX 94293 56615) (Fig. 5a), the excavated Middle Devonian 

limestone walls are up to 60m high, with a single shelf exposure of cliff section 9km long. 26 

sub-vertical sediment-filled fractures trending either NNE-SSW or ENE-WSW are seen here 

cutting homogenous massive limestones. No filled fissure tips are observed, with fractures 

extending vertically over many tens of metres with little systematic change in aperture. 

Despite having seemingly constant apertures over vertical distances of up to 60m, the walls 

of the fracture cavities are locally irregular, with many large angular asperities and 

entrained blocks of brecciated wall-rocks (Figs 5b-d). These features, together with the lack 

of any noticeable lateral offset of bedding in the surrounding limestones indicates that 

these are predominantly tensile (Mode I) opening fractures. At the western end of the 

quarry, a number of moderately dipping (~40o) sediment-filled cavities are also exposed 

linking into vertical fractures (“low angle linkages” in Fig. 5d). 

At the seafront quay, some 150m N of the main quarry, 5 bifurcating and linked, 

sediment-filled fractures occur with apertures up to 40cm (Figs 5a – yellow box, e, f). By 

tracing these fractures along strike to the equivalent set seen in the quarry walls, we can 

infer that these fractures are at least 500m long, and show little evidence of narrowing or 

tipping out laterally, indicating a still larger fracture trace-length. A minority of the exposed 

margins of these fractures appear to have been smoothed. These are interpreted as possible 

local karst weathering features (Dubois et al. 2014). This suggests that these cavities were 

open close the surface and permeable to fluids prior to infilling. Note, however, that the 

evidence for dissolution is generally very limited and the vast majority of exposed fracture 
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walls feature angular – sub-angular asperities that can be matched exactly to opposing fault 

walls, along with textures such as jigsaw brecciation, that would not be preserved had 

dissolution have widely affected the fracture surfaces.  

A large wave-cut platform 700m long occurs at Shoalstone Beach, NE of Brixham 

harbour (SX 93608 56816) (Figs 2, 6; Richter 1966). Here an exceptional 2D plan view of 

sediment-filled fracture networks is exposed cutting Middle Devonian limestones (Figs 6a-

h). As in previous locations, shear offsets of bedding are minimal and the fractures are 

almost entirely dilational Mode I features. Previous authors have noted that the sub-vertical 

fissures here occur in two sets  (Richter 1966). An older, paler coloured ENE-WSW set is 

cross-cut by younger, darker N-S set (Figs F-H). These relative age relationships are typical of 

the Tor Bay region as a whole and, given the exceptional exposure, this locality can be 

regarded as the “type” locality for these sediment-filled fractures.  

At Hope’s Nose, Middle Devonian reef limestones are cut by irregular sediment- and 

calcite-filled faults and rare sulphide mineralised fault breccias (Figs 7a, b). Several faults 

exhibit a stratigraphic control where the mode of failure changes within different host units 

(e.g. Figs 7c, d). For example, where thicker bedded, more competent limestones are offset, 

the fault is dilatant (Mode I) with a wide aperture (up to 65cm) filled with sediment. Traced 

upwards into the directly overlying finer bedded limestones and tuffs, the fault shallows in 

dip by 20o and becomes a narrower shear fracture (Mode II/III) (Fig. 7c). This section of the 

fault contains breccia and slickenlines which indicate a normal shear sense (Fig. 7e). In some 

cases, blind faults are observed to have generated open ‘forced folds’ directly above the 

propagating fault tip (Fig. 7d). The fracture sets at Hope’s Nose exhibit cross cutting 

relationships opposite to those seen in the rest of Tor Bay, i.e. sets of (unfilled) N-S fractures 

here are cut by (sediment- and breccia-filled) E-W faults. These E-W structures show 
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brecciation of mineral fills suggesting that there was later local fault reactivation here which 

may help explain the difference in percolating fluid chemistries at Hope’s Nose described by 

Shepard et al. (2005). Once again, a minority of fractures at Hope’s Nose exhibit smoothing 

of cavity walls and apparent locally widened apertures (e.g. Fig. 7a), suggesting some minor 

karstification prior to sediment infilling. 

Sub-horizontal forms 

Where present, sub-horizontal fracture cavities are usually associated with large vertical 

faults and fractures. They have previously been referred to as “Liassic veins”, and 

“sedimentary sills” (Peterson 1967; Richter 1966; Smith 1952).  At Fishcombe Point (SX 

91843 57053) (Figs 8a-d), two small horizontal, partially sediment-filled cavities occur in 

Middle Devonian limestone with exceptionally well-developed fractal-scalenohedral calcite 

crystals which line the cavity walls (Figs 8c-f). These horizontal cavities link into a large (3-

17cm wide, >10m long) vertical sediment-filled fracture, progressively thinning away from it 

until they eventually pinch out (Fig. 8c). The horizontal cavities are partially filled by a red 

homogenous sediment continuous with the sediment fills in the vertical fractures, although 

it is much finer grained (20-50µm versus 250-1000µm) (Figs 8d-f). These horizontal cavities 

are sub-parallel to the pre-existing bedding in the limestone basement (Fig. 8c) and feature 

locally smoothed cavity walls, indicating that some minor dissolution has occurred during 

cavity creation (Dubois et al. 2014). 

Irregular cavity forms 

Cavernous carbonate-hosted voids are subordinate features compared to the other forms of 

fill and are morphologically diverse. At Fishcombe Cove (SX 91979 56942) (Fig. 2), the 

coastal exposures host a densely packed network of steeply-dipping, sediment-filled 

fractures trending NNE-SSW and E-W (Figs 8b, i), which exhibit the same cross-cutting 
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relationships as seen at Shoalstone Beach. Less than 10m E along the coast, a near spherical 

fracture cavity up to 2m in diameter occurs filled with homogenous, un-bedded Permian 

sandstone. At Fishcombe Point, a series of small 20cm wide sediment-filled fractures are 

connected to a number of irregular lozenge-shaped, low aspect ratio (cave-like) cavities (1.7 

x 0.5m), lined with calcite (c. 10cm thick) and filled with bedded Permian sandstone (Figs 8g, 

h).  

