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 12 

Abstract 13 

Garnet Lu-Hf and Sm-Nd ages from the Shetland Caledonides provide evidence of a polyorogenic 14 

history as follows: 1) c. 1050 Ma Grenvillian reworking of Neoarchaean basement; 2) c. 910 Ma 15 

Renlandian metamorphism of the Westing Group; 3) c. 622-606 Ma metamorphism of the Walls 16 

Metamorphic Series but of uncertain significance because the eastern margin of Laurentia is 17 

thought to have been in extension at that time; 4) Grampian I ophiolite obduction at c. 491 Ma 18 

followed by crustal thickening and metamorphism between c. 485 and c. 466 Ma; 5) Grampian II 19 

metamorphism between c. 458 and c. 442 Ma that appears to have been focused in areas where 20 

pre-existing foliations were gently-inclined and thus may have been relatively easily reworked; 21 

6) Scandian metamorphism at c. 430 Ma, although the paucity of these ages suggests that much 22 

of Shetland did not attain temperatures for garnet growth. There is no significant difference in 23 

the timing of Caledonian orogenic events either side of the Walls Boundary Fault, although this 24 

need not preclude linkage with the Great Glen Fault. However, the incompatibility of Ediacaran 25 

events either side of the Walls Boundary Fault may indicate significant lateral displacement and 26 

requires further investigation.   27 
 28 
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The pre-Devonian rocks of Shetland (northern Scotland) form part of the North Atlantic 31 

Caledonides, which resulted from the Ordovician-Devonian closure of the Iapetus Ocean and 32 

collision of Laurentia, Baltica and Avalonia. Rocks affected by the Caledonian orogeny currently 33 

crop out in the North Atlantic region in the British Isles, Ireland, Greenland and Scandinavia (Fig. 34 

1A). In mainland Scotland (Laurentia), the Caledonian orogeny resulted from two Ordovician 35 

accretionary events and the culminating Siluro-Devonian continental collision (Lambert & 36 

McKerrow 1976; Oliver et al. 2000; Chew et al. 2010; Bird et al. 2013; Tanner 2014; Dewey et al. 37 

2015). The rock units affected by these orogenic events in the high-grade ‘orthotectonic’ zone 38 

north of the Highland Boundary Fault-Clew Bay Line (Fig. 1A) were deposited between the early 39 

Neoproterozoic and the Cambrian. The distinction between geological structures and 40 

metamorphic assemblages formed in the various Ordovician-Silurian orogenic events in this 41 

sector of the Caledonides therefore relies almost entirely on geochronological studies and is 42 

commonly problematic.  43 

Shetland is the northernmost sector of the Scottish Caledonides, situated almost 44 

equidistant between mainland Scotland, and the western Scandinavian Caledonides in Norway 45 

(Baltica) (Fig. 1A). Despite the importance of Shetland as a central location between the Scottish 46 

and Scandinavian Caledonides, relatively few modern geochronological studies have been 47 

undertaken here. Most recent published geochronological studies of the timing of 48 

metamorphism in Shetland have utilized the U-Pb system in monazite and zircon (Cutts et al. 49 

2009, 2011; Crowley & Strachan 2015; Jahn et al. 2017). These systems are extremely robust 50 

against alteration and retrogression, and high-spatial resolution methods (e.g. LA-ICPMS or SIMS) 51 

allow for targeting specific regions within an individual crystal. However, that zircons are so 52 

robust can be problematic when utilized to understand low- and medium-grade metamorphic 53 

rocks, as they may have been inherited (as a detrital mineral or from an igneous protolith), and 54 

do not commonly crystallize at these temperatures and pressures (see however Dempster et al. 55 

2004). For monazite U-Pb this is less of an issue as it can crystallize at lower temperatures and 56 

pressures. A further limitation is that it can be difficult to relate accessory minerals such as zircon 57 

and monazite to specific deformation fabrics and metamorphic assemblages. In contrast, here 58 

we utilize Lu-Hf and Sm-Nd geochronology to establish the timing of garnet growth in Shetland.  59 



This approach has three key advantages:  1) garnet is a common metamorphic mineral that 60 

crystallizes over a wide range of pressures and temperatures, 2) garnet often forms 61 

porphyroblasts that can be related to deformation fabrics and therefore provide age constraints 62 

on tectonic structures, and 3) garnet can be dated accurately and precisely using two different 63 

isotopic systems (Lu-Hf and Sm-Nd).  64 

This study aims to test existing models for the timing of Caledonian and pre-Caledonian 65 

metamorphic episodes in Shetland using Lu-Hf and Sm-Nd garnet geochronology, and thus 66 

provide key correlations with related areas elsewhere in the orogen. 67 

 68 

Geological setting 69 

Tectonic overview of the Scottish Caledonides 70 

In Scotland and Ireland, Caledonian convergent tectonics began during the late Cambrian to early 71 

Ordovician (c. 480-470 Ma) when the Laurentian margin collided with an intra-oceanic arc that 72 

had developed above an oceanward-dipping subduction zone (Dewey & Ryan 1990). Supra-73 

subduction zone ophiolites were obducted onto the Laurentian margin (Dewey & Shackleton 74 

1984; Chew et al 2010), and crop out along the Highland Boundary Fault – Fair Head-Clew Bay 75 

Line (Fig. 1A.). The best exposed of these is the Shetland Ophiolite Complex, which crops out on 76 

the islands of Unst and Fetlar in northern Shetland (Fig. 1B; Garson & Plant 1973; Flinn 1985; 77 

Prichard 1985). The early-to-mid Ordovician arc-continent collision resulted in the Grampian 78 

orogeny and widespread regional deformation and Barrovian metamorphism of the Moine and 79 

Dalradian supergroups that are exposed, respectively in the Northern Highland and Grampian 80 

terranes (Fig 1A; Lambert & McKerrow 1976; Oliver et al. 2000; Chew et al. 2010; Bird et al. 2013; 81 