 

Infills: nature and processes 

The intimately associated sediment- and calcite-fills found associate with faults and 

fractures in the Tor Bay are must have formed close to the surface based on their proximity 

to the regional unconformity and the close lithological similarity of the sediment fills to the 

immediately overlying basal Permian strata.  

Mineral fills 

Fracture walls are typically lined by sparry calcite fills, which vary significantly in size and 

morphology from millimetre-thick blocky to metre-thick coarse crystalline spars (Figs 5e, 8d, 

f, 9a-g). Where sediment fills are present, the veins are normally a few centimetres thick 

and typically occupy < 10-15% of the fracture volume. The calcites are mostly milky white, 

but dark-grey fills are locally developed containing impurities such as carbon or fine iron 

oxide. Thick sparry calcite veins are consistently syntaxial and grow inward from the cavity 

walls (Figs 9a-f). Associated sediment fills are commonly cross-cut by smaller, younger 

calcite veins (e.g. Fig. 10b) and new fissure cavities may be present in the infilling sandstone 

which are also lined by crystalline calcite (e.g. Figs 3c, f).  

 A variety of crystalline calcite forms are observed (Fig. 9) including: scalenohedral 

(dog-tooth spar) (Fig. 9a) a delicate fractal scalenohedral variety (Fig. 9b); rhombohedral 
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(nail-head spar) (Fig. 9c); fine grained and sheeted (Fig. 9g); dendritic (Fig. 9e); mm-cm scale 

stalactites, and blocky calcite (Fig. 9d). Fibrous forms are largely absent except as 

slickenfibres developed on larger fault surfaces (e.g. Fig. 3d).  

 Syntaxial “cavity filling” textures are best displayed by the scalenohedral and 

rhombohedral forms (Figs 4f, 8d, f-h, 9a-f, 10b). Both types are known to form in near-

surface environments ( e.g. García Carmona et al. 2003; Milodowski et al. 2018) and the lack 

of mixed calcite morphologies in single fractures suggests that fluid compositions, water 

depth and/or temperature may have fluctuated during fissure filling.  

Small amounts (<1cm thick) of fine and sheeted calcite – interpreted to be travertine 

and flowstone - are seen lining cavity walls in a minority of locations, e.g. Hope’s Nose, 

Fishcombe Point (Fig. 9g). These features suggest that a limited degree of karstification may 

have affected some of the open fractures, which also show evidence for minor dissolution 

(‘smoothing’) along the cavity walls.  These karstified fractures can be distinguished from 

the effects of later Cenozoic-Recent weathering as they are partially covered by Permian 

sandstone infills.  

 Calcite textures are consistently growth zoned with large scalenohedral calcites 

commonly showing orange bands, parallel to crystal faces (e.g. Fig. 9f). Colour zonations like 

this are thought to be controlled by small fluctuations in fluid conditions/chemistry (e.g. Fig. 

13b) (Paquette et al. 1993; Guoyi Dong et al. 1995; Milodowski et al. 2018). The bright 

orange stained zones/bands within the calcite crystals likely formed due to enrichment of 

iron oxides in the mineralising fluids, which were then precipitated as thin haematite 

coatings and trapped as Fe-rich fluid inclusions (Milodowski et al. 2018). More generally, the 

syntaxial calcites show a marked coarsening-inward texture (Figs 9a-f, 10b). Multiple 

sequences of calcite growth from a single wall-rock interface are locally developed, with up 
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to three or four bands of coarsening-inward calcite within a single vein (e.g. Fig. 10b). This is 

likely due to repeated pulsing of fluids through the open fracture systems, each generating a 

renewed phase of mineralisation.  

Sedimentary fills 

Most fills in sub-vertical faults and fractures are consolidated red sandstones comprising 

well rounded, medium to coarse grains (200-100µm) of quartz coated in a thin layer of 

hematite (Figs 10a-e; Richter 1966). The grains are exceptionally well sorted, and most 

sands are homogeneous, structureless and massive (Figs 10d, e). Bedding, where present, is 

defined by small variations in grain size and/or by thin laminations of fine silt (Figs 3e, 4c, 

5e, 6f, 8h). A proportion of the original porosity in the sediment fills is occluded by mineral 

cement, but open porosities of up to 10% are commonplace (e.g. Fig. 10c), and locally reach 

35%. 

In most of the Tor Bay area, fills in the older E-W set of fissures are calcite cemented, 

with a great deal of associated calcite veining, whereas fills in the younger N-S set also 

feature regions of quartz cement, in addition to lesser amounts of calcite (Richter 1966). It is 

not certain whether this reflects a change in depositional conditions, but in every other 

respect, the fissures are identical. Where calcite cements are present in sediment, they 

grow in optical continuity with large calcite crystals in adjacent mineral fills (Fig. 10a). Where 

quartz cements are present in the sediment fills of N-S fractures, they are seen to grow in 

optical continuity with the clastic quartz grains they enclose (Figs 10f, g), which can be 

recognised by a thin coating of haematite. Collectively, all of these features suggest that 

fissure-hosted sedimentation, cementation and calcite mineralization were all 

contemporaneous.  
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Further evidence for this contemporaneity comes from the preservation of striking 

pyramidal piles of sandstone-siltstone within large vertical fault fills and fractures (Fig. 3e). 

At Crystal Cove, hundreds of these red sediment pyramids can be seen in cross-section 

within a large calcite-lined N-S fault cavity. They vary in size from millimetres to tens of 

centimetres across, and in many places preserve shallowly-dipping bedding laminations in 

the centre of the pyramid, progressively steepening towards the margins (Fig. 3e). Similar 

features have been described by Woodcock et al. (2014) and are thought to represent 

geopetal accumulations of sediment which have been washed into open, partially 

mineralized fault cavities and piled up on any asperities or fallen clasts of wall-rock.  

Chaotic breccia fills up to several metres wide are found in many sediment-filled 

fissures around Tor Bay. The most common type consists of irregularly orientated, angular 

clasts of wall-rock limestone that show no evidence for attrition or rounding (e.g. Figs 4a, c, 

7b, 11c). These are thought to have formed by wall-rock collapse into open fissures 

(Woodcock et al. 2014). Locally, jigsaw-type breccias are developed where clast fragments 

are seen only slightly displaced from their original position (e.g. Fig. 5b). In all cases, the 

breccia clasts are held in a uniform matrix of red sandstone, suggesting that brecciation 

occurs coevally with sediment infilling.  

A few more exotic fills are found locally in some larger fracture systems. At Saltern 

Cove, an irregular zone of breccia fill includes clasts of tephra with associated copper and 

lead mineralization, enclosed in a matrix of fine-grained red sandstone (Figs 4d, e). Clasts 

are of orange-coloured tuff, and copper-rich clasts of volcanic ejecta. The sandstone matrix 

here preserves bedding laminations that wrap around the volcaniclastic clasts, suggesting 

that they were already lithified before being incorporated into an open cavity along with the 

unlithified sand. This volcanic material may have originated from the Late Devonian 
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interstitial basaltic tuffs within the Saltern Cove Formation, reworked at the surface and 

emplaced into the cavity (Smith 1952). The vertical and horizontal zonation of the sediment 

infilling the large normal fault cavity here further suggests that this fault-related fissure was 

repeatedly and cyclically reactivated, dilating and filling iteratively over time.  

At Fishcombe Point and SE of Fishcombe Cove, sedimentary fills in sub-horizontal 

fractures are finer grained (20-50µm) relative to adjacent vertical fracture fills and show 

normal grading consistent with deposition from a fluid suspension. This may indicate that 

these open fractures were regions of lower energy fluid flow, where finer sedimentary 

material elutriated from the adjacent, faster flowing vertical fracture cavities was deposited 

(Cox & Munroe 2016). The local development of sand volcanoes close to the intersections of 

vertical and horizontal cavities (e.g. Fig 8e) also points to fluid fluxing and elutriation. Along 

the slopes of the sand-volcanoes, interfingering sedimentary structures with slight 

variations in grain-size reveal different depositional events, showing that these likely formed 

iteratively over many repeated fluid flux events (Fig. 8e).  

Finally, along the eastern side of Fishcombe Cove, a large lozenge-shaped sediment 

fill with an aperture of a few 10s of cm occurs (Figs 8g-i). The fracture is lined by sparry 

calcite, and the infilling sediment hosts an array of sedimentary structures including cross 

bedding and dewatering structures (Fig. 8h). Unusually, the earliest sediment fills here were 

concentrated along the sides of the cavity in very steep beds, most likely caught against the 

walls as the majority of the sediment fell deeper into the fault cavity. Once the steep beds 

met and blocked the fissure, shallowly dipping beds were deposited on top which preserve 

dewatering and flame structures consistent with periodic fluid fluxing events (Fig. 8h). 

 

Discussion 

ACCEPTED M
ANUSCRIPT

Downloaded from https://pubs.geoscienceworld.org/jgs/article-pdf/doi/10.1144/jgs2020-074/5073671/jgs2020-074.pdf
by guest
on 25 June 2020



Our observations indicate that the fracture-hosted cavities in Devonian Limestone basement 

are fault-related fissures formed at, or within no more than a few hundred metres of the 

surface that have been pervasively infilled by Permian red sediment, with broadly 

contemporaneous calcite (and minor quartz) mineralization. The near surface interpretation 

is predicated on the close spatial association between the occurrence of the red sediment 

fills and the presence of the regional (early Permian) unconformity.  The clastic material 

either fell, or was washed, into a network of long-lived open, subterranean cavities and was 

then variably reworked and redistributed by periodic upward-directed fluid fluxes (Fig. 11). 

The intimate association between the sediment fills and the calcite-dominated mineral fills 

suggests that these fluid fluxes are plausibly related to active rifting in the early 

development of the Portland-Wight Basin. 

Karstification vs tectonic fissure formation 

Karstification plays a significant role in the development of cavity systems in shallow 

basement carbonates world-wide (Hauselmann et al. 1999). In the Tor Bay area, large 

Quaternary cave systems are known within the carbonate basement, such as Kent’s Cavern  

(Lundberg & McFarlane 2007). However, most of the fracture cavities directly associated 

with Permian sediment and mineral fills in fissured limestone show very angular cavity walls 

and asperities with little or no evidence for aperture widening and dissolution (see also 

examples discussed by Woodcock et al. 2014).  The preservation of faults with shear offsets 

and slickenlines is further evidence for tectonic faulting at the time of open fissure 

formation. Fifty slickenside lineation measurements and relative displacement senses were 

subjected to a stress inversion analysis. (Fig. 12). The results suggest that both E-W and N-S 

structures formed under an extensional radial stress system (vertical   ) with a NNW-SSE 

primary extensional axis (  ), and an ENE-WSW secondary extensional axis (  ) (Fig. 12). 
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Collectively these observations suggest that the majority of fissure fills here are of tectonic 

origin, and the extensional stress system demonstrates that they are most likely related to 

the early stages of Permian rifting and basin formation rather than Variscan contractional 

deformation. Analogue models of dilatant normal fault systems in carbonates have shown 

how vertical tensile fissures formed in the near surface link at depth to inclined hybrid and 

shear fractures with dilational jogs at intermediate levels (Figs 1a, b; van Gent et al. 2010). 