Tanner 2014).  Arc-continent collision was followed by a reversal of subduction polarity and 82 

development of an accretionary prism in the Southern Uplands Terrane (Leggett et al. 1979).  83 

  A late Ordovician metamorphic event, termed ‘Grampian II’ resulted in widespread 84 

garnet growth at c. 450-445 Ma in the western part of the Moine Supergroup (Bird et al. 2013) 85 

and mica fabrics also formed at this time in Shetland (Walker et al. 2016). However, whether this 86 

event was caused by the collision of a micro-continental fragment with the margin of Laurentia 87 

(Bird et al. 2013) or flat-slab subduction (Dewey et al. 2015) is uncertain.  88 



 Sinistrally oblique collision of Baltica and Laurentia occurred in the Silurian-Devonian 89 

during the Scandian event (Gee 1975; Soper et al. 1992; Dewey & Strachan 2003). In Scotland, 90 

this event only caused significant deformation and metamorphism in the Northern Highland 91 

Terrane, which was opposite southern Baltica during continental collision (Coward 1990; 92 

Dallmeyer et al. 2001; Dewey & Strachan 2003). Late-orogenic sinistral displacement of c. 700-93 

500 km along the Great Glen Fault juxtaposed the Northern Highland and Grampian terranes of 94 

mainland Scotland (Dewey & Strachan 2003).  Late- to post-orogenic extensional and 95 

transtensional faulting formed the basins in which the Siluro-Devonian ‘Old Red Sandstone’ 96 

clastic sediments were deposited (Seranne 1992; Dewey & Strachan 2003; Wilson et al. 2010; 97 

Dichiarante et al. 2016). 98 

There is widespread evidence for Neoproterozoic orogenic events in the Northern 99 

Highland and Grampian terranes of mainland Scotland and Shetland, despite extensive 100 

Caledonian re-working .  Isotopic ages obtained from metamorphic assemblages and syn-tectonic 101 

pegmatites cluster at 940-ϵϯ0 Ma (‘Renlandian’), ϴϮ0-780 Ma and 740-ϳϮϱ Ma (‘Knoydartian’) 102 

and are interpreted to date pulses of prograde amphibolite faces metamorphism (Noble et al. 103 

1996; Rogers et al. 1998; Vance et al. 1998; Highton et al. 1999; Tanner & Evans 2003; Cutts et 104 

al. 2009, 2010; Cawood et al. 2015; Jahn et al. 2017; Bird et al. 2018).  During the Neoproterozoic, 105 

Scotland was likely located close to the edge of Rodinia and these and potentially correlative 106 

metamorphic events in eastern Laurentian rocks of East Greenland, Svalbard and Pearya have 107 

been interpreted as resulting from periods of accretionary orogenesis in the hangingwall of  a 108 

continentward-dipping subduction zone (Cawood et al., 2010; Malone et al., 2017).  109 

  110 

Caledonian geology of Shetland 111 

The c. N-S trending Walls Boundary Fault (WBF) in Shetland (Fig. 1B) has been interpreted as the 112 

northern continuation of the Great Glen Fault (Flinn 1961, 1977, 1992; Watts et al. 2007) and 113 

provides a convenient basis for subdividing the pre-Devonian geology. If correct, this linkage 114 

implies that the rocks to the west of the WBF form part of the Northern Highland Terrane, and 115 

the rocks to the east part of the Grampian Terrane. However, the magnitude of displacements 116 

along, and potential correlations across this fault are uncertain.   117 



West of the Walls Boundary Fault 118 

Late Caledonian igneous rocks and Devonian sediments dominate the geology to the west of the 119 

Walls Boundary Fault (Fig. 1B). Greenschist to amphibolite facies metamorphic units crop out at 120 

North Roe, Hillswick, and on the north coast of the Walls Peninsula (Fig. 1B). 121 

In northwestern Shetland, the east-dipping Wester Keolka Shear Zone (WKSZ) separates 122 

the Archaean Uyea Gneiss Complex (Kinny et al. 2019) from the Sand Voe Group (SVG) 123 

metasediments (Pringle 1970). This structure has been regarded as an extension of the Moine 124 

Thrust Zone which defines the northwest margin of the Caledonides in mainland Scotland (Fig. 125 

1A; Andrews 1985; Ritchie et al 1987; Flinn 1992; 1993; McBride & England 1994). However, the 126 

lowermost part of the SVG contains pebbles that are lithologically similar to the underlying Uyea 127 

Gneiss Complex (Pringle 1970, Kinny et al 2019), indicating that the WKSZ may in fact be a 128 

tectonically modified unconformity. Further, the penetrative mica fabric in the WKSZ has been 129 

dated as Neoproterozoic using Rb-Sr mica geochronology (Walker et al. 2016). Both lines of 130 

evidence suggest that the WKSZ is not the equivalent of the Moine Thrust. The Devonian Uyea 131 

Shear Zone c. 2 km to the west may be structurally equivalent to the Moine Thrust or any 132 

correlative may be located offshore (Walker et al. 2016). The Sand Voe Group psammites have 133 

been correlated on lithological grounds with the Moine Supergroup in mainland Scotland (Flinn 134 

1988). Farther east, the SVG is overthrust by felsic and mafic orthogneisses, the ‘Eastern 135 

Gneisses’, which have been regarded as equivalent to the Archaean basement inliers found 136 

within the Northern Highland Terrane in mainland Scotland (Flinn 1988). The Virdibreck Shear 137 

Zone separates these from the Queyfirth Group, a series of metasediments and metavolcanics 138 

which may correlate with the Dalradian Supergroup in mainland Scotland (Flinn et al. 1972; Flinn 139 

2007).  140 

The Hillswick area (Fig. 1B) contains units that have been correlated with the Eastern 141 

Gneisses, the Sand Voe Group, and the Queyfirth Group. On the northern margin of Walls 142 

Peninsula (Fig. 1B), the Walls Metamorphic Series comprises quartzofeldspathic gneisses, 143 

amphibolites, limestones, and calc-silicates. The foliation strikes east-west and dips gently 144 

southwards. Whilst being distinct from other lithologies in Shetland (Flinn et al. 1979), Mykura 145 

(1976) proposed a similar tectonic and amphibolite to greenschist facies metamorphic history to 146 



the Sand Voe Group. Hornblende K-Ar ages ranging from c. 863-363 Ma have been interpreted 147 

as indicating that the earliest prograde metamorphism of the Walls Metamorphic Series occurred 148 

during the Grenvillian orogeny (Flinn et al. 1979). However, Rb-Sr white mica ages (Walker et al. 149 

2016) indicate fabric development at c. 500 Ma and c. 450 Ma, suggesting a multiphase 150 

Caledonian history with no evidence for an older Grenvillian component. 151 

East of the Walls Boundary Fault 152 

The geology east of the WBF is dominated by two major metasedimentary successions: the Yell 153 

Sound Group (YSG) and the East Mainland Succession (EMS) (Fig. 1B). Regional foliation trends 154 

N-S and dips steeply, except on Unst where it dips gently to moderately east. The YSG is the older 155 

of the two and is exposed on Mainland Shetland and on Yell. The dominant lithologies are 156 

psammitic and semi-pelitic gneisses with subordinate quartzites (Flinn 1988). The succession has 157 

a structural thickness of 10 km (Flinn 1988), but in the absence of any sedimentary structures it 158 

is difficult to know how closely this approximates to original depositional thickness. Flinn (1988) 159 

correlated the YSG with the Moine Supergroup in mainland Scotland. The YSG metasediments 160 

are intruded by pre- to syn-tectonic felsic orthogneisses and mafic amphibolites (Flinn 1994), and 161 

are interleaved with Meso-Neoarchaean TTG orthogneisses, similar to the Lewisian basement 162 

gneisses of northwest mainland Scotland (Jahn et al. 2017). In NE Yell, one of these basement 163 

inliers separates the YSG from the much thinner and lithologically contrasting Westing Group, 164 

also found in west Unst (Fig. 1B). This comprises marbles and pelites and may form part of the 165 

same sedimentary package as the Yell Sound Group.   166 

Overlying the Westing Group on Unst, and the YSG on Mainland Shetland, the eastward-167 

younging East Mainland Succession (EMS) comprises psammites, pelites, marbles, and meta-168 

volcanics that are lithologically similar to the Dalradian Supergroup in mainland Scotland (Flinn 169 

et al. 1972; Flinn 2007). However, differences in the timing of deposition and thickness of the 170 

succession suggest that the EMS may have been deposited in a separate basin (Strachan et al. 171 

2013). Metamorphic grade is highest in the western and lowest parts of the succession which 172 

contain kyanite, staurolite, and garnet, progressively decreasing eastwards to upper greenschist 173 

facies assemblages (Flinn et al. 2013).  174 



On Unst and Fetlar (Fig. 1B), the East Mainland Succession is structurally overlain by the 175 

Shetland Ophiolite Complex (Flinn 1958). This is disposed in two thrust sheets, and comprises 176 

serpentinised metaharzburgite and metadunite, metaclinopyroxenite, and metagabbro, all 177 

metamorphosed to greenschist facies (Flinn 1985; Prichard 1985). Chemical characteristics of 178 

these units indicate formation in a supra-subduction zone setting (Spray & Dunning 1991; 179 

Prichard et al 1ϵϵϲ; Flinn Ϯ001; O’Driscoll et al Ϯ01Ϯ). In contrast, the tectonic slices of a 180 

metamorphic sole that underlie the ophiolite on Unst and Fetlar have MORB-type chemistry and 181 

record upper amphibolite faces metamorphism (Spray 1988). These are interpreted as remnants 182 

of subducted oceanic lithosphere that were juxtaposed against the ophiolite during its obduction 183 

(Spray 1988). The lower ophiolite sheet is overlain by the metasedimentary rocks of the Muness 184 

Phyllite, and, on Fetlar, the deformed and metamorphosed Funzie Conglomerate (Flinn 2014).  185 

Structural and metamorphic framework 186 

Published data indicate the following sequence of Proterozoic and Caledonian events in Shetland: 187 

1) The Yell Sound and Westing groups were deposited after c. 1020 Ma (the age of the 188 

youngest detrital zircons that they contain (Cutts et al 2009)) and affected by high-grade 189 

Renlandian metamorphism at 940-920 Ma (U-Pb zircon and monazite; Cutts et al. 2009, 190 

2011; Jahn et al. 2017).  191 

2) Deposition of the East Mainland Succession is believed to have been initiated after c. 700 192 

Ma as a result of the breakup of Pannotia which culminated in the formation of the 193 

Iapetus Ocean (Prave et al. 2009).   194 

3) ‘Grampian I’ regional deformation (D1) and amphibolite facies metamorphism of the Yell 195 

Sound and Westing groups and the East Mainland Succession is thought to have occurred 196 

at c. 485-475 Ma and to have resulted from crustal thickening that accompanied and 197 

followed ophiolite obduction (Fig. 2; Cutts et al. 2011). The opholite is known to have 198 

formed at 492 ± 3 Ma, the U-Pb zircon age of a plagiogranite (Spray & Dunning 1991), and 199 

was obducted at 484 ± 4 Ma, as constrained by a U-Pb zircon age from the metamorphic 200 

sole (Crowley & Strachan 2015). The transport direction is believed to have been towards 201 

the west, based on kinematic and lineation data preserved in west Unst (Cannat 1989; 202 