Importantly, the NNW-SSE extension direction derived here is consistent with the direction 

of Permian rifting inferred from onshore and offshore geological studies in SW England (see 

Shail & Leveridge 2009 and references therein).  

Mineral filling mechanisms 

Mineral zonation and cockade textures (Frenzel & Woodcock 2014; and references therein)  

are widely recognised on micro- to meso-scales, with the best examples preserved at Crystal 

Cove, Petit Tor Point, and Shoalstone Beach.  Here the mineralized fracture cavity fills have 

individual clasts that are completely surrounded by, and therefore appear to float in, 

multiple concentric layers of cement (Figs 7b, 10e, 13a). Elongate scalenohedral or 

rhombohedral calcites surround clasts ranging from single quartz sand grains to large clasts 

of Devonian wall rock (Figs 10e, 13b). The paucity of contact points between the clasts 

suggests that the clasts are free to move away from one another. Fractured cockades (e.g. 

Fig. 13b) are locally preserved but the more widespread development of uniform 

overgrowths within and between clasts requires that the mineral cements grew evenly on 

all sides of each clast at the same rate. Whilst some of the concentric overgrowths may be 

the result of a “cut-effect” during sampling, the prevalence across multiple samples and 

paucity of contact points between clasts shows that the majority are “true” cockades. This 

suggests that they grew in either in suspension, and/or by repeated accretion and rotation 
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of clasts in an upwardly flowing, supersaturated fluid (Figs 13a, b; Frenzel & Woodcock 

2014; Cox & Munroe 2016). More generally, the preservation of such textures indicates that 

the fracture cavities remained open for significant periods and were subject to episodic fluid 

fluxes with significant flow velocities. The open nature of the fissures is consistent with the 

filling with red sediment derived from above, and the ubiquity of this relationship suggests 

that complete sealing of mineralized fissures rarely occurred (see discussion in Frenzel & 

Woodcock 2014).  

Crack-seal textures and fibrous calcite fills are preserved widely in dilational calcite veins 

in the Devonian basement rocks, where they also have a distinctly yellow colouration 

compared to the younger milky-white fissure fill calcites. These older features are widely 

interpreted to indicate the cyclic build-up of fluid pressures leading to repeated episodes of 

hydraulic fracturing and mineral precipitation (e.g. Ramsay 1980; Cox & Etheridge 1989). 

The absence of such features in the later mineralized Mode I fractures of inferred Permian 

age is consistent with the fissures remaining open or partially open due to their near surface 

location meaning that significant build-ups of fluid pressure that might lead to hydraulic 

fracturing (i.e. fault valve behaviour; Sibson 1990; Cox & Munroe 2016) did not occur.  

Red sediment filling mechanisms 

Sediment-filled fractures are commonly referred to in the literature as either “neptunian 

dykes” or “injectites” (Richter 1966; Martill & Hudson 1989; Siddoway & Gehrels 2014; 

Siddoway et al. 2019). Sediment that has been driven into a fracture cutting a low-

permeability host rock in the sub-surface is commonly referred to as an “injectite” (Hurst et 

al. 2011 and references therein). Injectites are generated where overpressure develops in a 

poorly consolidated, uncemented sandstone, leading to hydraulic fracturing in an adjacent 

(usually) overlying lithology, but they have also been recognised in crystalline basement 
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lithologies beneath unconformities (Siddoway & Gehrels 2014; Siddoway et al. 2019; 

Holdsworth et al. 2019). A lack of internal sedimentary structures is a characteristic feature 

of injectite sediment slurries (Walton & O’Sullivan 1950; Peterson 1967; Walker et al. 2013). 

There is very little evidence for injection of sediment in the Tor Bay area. Whilst it is not 

ubiquitous, horizontal-bedding is locally observed within many cavity fills (Figs 3e, 4c, 5e, 6f, 

8h, 13b), and the large euhedral, scalenohedral form of the calcite crystals that line the 

fracture cavities demonstrate that the voids were open prior to sediment infilling (Figs. 5e, 

8c-h, 9e). Laminated sediment fills are also associated with a variety of geopetal structures 

which consistently young upwards and show that sediment progressively filled pre-existing 

open voids (Figs. 3e, 4c, 5e, 6f, 8c-h, 13b). The frequent lack of bedding laminations in many 

Tor Bay examples may be due to the periodic and repeated upward percolation of fluids 

through the sediment-filled fracture systems during and immediately following deposition, 

but prior to lithification (Fig. 11).  This fluid flux could have been sufficient to destroy any 

sedimentary structures and cause a large-scale sorting/local homogenisation effect by 

elutriating the sediments and removing fines. Close to some of the larger basin-bounding 

faults, there is evidence of multiple fault movements at the same time as hydrothermal 

mineralization and sediment deposition. It is certainly conceivable that the repeated 

opening and closing of fault and fracture cavities in cohesive limestone basement close to 

the surface would lead to local fluid pressure changes. Hence it may be that finer silty 

fractions were able to be forced into open fractures following elutriation (Figs 11a-c). The 

result is a mass of sediment that has pervasively invaded any available and connected void 

space in the limestones below the regional base Permian unconformity.  

Given the evidence for fluid flux through the sediment-filled fractures, it seems likely 

that some sediment was ejected from the fracture system and effused at the surface; but 
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has since been removed due to the erosive nature of the base-Permian unconformity. This 

would likely appear in the rock record as sand volcanoes, similar to those seen within some 

horizontal fault cavities (e.g. Fig 8e). Sand volcanoes are well reported in the rock record 

(Gill & Kuenen 1957; Rowe 2013), but are more commonly associated with liquefaction 

processes during seismic shaking, rather than co-seismic fluid flux. Large magnitude 

earthquakes such as the Christchurch earthquake (2011), Niigata (1964), and New Madrid 

(1812) have been shown to produce sand volcanoes at the surface as a result of co-seismic 

liquefaction processes. However, despite the lack of onshore examples, large offshore sub-

marine mud volcanoes such as the Bortoluzzi volcano, offshore Calabria, frequently sit 

above major active fault zones and are formed through very similar processes (Cuffaro et al. 