Flinn & Oglethorpe 2005; Flinn 2014). Peak pressure-temperature conditions were c. 10 203 

kbar and c. 775°C (Cutts et al. 2011).  204 

4) Reworking of thrust-related fabrics into a regionally steep (D2) orientation across Yell and 205 

much of Mainland Shetland was likely complete by c. 465-460 Ma (Walker et al. 2016) 206 

and certainly by 464.6 ± 4.6 Ma, the age of the late- to post-tectonic Brae Pluton (Fig. 1B; 207 

U-Pb zircon; Lancaster et al. 2017). When traced eastwards, the composite D1/D2 208 

foliation progressively shallows to dip west to define the lower limb of a large-scale, 209 

eastward-closing recumbent fold (Fig. Ϯ; the ‘Shetland Mega-Monocline’ of Flinn Ϯ00ϳ). 210 

The precise mechanism for formation of this fold is uncertain, but it may have developed 211 

at a late stage during D2.  212 

5) ‘Grampian II’ metamorphism of metasedimentary successions at c. 450-445 Ma (Rb-Sr 213 

muscovite; Walker et al. 2016), although little is understood of the tectonic driver of this 214 

event. It could have resulted from accretion of an arc or microcontinental fragment to the 215 

Laurentian margin (Bird et al. 2013) or flat-slab subduction (Dewey et al. 2015).  216 

6) Sinistrally-oblique, top-to-the-NNE shear on Unst and Fetlar juxtaposed the lower 217 

ophiolite thrust sheets against their current footwall rocks (Cannat 1989; Beijat et al. 218 

2018). The associated deformation fabrics are recorded in the Funzie Conglomerate and 219 

so must be younger than its depositional age, i.e. <440 Ma (Beijat et al. 2018). This is 220 

consistent with Rb-Sr mica ages of c. 440-430 Ma obtained in west Unst and also thought 221 

to date this deformation event (Walker et al. 2016). The tectonic driver is unknown: did 222 

it result from gravitational instability arising from crustal thickening at a deeper structural 223 

level, or from sinistral relative displacement between Laurentia and Baltica following 224 

oblique continental collision (Dewey & Strachan 2003)? 225 

7) Scandian (c. 430-410 Ma) westerly-directed thrusting is indicated by emplacement of the 226 

upper ophiolite nappe onto the Funzie Conglomerate on Fetlar (Beijat et al. 2018) and 227 

displacement on the Uyea Shear Zone (Walker et al. 2016). The upper ophiolite nappe is 228 

believed to be the same tectonic unit as the lower ophiolite nappe, repeated by thrusting.  229 

 230 

Sample descriptions 231 



Twenty-two samples were collected to provide geochronological insights into the timing of 232 

garnet growth and metamorphism in the Caledonian rocks of Shetland. Key targets for sample 233 

collection were metamorphic lithologies to the west of the Walls Boundary Fault, where there 234 

are relatively few modern geochronological constraints. Sample numbers, location, lithologies, 235 

structural significance, and metamorphic assemblages can be found in Table 1.  236 

 237 

Analytical methods 238 

Samples were crushed in a steel jaw-crusher to chips of < 1cm3. A fraction of this crushed material 239 

was saved for whole rock analysis, which was powdered in a tungsten carbide TEMA mill ready 240 

for XRF and isotopic analysis. This remaining material was sieved to different grain sizes, washed 241 

repeatedly in de-ionised water, and magnetically separated using a Frantz isodynamic separator. 242 

Garnets and other mineral fractions were handpicked under a binocular microscope from the 243 

250-500µm magnetic fraction, taking care to pick only grains that were visibly inclusion-free. 244 

Some samples had multiple populations of garnets, recognised by different colours, and assumed 245 

to represent different garnet age-populations. This assumption of the relationship between 246 

colour and garnet population was supported by close inspection of hand-specimen, petrographic 247 

thin-section, and both colour and chemistry of the crystals analysed by LA-ICPMS (Fig. 3).  Where 248 

multiple garnet fractions of a sample are noted, each individual fraction represents a new 249 

separation from the picking stage of preparation. 250 

Prior to isotopic analysis, representative garnet crystals from each sample were analysed 251 

for trace element, and selected major element, concentrations using the LA-ICPMS system at 252 

RHUL (methods outlined in Müller et al. 2009 and Bird et al. 2013). Traverses were the preferred 253 

method of data acquisition as they permit detailed study of garnet zoning profiles and tentative 254 

identification of mineral inclusions. Laser ablation spot size, laser repetition rates, and scan speed 255 

were 15 μm, 10 Hz, and 0.6 mm s-1 respectively, and data were calibrated against the NIST612 256 

standard glass. 257 

Amounts of mixed 176Lu-180Hf and 149Sm-150Nd spikes for mineral separates and whole-258 

rocks were estimated using concentrations of these elements, and of analogues such as Y and Zr, 259 

from LA-ICPMS and XRF respectively. Leaching, spiking, dissolution, and chemical separation 260 



procedures were those of Anczkiewicz & Thirlwall (2003), and Bird et al. (2013), with 261 

concentrations and isotopic data being determined on the same aliquot. A HF-HNO3 digestion 262 

procedure was utilized for garnets in sealed beakers on a hotplate, followed by a dissolution 263 

check in 6M HCl. This should minimize dissolution of refractory zircon inclusions, which can 264 

worsen the precision of Lu-Hf ages, as they have very high Hf concentrations. Further, detrital 265 

zircons in metasediments can be much older than the surrounding garnets, which may artificially 266 

skew the age of any mixtures of garnets and zircons (Anczkiewicz et al. 2004). A moderate 267 

leaching procedure using sulfuric acid was performed on all garnet fractions, after the methods 268 

of Anczkiewicz & Thirlwall (2003), attempting to dissolve phosphate inclusions that can 269 

negatively affect Sm-Nd ages. A more rigorous leaching procedure, such as that of Baxter et al 270 

(2002) using HF, was not used because, while it is clear that this procedure is excellent for 271 

producing ‘clean’ garnet fractions with high Sm/Nd ratios for Sm-Nd dating, no testing has been 272 

done on this procedure for Lu-Hf dating, and may fractionate Lu from Hf.  273 

For the whole-rock fractions analysed for Lu-Hf, we treated one fraction in the same 274 

manner as the garnets (table-top dissolution using HF-HNO3), and a second whole-rock powder 275 

fraction was fused for one hour at 1100oC in Pt-Au crucibles in a 1:3 ratio with lithium tetraborate 276 

flux. Glass fragments were then spiked and subjected to the normal Lu-Hf dissolution and 277 

chemical separation. Blanks were 60pg Hf and 85pg Lu, which is insignificant based on the 278 

amount of analyte for these elements. 279 

Most Lu, Hf, and all Sm and Nd isotopic analyses were undertaken on the GV Instruments 280 

IsoProbe MC-ICPMS at RHUL using methods outlined in Thirlwall & Anczkiewicz (2004), and Bird 281 

et al (2013). One batch of samples (those marked with § in Table 2) was analysed on the Thermo 282 

Neptune MC-ICPMS at the Institute of Geological Sciences (IGS), Polish Academy of Sciences, 283 

Kraków Research Centre following a similar analytical procedure to that described in Thirlwall & 284 

Anczkiewicz (2004).  285 

During the course of the study the Hf standard JMC475 analysed on the RHUL IsoProbe 286 

yielded an average (static) 176Hf/177Hf of 0.282182±12 and 180Hf/177Hf of 1.88683±17 (2sd, n=36), 287 

with no significant change with time. The same standard analysed on the Neptune at IGS yielded 288 

respective 176Hf/177Hf and 180Hf/177Hf ratios of 0.282158±08, and 1.88687±10 (2sd, n=8). All 289 



sample data were corrected to the accepted JMC475 176Hf/177Hf value of 0.282165 (Scherer et al. 290 

2000).  291 

In contrast to Hf, Nd standard isotope ratios can vary significantly between analytical 292 

sessions (Thirlwall and Anczkiewicz 2004), although the effect of this on ages was minimized by 293 

analyzing all fractions relating to a sample during one analytical session. The Aldrich Nd and 294 

mixed Ce-Nd standard solutions yielded 142Nd/144Nd of 1.141461±239 and a slope corrected (see 295 

Thirlwall & Anczkiewicz 2004) 143Nd/144Nd of 0.511408±14 (2sd, n=97). The uncertainty on the 296 
176Lu/177Hf ratio is less than 0.3% and assumed to be 0.3% in age calculations. The uncertainty on 297 

the 147Sm/144Nd is less than 0.1% and assumed to be 0.1% in age calculations.  298 

Isochron ages and uncertainties were calculated using IsoplotR (Vermeesch, 2018), using 299 

the decay constants of 1.865 x 10-11 a-1 for 176Lu (Scherer et al. 2001) and 6.54 x 10-12 a-1 for 147Sm 300 

(Lugmair & Marti 1978). All isotope data and age uncertainties are quoted at the 2-sigma level.  301 

Interpreting garnet ages 302 

When a garnet grows on the prograde path, the heavy rare earth elements (HREE), including Lu, 303 

will partition into the garnet and produce a zoning profile with a large central peak, decreasing 304 

exponentially in concentration towards the rim as the garnet rapidly depletes the surrounding 305 

volume of HREE (Skora et al. 2006). However, this can be complicated if a garnet has experienced 306 

metamorphic conditions above the temperature of diffusion, or has been subject to multiple 307 

orogenic cycles. In these scenarios, the garnet Lu profile may be flattened and/or disrupted. It is 308 

therefore important to assess the trace element zoning of a garnet before linking any determined 309 

ages to a specific prograde event. Trace element traverses for representative garnet crystals from 310 

most samples are provided in the supplementary information.  311 

Studies that present Lu-Hf and Sm-Nd ages from the same garnet dissolution have 312 

concluded that the Lu-Hf system has a higher closure temperature than Sm-Nd, due to 313 

systematically older ages in the former (Scherer et al. 2000; Lapen et al. 2003; Skora et al. 2006; 314 

Bird et al. 2013; Smit et al. 2013). It has been alternatively suggested that, rather than different 315 

closure temperatures of the two systems, the difference lies in fundamentally different processes 316 

recorded in the systems during garnet growth (Lapen et al. 2003; Bloch & Ganguly 2015). High 317 

central Lu peaks, and relatively homogenous Sm profiles of garnets may skew ages towards 318 



recording early and ‘average’ states of garnet growth respectively (Lapen et al. Ϯ00ϯ; Skora et al. 319 

2006), hence explaining the systematic differences in Sm-Nd and Lu-Hf ages for a given sample. 320 

Alternatively, Bloch & Ganguly (2015) argue that the chemical differences between Lu3+ and Hf4+ 321 

lead to preferential retention of radiogenic 176Hf if metamorphic temperatures are above that of 322 

diffusion for prolonged periods. This would produce anti-clockwise rotation of an isochron, 323 

leading to erroneously old ages. They however point out that it is unlikely that natural garnets 324 

would be affected significantly by this process providing they are greater than 0.5mm in diameter 325 

and have not been subjected to temperatures exceeding 700oC for “unusually long periods”. 326 

In addition to potential differences in closure temperature for the Sm-Nd and Lu-Hf 327 

systems in garnets, they both may be detrimentally affected by different mineral inclusions. 328 