2019).  

What drove fluid flow? 

Whilst it is clear that the limestone-hosted fractures formed close to the surface and were 

open for long time periods, there is also evidence for cyclical, upward fluid fluxing events. 

Given the tectonic origin of the fissure systems and the clear association with active 

Permian rifting, it is likely that the migration of these fluids could be driven by co-seismic 

slip along larger basin bounding faults at depth (Sibson et al. 1975; Sibson 1981, 1994; Muir-

Wood & King 1993). Semi-regular slip events along large faults will lead to changes in fault-

void shape and volume, driving fluids out and drawing fluids in throughout the connected 

void network; suspending or rolling clasts around and precipitating minerals (Figs 13c, 14). 

Since the architecture of the observed fault voids are frequently irregular, curvilinear, and 

bifurcated, the opportunity to develop dilational jogs and props is widespread. As the faults 

accumulate slip, these jogs will open and close, creating and reducing fracture volumes and 

causing pressure changes, leading to the mobilisation of fluids and suspended sediment 
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throughout the connect cavity network. It is unknown whether the fluids involved here were 

meteoric or hydrothermal – or a mixture of both – and fluid inclusion and stable isotope 

analyses are required in order to ascertain the origins of the host fluids. Either way, a 

tectonic mechanism related to seismogenesis during rifting seems a plausible driving 

mechanism. 

Implications for long-term fluid transport and storage 

Since the marginal parts of many rift basins overlie regional erosional unconformities, there 

is every reason to extrapolate that similar sediment and mineral-filled fissure systems may 

form anywhere where the basement is strong and cohesive, e.g. massive carbonates, 

crystalline basement, and basalts.  Examples of such fills from the geological record have 

been described in all these rock types (e.g. Angelier & Mechler 1977; Schlische & Ackermann 

1995; Beacom et al. 1999; Walker et al. 2011; Siddoway & Gehrels 2014; Siddoway et al. 

2019).  Good modern examples are seen associated with the Dabbahu Fissure (Affar rift, in 

Ethiopia) (Rowland et al. 2007) and the mid-Atlantic ridge (Iceland) (Kettermann et al. 

2019). These modern examples also feature fissures filled with surface detritus 

(sediment/lava/scree), and are formed along tectonic boundaries (Rowland et al. 2007; 

Kettermann et al. 2016, 2019). Similar structures to those studied here, such as zoned 

calcite mineralisation, are also reported in modern fissure systems (De Filippis et al. 2012). 

As the basement subsides and is buried, the sediment and mineral fills prop open 

the highly interconnected network of cavities potentially maintaining the large apertures 

and connection pathways (Holdsworth et al. 2019, 2020). If the sediment within the cavities 

is largely free of clay due to the effects of elutriation, and is well sorted and distributed 

throughout the fracture network, it has the potential to preserve a high porosity and 

permeability, provided the pore space does not become completely occluded by mineral 
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cement. Whilst a detailed porosity analysis of the Tor Bay fissures has not been carried out 

in the present study, optical estimates from thin sections suggest local porosities of 10-35% 

which is significantly higher than in the surrounding Devonian limestones. This illustrates 

that these fracture fills are potentially important sites for the sub-surface storage of fluids in 

hydrocarbon basins, geothermal reservoirs, or aquifers.   

 The drone-based orthorectified  virtual outcrop model (VOM) (Fig. 6a) and fracture 

trace map (Fig. 6b) from Shoalstone Beach illustrate in plan-view the very high 

interconnectivity of the sediment- and mineral-filled basement fissure systems formed in 

near surface settings (Figs 6a-d, g, h). A fracture topology plot (Fig. 6c; Sanderson & Nixon 

2015) shows the connectivity of both the unfilled and sediment-filled fracture networks at 

Shoalstone Beach, with > 1.8 connections per fracture branch (> 1 is the threshold for a 

connected network). All sampled fracture networks show a dominance of Y-nodes over X- or 

I-nodes, though the unfilled network has more I-nodes, despite the higher number of 

fractures present. An areal calculation revealed that in fracture corridors like this, the 

percentage area of potentially highly permeable sandstone fill locally reaches up to 69%. 

Further details of the virtual outcrop modelling and analysis, including an attempt to 

estimate the total volumes of fracture fill can be found in Appendix A. 

In the light of these findings, it is significant to note that the basal Permian-Triassic 

unconformities in the southern part of the UK are widely known to be associated with clastic 

and mineral infills (e.g. Woodcock et al. 2014, see their figure 13).  For example, in 

Pembrokeshire, Carboniferous limestones are cut by large sediment- and mineral-filled 

faults and fractures, formed during the opening of the Bristol Channel Basin. The late-

Triassic sediment fills here feature cockade textures, and geopetal accumulations, whilst the 

limestones show only minor karstic dissolution, and extensive brecciation (Wright et al. 
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2009; Woodcock et al. 2014). Arrays of red Triassic to early Jurassic sediment-filled fractures 

and faults also cut Carboniferous limestones in the Mendips (Williams 1986; Wall & Jenkyns 

2004). 

Collectively, our observations may explain why the basal Permo-Trias unconformity and 

underlying fractured basement are thought to form a significant aquifer and potential 

geothermal reservoir in the Southern British Isles. The unconformity is thought to provide 

an ingress point for fluids to generate substantial recent karst networks, potentially enabling 

deep-heat geothermal prospects (Narayan et al. 2018; and references therein). Faults and 

fractures with porous fissure fills will likely enhance the penetration of karstifying fluids, 

augmenting the potential for basement Devonian/Carboniferous limestones to be a 

significant geothermal reservoir. Fracture attribute and connectivity information collected in 

field sites such as the Shoalstone Beach outcrop could be important in helping to build 

better predictive fractured reservoir models. 