Zircons have the potential to seriously affect any Lu-Hf ages, especially if the zircons formed from 329 

a reservoir that is considerably older than the timing of garnet formation. Very low Lu/Hf (as a 330 

function of high Hf concentration) in zircons may have the effect of flattening the isochron, 331 

leading to erroneously young ages, if the whole-rock analysis did not incorporate a similar zircon 332 

population, for example if not all zircons in the whole rock powder were dissolved. Similarly, the 333 

Sm-Nd system may be affected by light rare earth element (LREE)-rich inclusions such as apatite, 334 

monazite, and epidote. The effect of these inclusions on a garnet Sm-Nd age could be similar to 335 

that of zircon inclusions on the Lu-Hf system, as the LREE-rich inclusions would have significantly 336 

higher concentration of the daughter element compared to the garnet (Anczkiewicz & Thirlwall 337 

2003). Phosphate inclusions with high LREE can, in theory, be removed by sulphuric acid leaching, 338 

as we did in this study (Anczkeiwicz & Thirlwall 2003). However, epidote inclusions are robust 339 

against such procedures and can detrimentally affect Sm-Nd ages.   340 

 341 

Results  342 

The potential significance of a Lu-Hf or Sm-Nd garnet age will depend on the temperature and 343 

duration of metamorphism, and the size and composition of the garnet (Baxter & Scherer 2013). 344 

Providing a garnet grows below the closure temperature of the isotopic system (c. 650oC for Sm-345 

Nd, Baxter et al. 2017), then the age will most likely relate to the prograde history of the sample 346 

(Ganguly & Tirone 1999, Baxter & Scherer 2013, Smit et al. 2013). The garnet ages for each 347 



sample have been assessed with regards to petrological, chemical, and structural information 348 

before assigning geological significance. The results and the new Lu-Hf and Sm-Nd garnet ages 349 

are presented in Table 2, and are placed in their geological and geographical contexts in Fig. 4. 350 

 351 

Hf concentrations in whole-rock (WR) samples 352 

Table 2 reports Lu, Hf, Sm and Nd concentrations in the analysed samples, which provide strong 353 

constraints on what minerals have been digested.  Measured Nd contents in WR samples (all 354 

digested without flux-fusion on a hotplate, denoted as tt = tabletop) are similar to XRF Nd data 355 

for the same samples (Supplementary data 1).  The same tt WR powder fractions however yield 356 

Hf contents that are much less than would be expected from XRF Zr/40, leading to 176Lu/177Hf 357 

ratios often > 0.2, sometimes higher than 176Lu/177Hf measured on garnets from the same sample 358 

(e.g. AB08-08).  Hf contents in WR fractions digested after flux-fusion are however much higher, 359 

1.8-50x higher than those measured on tt WR fractions, and similar to those expected from XRF 360 

Zr/40.  This implies that very little of the zircon content of WR samples was dissolved when no 361 

flux-fusion took place, and that all or nearly all the zircon content was digested by flux fusion.  362 

Notably, for more than half the samples, Hf contents of some or all of the garnet fractions are 363 

significantly higher than the Hf contents of the tt WR fractions. Given that LA-ICP-MS data 364 

(Supplementary data 2) show that Hf contents of pure garnets are usually 0.1-0.5ppm, the 365 

identical tt digestion process must be dissolving a much greater proportion of the zircon 366 

inclusions in garnet than it is dissolving zircons in the WR powder.  This implies that ages 367 

calculated from garnet and ttWR are likely to be in error.  This is because the analysed garnets 368 

include a zircon population, with potentially old unradiogenic Hf, that is not represented in the 369 

ttWR analysis, and also because the 176Lu/177Hf ratios measured in the ttWR may have been 370 

influenced by preferential leaching of Lu rather than Hf from partially dissolved zircon.  In general 371 

in this study, the ttWR does not lie on an isochron with garnet and flux-fused WR.  Where the 372 

garnet is radiogenic, the difference between ttWR and flux-fused WR has no significant effect on 373 

the Lu-Hf age.  Where the garnet has only moderate 176Lu/177Hf, between 0.1 and 0.5, the choice 374 

between tt and flux-fused WR often has a very large effect on age.  Based on the preceding 375 



discussion, the flux-fused WR is preferred, and this is supported by better MSWDs and more 376 

plausible ages.  377 

 378 

Walls Peninsula ages 379 

All three samples studied from the Walls Metamorphic Series (WMS: SW15-01, pelite; SW15-03, 380 

granite gneiss; and SW15-06, amphibolite) yield some pre-Caledonian ages.  All contain chlorite-381 

biotite assemblages suggesting metamorphic grades no higher than middle amphibolite facies. 382 

Both garnet fractions in SW15-06 yield 606-622 Ma Lu-Hf ages and early to mid Ordovician Sm-383 

Nd ages of 483.3 ± 4.9 and 461.9 ± 3.7 Ma in the pink (core) and orange (rim) fractions 384 

respectively. The garnets only have moderate 176Lu/177Hf (0.28-0.52), but both WR fractions lie 385 

on isochrons with each individual garnet, suggesting that zircon inclusions have no significant 386 

effect on the age. The orange garnet core of SW15-03 has very low 176Lu/177Hf (0.078) but 387 

moderate 147Sm/144Nd, and yields a suspect 689 ± 8 Ma Lu-Hf age but a 617 ± 9 Sm-Nd age 388 

consistent with the Lu-Hf ages of SW15-06.  The rims of this garnet yield early Ordovician ages by 389 

both Lu-Hf (486.3 ± 2.5 Ma) and Sm-Nd (473.2 ± 6.2 Ma).  Thirdly, the two garnet fractions of 390 

SW15-01 yield Cambrian Lu-Hf ages of c. 510 Ma that are within error of each other, but no Sm-391 

Nd data were obtained for this sample.  Sample SW13-17, collected just 4km away in the WMS, 392 

yields a 510.0 ± 2.3 Ma white mica age (Walker et al., 2016, recalculated), within error of these 393 