Reactivation and timing relative to other regional events  

Aside from the larger basin-bounding fault zones like those of Crystal Cove and Saltern Cove, 

there is relatively little evidence for reactivation of the fractures and associated fissure fills. 

An exception occurs at Hope’s Nose. Mineralised fault breccias here are developed in 

Middle Devonian limestones (Russell 1929; Scrivener et al. 1994). These fault breccias trend 

broadly E-W (090-123o) cross-cutting a set of unfilled N-S fractures. The presence of re-

brecciated calcite breccia here (Fig. 7b) shows that the E-W faults and fracture corridors 

have been reactivated. Dendritic native gold, palladium, and haematite mineralization 

within the re-brecciated fractures was associated with localised acidic fluid alteration of 

calcite (Russell 1929; Scrivener et al. 1994). This chemically diverse, cross-course 

mineralisation has been dated at 236Ma ± 3Ma (mid to late Triassic) using Rb-Sr dating of 
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quartz by Scrivener et al. (1994). These authors suggested that the fluids were basinal brines 

originating from the Permo-Triassic New Red Sandstone and Aylesbeare mudstones. It is 

also plausible that they are a distal manifestation of the rifting responsible for the formation 

of fissures in the region of the Bristol Channel Basin to the northwest (Woodcock et al. 2014 

and references therein). Collectively these observations illustrate that the initiation of the 

Portland-Wight Basin (Permian) was significantly earlier than the onset of rifting to form the 

Bristol Channel Basin (Triassic-Jurassic) in SW Britain. 

 

Conclusions 

The geological material found within fracture-hosted cavities hosted in basement rocks 

below regional unconformities preserves a valuable and under-utilised source of 

information regarding early basin histories. The fissure fill systems formed in the fractured 

Devonian limestones of the Tor Bay area (Fig. 14) are thought to have formed during early 

Permian NNW-SSE rifting, linked to early stages in the opening of the offshore Portland-

Wight Basin. Cyclical and iterative precipitation of mainly calcite from circulating, possibly 

upwelling fluids occurred close to the surface (<1 km depth) in the fissures, plausibly related 

to repeated seismogenic faulting during rifting. At the same time, clastic sediments and wall 

rock fragments fell into, or were washed into, the open fault-related fissures from above 

(Figs 11, 14). Once incorporated, the sedimentary material in the fissures was commonly 

repeatedly remobilised, sorted, and redistributed by further episodes of fluid circulation 

throughout the near-surface fissure network. These fractures were very effectively propped 

open by their sediment and mineral fills and also by the inherent irregularity of the cavity 

walls, preserving their interconnectivity and potential permeability (Fig. 14).  This may 

explain why the basal Permian-Triassic unconformities of southern Britain – which are 
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known to be widely associated with filled fissures of this kind - are associated with the 

development of significant regional geothermal reservoirs and aquifers. This is also likely to 

be the case globally in sub-unconformity settings of this kind. 
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Figure captions 
 
Fig. 1) (a) Hypothetical Mohr circles illustrating the translation from tensile failure at the surface to 

normal faulting (shear fracture) at depth (after van Gent et al. 2010). (b) Cross section view of 

fractures generated in analogue model (van Gent et al. 2010) illustrating fault cavity architectures 

for different depth zones. (c) Aerial photograph of Thingvellir Rift, Iceland howing large tensile 

fissures developed in basalts at the surface related to the development of a normal fault at depth. 

Photograph used with permission by Yann Arthus-Bertrand, part of the Earth from Above collection - 

www.yannarthusbertrand2.org (Arthus-Bertrand 2004, 2020).  

 

Fig. 2) Left: Simplified location map of Tor Bay, with key locations and study areas shown by 

red boxes. Right: Simplified coastal onshore-offshore geological map of main lithological and 

stratigraphic units and structures in Tor Bay. Adapted from British Geological Survey 2004, 

Harvey et al. (1994), and data provided with permission by EDINA Digimap:  

(OS VectorMap® Local [TIFF geospatial data], OS Terrain 5 [ASC & SHAPE geospatial data] 

Scale 1:10000, Tiles: sx85ne, sx85se, sx86ne, sx86se, sx95ne, sx95nw, sx95sw, sx96ne, 

sx96nw, sx96se, sx96sw, Updated: 27 June 2018, Ordnance Survey (GB), Using: EDINA 

Digimap Ordnance Survey Service, <https://digimap.edina.ac.uk>) 

(DiGRock250k [SHAPE geospatial data], Scale 1:250000, Tiles: GB, Updated: 31 December 

2013, BGS, Using: EDINA Geology Digimap Service, <https://digimap.edina.ac.uk>) 
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(DiGMapGB-50 [SHAPE geospatial data], Scale 1:50000, Tiles: ew339,ew350, Updated: 30 

November 2016, BGS, Using: EDINA Geology Digimap Service, 

<https://digimap.edina.ac.uk>) 

 

Fig. 3) Field photographs and location map of large faults at Crystal Cove (for location see 

Fig. 2). (a) Maps showing key location names (left) and basic geology (right). For key see Fig. 

2. (b) View of large fault surface separating Devonian limestone (DL) and Torbay Breccia 

Formation (TBf) with a ‘wall’ of geopetal clastic sediment infill and calcite mineralisation 

(Ca). Locations of Figs 3c and e are also shown [SX89702 58039]. (c) Cross-section view of 

the large fault shown in (b), showing c. 40m wide “v” shaped fault aperture filled with red 

sandstone-breccia and complex calcite mineralisation [SX89541 57918]. (d) Slickenlines seen 

on fault wall at contact between fault sediment infill and limestone host rock along the 

major fault seen in (c) [SX89541 57918]. (e) Geopetal sediment accumulation in a conical 

shaped pile within a calcite mineralised fault plane, location given in (b) [SX89590 57996]. (f) 

Plan view of fault cavity infill with successive syntaxial calcite mineralisation and sediment 

infilling giving strata-like banded appearance reflective of repeated opening history

 [SX89619 58614]. (g) Stereographic projection of contoured poles to shear fracture 

planes, mean cyclographic shear plane, slickenline lineations, and tensile fracture planes.  

 

Fig. 4) Virtual Outcrop Model and field photographs from Saltern Cove (for location see Fig . 

2). (a) Annotated 3D virtual outcrop model. Inset shows the stereographic projection of data 

from the reverse/thrust fault and slickenlines, the dilatant fault, and the bedding of the 

overlying limestone and a bedding-parallel fold axis [SX89488 58535]. (b) Local geological 

map, with main outcrops labelled; for key see Fig 2. (c) Section view of bedded sediment 
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overlying the fallen limestone block. Location shown in (a). (d) Zoned volcaniclastic tephra 

within the tensile normal fault; orange material is fine grained tuff, with suspended volcanic  

clasts. (e) Breccia material infilling the normal tensile fault, with clasts of brecciated orange 

volcaniclastic material set in a red sandstone matrix. (f) Cross section view of limestone-

hosted vuggy calcite-lined cavities in the hangingwall of the thrust fault. 

 

Fig. 5) Field photographs, maps and structural data from Berry Head (for location see Fig. 2). 

(a) Digitised field sketch map showing locations and orientations of the sediment-filled 

fractures on headland (black lines), with inset (left) oblique view of Berry Head from Google 

Earth, with locations labelled. The yellow box is the location of Berry Head Quay. Second 

inset (right) shows a stereonet showing poles to fracture planes and mean cyclographic 

plane (red), demonstrating the general ENE-WSW strike and SE dip. Basemap 5m digital 

elevation model (scale shown) generated from Ordnance Survey data provided with 

permission by Edina Digimap (OS Terrain 5 [XYZ geospatial data], Scale 1:10000, Tiles: 

sx95nw, Updated: 3 December 2019, Ordnance Survey (GB), Using: EDINA Digimap 

Ordnance Survey Service, <https://digimap.edina.ac.uk>). (b) Plan view of jigsaw breccia in 

fracture cavity [SX94418 56714]. (c) View of quarry face showing red sandstone infilling and 

calcite vein development and cross-cutting relationships within vertical fracture cavities in 

limestone [SX94296 56619]. (d) Section view of sub-horizontal smaller fracture cavities and 

“linked-flats” infilled with red sandstone, W Berry Head Quarry *SX94156 56566+. (e) 

Bedded red sandstone within a small irregular shaped cavity bound by syntaxial sparry 

calcite growth [SX94418 56714]. (f) Large sandstone-filled sub-vertical dilatant cavity (right) 

and bifurcated smaller cavity (left) at Berry Head Quay [SX94418 56714]. 
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Fig. 6) Orthorectified outcrop images and trace maps, data and field photographs from 

Shoalstone Beach (for location see Fig. 2). (a) Virtual Outcrop Model in which smallest 

structures resolvable are 1.5-2.5cm. (b) Interpreted fracture-trace map. Sediment-filled 

fractures in orange, unfilled fractures in black.  (c) Sediment-filled fracture-volume map, 

interpreted from within well exposed selected area shown. Note the irregularity of 

apertures and traces. A summary fracture volume estimates is also given; for more 

information, see Appendix A. (d) Fracture topology plot of fracture node types showing 

connectivity (Sanderson & Nixon 2015). Manual and automated (Healy et al. 2017) analyses 

show that both the unfilled and filled fractures are well connected. (e) Rose diagrams of 

fracture segment strike angles generated using FracPaQ MATLAB toolbox, with average 

strike in red, showing that sediment-filled fractures are strongly orientated in ENE-WSW and 

N-S orientations. (f) Section view of well-bedded sandstone fracture fill and calcite veining 

from east of Shoalstone Beach [SX 93834 56770]. (g) View of single fracture c.4.5m in 

aperture, filled with a uniform, homogenous unbedded red sandstone [SX 93696 56789]. (h) 

Interconnected fracture network filled with homogenous red sandstone with no calcite 

veins lining the wall-rock contacts [SX 93775 56780]. 

 

Fig. 7) Field photographs and structural data from Hope’s Nose. (a) Section view of red 

sandstone-filled, lozenge-shaped sub-vertical fracture cavities showing minor dissolution of 

the limestone host rock and early karstification prior to deposition of infill. Mdt = Devonian 

Meadfoot Group [SX 94932 63666]. (b) Multiphase mineralised breccia. Clasts include 

limestone, mudstone, and earlier brecciated calcite, cemented by secondary calcite and 

darker ore minerals (arrowed). (c) Section view of ‘fracture stratigraphy’ showing dilatant 

fracturing in thickly bedded limestones below, and shallower dipping narrow shear fracture 
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in thinly bedded mudstones above [SX 94942 63705]. (d) Section view of forced fold in finer 

bedded units. (e) Stereonet showing poles to fracture planes and slickenline lineations from 

Hope’s Nose, with mean plane and vector data shown in red  [SX 94952 63634]. 

 

Fig. 8) Field photographs of fissure fills from key outcrops around Fishcombe Point and 

Fishcombe Cove. (a) & (b) Local geological map, and stereonet showing poles to sediment-

filled fracture planes for Elberry and Fishcombe, demonstrating E-W and N-S trends as seen 

in mean cyclographic planes (N-S in red, E-W in blue); the dark red dashed line corresponds 

to the large fault at Fishcombe Cove. For key to geological map see Fig. 2. (c) Section view of 

subvertical sediment-filled fault cavity at Fishcombe Point – white lines, and two sets of 

subhorizontal fault cavities intersecting – highlighted in yellow. Host rocks are folded 

Devonian limestones and interstitial mudstones of the Brixham Limestone Formation – BxL. 