Lu-Hf ages. 394 

There seems to be clear evidence for Ediacaran and Cambrian metamorphic events in the 395 

Walls Peninsula. In SW15-03, the orange cores give older ages than the rims for both Lu-Hf and 396 

Sm-Nd, with the Sm-Nd age younger in both core and rim.  This can reasonably be explained by 397 

two stage growth of the garnets, with the slightly younger Sm-Nd rim age perhaps explained by 398 

lower closure temperatures for Sm-Nd in garnets (e.g. Yakymchuck et al 2015).  The younger Sm-399 

Nd ages in SW15-06 would require Ordovician loss of radiogenic Nd from the whole garnet 400 

crystals, rather than just the rim.  This behaviour of the Sm-Nd system may reflect the relatively 401 

high metamorphic grade of these samples. The amphibolite shows a syn-tectonic relationship 402 

with surrounding deformed felsic sheets, and both are intruded by undeformed felsic sheets. All 403 

of the deformed material in this area shares a strong gneissose fabric that dips towards the SSE. 404 



This fabric can be observed in thin section of these samples and wraps the garnets. This fabric 405 

was dated further to the west in the Walls Metamorphic Series, using white mica Rb-Sr, as having 406 

formed at 450.8 ± 1.4 Ma (Walker et al. 2016). This indicates that the garnet-growth was not 407 

coeval with the main fabric development, and that the Walls Metamorphic Series was subject to 408 

late stage foliation development which was not accompanied by significant garnet growth. 409 

 410 

Northwest Shetland ages 411 

Ages have been obtained from seven samples in the area of North Roe and Hillswick, in a region 412 

that has been subjected to west-directed thrust-stacking.  Ages seem to become progressively 413 

older going up through the tectonostratigraphy.  In the west, amphibolite SW15-12 occurs within 414 

strongly reworked Archaean orthogneisses in the footwall of the WKSZ at North Roe (Fig. 4), and 415 

yields a Silurian Lu-Hf age of 426.9 ± 2.5 Ma. It should be noted that no flux-fused WR is available 416 

for this sample.  However, it is an amphibolite with only 61 ppm Zr, so expected WR Hf of c. 417 

1.5ppm is not much greater than the measured ttWR Hf of 0.54ppm.  Further, the garnet has 418 

high 176Lu/177Hf so small changes in WR Hf systematics would have little impact on the age. The 419 

garnets in this sample are skeletal, as shown in the LA-ICPMS traverse, with large inclusions of 420 

amphibole, plagioclase, and epidote. Nevertheless, the Lu profile exhibits prograde zoning (Fig. 421 

5), suggesting that the Lu-Hf garnet age determined on this sample relates to the timing of peak 422 

metamorphism in this area, although it is possible that the garnets in this sample are 423 

amalgamations of multiple smaller garnets which can be observed in Fig. 5. 424 

Five samples have been studied from the Sand Voe Group and Eastern Gneisses, between 425 

the WKSZ and the Virdibreck shear zone.  No evidence was found of pre-Caledonian ages, despite 426 

the Eastern Gneisses being thought to represent basement inliers (Pringle 1970). A sample of the 427 

Benigarth Pelite (AB08-11) on the Fethaland peninsula in northwestern Mainland records a late 428 

Ordovician Lu-Hf age of 446.5 ± 1.3 (n=3, MSWD: 0.17). The garnets did not yield 147Sm/144Nd 429 

significantly higher than the WR. The Benigarth Pelite is mapped as part of the ‘Eastern Gneisses’ 430 

(Pringle 1970) but could equally well represent an infold or tectonic slice of the Sand Voe Group. 431 

White mica and quartz define the main fabric in the matrix of this sample and this fabric wraps 432 



the garnets, therefore the top-to-the-west shear band fabric in this area has to have been formed 433 

during or after this 446 Ma episode of garnet growth.  434 

Garnet from another Sand Voe Group pelite (AB08-13), collected a few kilometres to the 435 

southeast, also gives a late Ordovician Lu-Hf age of 456.7 ± 2.2 Ma for the orange fraction, and a 436 

Sm-Nd isochron age of 470 ± 6 Ma (n=3, MSWD: 1.7). The purple garnet fraction has very low 437 
176Lu/177Hf (0.056) and thus the 582 ± 9 Ma age is not considered robust. The 147Sm/144Nd ratio 438 

for the orange fraction is lower than that of the whole-rock, which indicates that the leaching 439 

procedure has not produced a ‘clean’ fraction. However, the point lies on the isochron which 440 

suggests that the low Sm/Nd inclusions were in isotopic equilibrium with the garnet and the rest 441 

of the rock.  On the Hillswick peninsula, a Hillswick Group pelite (SW13-27, correlated with the 442 

Sand Voe Group) yields an almost identical Lu-Hf garnet age to AB08-13, of 458.8 ± 2.3 Ma from 443 

orange garnets which we interpret as the garnet cores, and 453.0 ± 2.3 Ma from a red population 444 

which we interpret as garnet rims. The cores of the garnets from this sample are inclusion-rich, 445 

with quartz, biotite, and ilmenite. The inclusion trails are slightly curved and are perpendicular to 446 

the main fabric. The rims of the garnets are inclusion-poor. That the garnets from this sample 447 

record two different Late Ordovician ages may indicate that there was more than one pulse of 448 

metamorphism at this time, or that garnet growth was protracted.  Again like AB08-13, the Sm-449 

Nd ages from SW13-27 are substantially older than the Lu-Hf ages (478 ± 14 Ma and 505 ± 21 Ma 450 

from the core and rim respectively, similar to the 470 ± 6 Ma Sm-Nd age of AB08-13), but these 451 

have poor precision due to the unradiogenic nature of the garnet separates, which may also lead 452 

to poor accuracy.  453 

A “basement” amphibolite (AB0ϴ-12) was collected from the Fethaland peninsula 250m 454 