Locations of (d)-(f) are also shown [SX 91825 57062].  (d) Section view of horizontal fracture 

cavities showing the relationships between calcite mineralisation, minor-limestone 

dissolution, and sediment infilling. (e) Sand-volcano structures at the intersection of vertical 

and horizontal fractures. Note the conical shape and central vent, and apparent fingering of 

sediment down-slope. (f) Section view of horizontal cavity partially filled with red siltstone-

sandstone, with the tips of scalar scalenohedral calcite crystals poking through the top-

surface. (g) Section view of large red sandstone-filled cavity with calcite lining at Fishcombe 

Cove. Location of (h) is shown by black box [SX 91979 56929]. (h) Close up of red sandstone-

filled fracture cavity in (g), bound by thick calcite veins. Sediment is bedded showing 

geopetally inclined and horizontal beds in addition to a single well-developed flame 

structure, all highlighted in yellow. (i) View of cross cutting red sandstone-filled fractures at 
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Fishcombe Cove, younger N-S set picked out in white, older E-W set highlighted in yellow 

[SX 91976 56949]. 

 

Fig. 9) Field photographs of calcite mineralisation types found in fracture cavities around Tor 

Bay. (a) Simple scalenohedral (dog tooth spar) calcite, Crystal Cove [SX 89615 58018]. (b) 

Complex scalar scalenohedral calcites growing in a sub-horizontal fracture cavity, Fishcombe 

Point [SX 91828 57061]. (c) Rhombohedral (nail head spar) sparry calcite, Crystal Cove [SX 

89615 58018]. (d) Euhedral cubic calcites, Crystal Cove [SX 89586 57977]. (e) Splaying 

“plumose” calcites later partially filled with sandstone in a loose boulder found near 

Broadsands Beach [SX 89615 58018]. (f) Colour zonations in individual calcite crystals 

showing variations in hematite content, Crystal Cove [SX 89586 57977]. (g) Travertine 

mineralisation, Hope’s Nose quarry [SX 94924 63660].  

 

Fig. 10) Thin section photomicrographs of sediment infills. (a) PPL image of sub-rounded red 

sandstone grains in contact with a calcite vein. Quartz sand grains are coated in a thin rim of 

haematite. The calcite vein grows in optical continuity with the sandstone cement. (b) Thin 

section chip from a fracture fill at Shoalstone Beach showing the multiphase calcite vein – 

sediment infilling relationships. (c) PPL image of red sandstone infilling gap between two 

scalenohedral calcite crystals. Note lack of compaction and high porosity (blue stain). (d) PPL 

image of heavily cemented red sandstone infilling fracture cavity, showing paucity of 

contact points between grains. (e) PPL image of fine-grained red silt from sub-horizontal 

cavity, consisting of material likely elutriated from nearby vertical sandstone-filled fracture. 

(f) PPL image of cockade-style quartz mineralisation of individual grains, with intergranular 

porosity (blue). Rounded quartz grains with a thin hematite coating, are enclosed by quartz 

ACCEPTED M
ANUSCRIPT

Downloaded from https://pubs.geoscienceworld.org/jgs/article-pdf/doi/10.1144/jgs2020-074/5073671/jgs2020-074.pdf
by guest
on 25 June 2020



cement growing in optical continuity with the clastic grains. (g) XPL image of (f), highlighting 

the optical continuity of the cockade style quartz cement surrounding each quartz grain – 

separated by a thin haematite coating. 

 

Fig. 11) Fissure fill elutriation and emplacement sorting processes. (a) Illustration of near-

surface fault architectures and the sorting of unconsolidated infills by fluid flow. i) 

Emplacement sorting process where fine material is held in suspension by fluid and is 

unable to enter the fracture system, whilst coarser material rolling around on the 

palaeosurface is able to fall in. ii) Elutriation of finer sediment by fluid percolating vertically 

through the fracture-hosted unconsolidated sediment. Coarser material is held in or falls out 

of suspension, whereas fine material is winnowed out. This fine material is then either 

deposited where the fluid velocity drops in horizontal or dead-end fractures; or is expelled 

at the palaeosurface. (b) Section view of sub-vertical to sub-horizontal filled-fracture 

linkage, showing fining of fill in the horizontal fracture away from the vertical cavity. Taken 

at Fishcombe Cove [SX 92021 56996]. (c) Plan view of subvertical fracture in (b), showing 

cockade style calcite mineralisation around angular clasts of Devonian mudstone (Dm) and 

Brixham Limestone (BxL). Host rock is Brixham Limestone suggesting upward migration of 

older Devonian mudstone clasts in cavity. Note the near uniform clast size, and lack of fines 

despite the proximity to the fine red sedimentary material shown in (b). 

 

Fig. 12) Palaeostress analysis of slip vectors (slickenlines) from major fault planes using 

WinTensor (Delveaux, 1995; Angelier, 1997). Results tabulated above and illustrated in 

stereonet projections below.   
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Fig. 13) Examples and models of multiphase breccia formation. (a) Fault breccia from Petit 

Tor Point displaying cockade style mineralisation, with clasts of angular limestone separated 

by calcite mineralisation. Varying from other cockade style fabrics in Tor Bay as the 

thickness of calcite veining varies [SX 92649 66144]. (b) Section view of fault infill from 

Crystal Cove, showing fractured cockade-style brecciation, mineralisation, and geopetal 

sediment infilling around clasts of suspended older wall rock [SX 89541 57918]. (c) Panelled 

illustration of formation of fault infill seen in (b), from repeated fault movement, fluid flux 

events and passive sedimentary infilling. 

  

Fig. 14) Schematic synoptic illustration of a typical near surface, mineral- and sediment-filled 

fault and fissure system and processes hosted in carbonate basement based on 

observations in the Tor Bay area. 
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