SE of Benigarth Pelite AB08-11, and provides a 33 Ma older Lu-Hf age of 479.6 ± 1.2 (n=3, MSWD: 455 

1.4, using two separate garnet fractions and flux-fused WR, with amphibole lying significantly 456 

above this line). None of the garnet fractions, nor amphibole, yielded a useful Sm-Nd age 457 

presumably because inclusions were inadequately removed by leaching. A second amphibolite 458 

within the Eastern Gneisses SW13-08, yields mid-Ordovician Lu-Hf ages of 466.3 ± 2.2 Ma and 459 

459.7 ± 4.3 Ma on orange and red garnet fractions respectively.  This was collected c. 130m SE of 460 



AB08-13 pelite and like AB08-12, gives Lu-Hf ages >10 Ma older than the nearby pelite. 150m NE 461 

of SW13-08, Walker et al. (2016) reported a white mica Rb-Sr age of 443.2 ± 1.3 Ma. 462 

To the east of the Virdibreck shear zone, SW15-05 is a rare amphibolite from the Queyfirth 463 

Group, and yields an early Ordovician Lu-Hf age of 474.1 ± 3.8 Ma. Garnets in this sample are 464 

small and partially retrogressed to chlorite, however the Lu profile determined using LA-ICPMS 465 

indicates that the age relates to prograde growth, and that there was no significant diffusion or 466 

exchange of the HREE during retrogression. For this sample, we have used the whole-rock that 467 

underwent simple table-top dissolution rather than the one that underwent the fused stage of 468 

processing, because the slope between the two whole rocks was significantly steeper than the 469 

one between the garnets and the whole-rocks, which may imply that there is a significantly older 470 

population of refractory minerals in the fused whole-rock, which would artificially skew the age.  471 

 472 

East Mainland ages 473 

Only two samples have been studied from Mainland east of the Walls Boundary Fault. A semi-474 

pelitic gneiss from the East Mainland Succession in central Mainland (SW12-07) provides an early 475 

Ordovician Lu-Hf age of 479.0 ± 1.5 Ma, and a somewhat younger Sm-Nd age of 470.7 ± 1.0 Ma, 476 

which complements the 473.6 ± 0.9 Ma Rb-Sr white-mica age determined on this sample by 477 

Walker et al. (2016). This suggests that the steep mica fabric in central Mainland formed towards 478 

the end of garnet growth, and that the Lu-Hf garnet age represents prograde growth, whereas 479 

the Sm-Nd age represents cooling from this peak metamorphism due to differences in closure 480 

temperatures of the two systems. 481 

An amphibolite collected from the Valayre granitic orthogneiss on Lunna Ness in eastern 482 

Mainland (AB08-18) yields a Lu-Hf age of 496.2 ± 5.4 Ma for the three garnets alone (MSWD = 483 

0.07; N=3). No flux-fused WR is available for this sample, and individual two-point garnet-ttWR 484 

ages for the three differently-coloured garnet fractions increase with increasing 176Lu/177Hf (0.34 485 

to 0.69) from 438 Ma (pink) to 469.6±2.5 Ma (orange fraction).  The ttWR digestion has Hf content 486 

of about 40% of the expected Hf content based on Zr/40, so it may be that it is a reasonable 487 

estimate of the WR Lu-Hf isotope system. If so, the 469.6 Ma age is likely to be the most robust 488 

for this sample. No Sm-Nd age was determined. Several samples from Lunna Ness were dated by 489 



Cutts et al. (2011), using LA-ICPMS U-Pb monazite dating. They concluded that there were 490 

multiple phases of metamorphism in this area, with monazite growth at c. 913 Ma, c. 470 Ma, 491 

and c. 460 Ma. Cutts et al. (2011) also constrained the peak metamorphic conditions for the 492 

Caledonian phase (as opposed to the Neoproterozoic) of monazite growth to 10 kbar, 775oC. 493 

 494 

Ages from Yell 495 

AB08-6, a garnet-pyroxene-amphibolite from a Neoarchaean basement inlier, yields a 1051.2 ± 496 

3.2 Ma Lu-Hf age from an extremely radiogenic garnet, and a Sm-Nd age of 863.1 ± 3.6 Ma. The 497 

lower Sm-Nd age probably reflects a later metamorphic event as c. 920 Ma in situ monazite ages 498 

are reported from the Valayre Gneiss at Lunna Ness (Cutts et al. 2011), and from the Westing 499 

Group on Unst (Cutts et al. 2009). 500 

Amphibolite AB08-08 intrudes the host Yell Sound Group pelitic gneisses in northeastern 501 

Yell and yields an early Ordovician Sm-Nd isochron age using both garnet fractions of 478.1 ± 2.3 502 

Ma (MSWD=0.42, N=3), with both being highly radiogenic. The garnets have lower Lu/Hf ratios 503 

than the ttWR, but the purple garnet yields a Lu-Hf age of 453.6 ± 5.1 Ma (MSWD=0.16 with both 504 

WR samples), and the orange garnet yields a 2-point age of 442 ± 6 Ma with the fused WR. This 505 

is the third sample in this study in which Lu-Hf ages are younger than Sm-Nd ages. The low 506 
176Lu/177Hf of the garnets (0.15-0.17), together with the isochron age calculated with the 507 

implausible ttWR, suggest that these Lu-Hf ages may not be meaningful. The large (шϲmm) 508 

garnets in AB08-08 have slightly curved inclusion trails, and are wrapped by the main fabric in 509 

the rock which is dominated by amphibole.  510 

On the north coast at the Sands of Breckon, a pelitic gneiss from within the Yell Sound 511 

Group (AB08-04) yields a slightly younger middle Ordovician Sm-Nd age of 467.2 ± 1.4 Ma. No 512 

Lu-Hf data are available from this sample.  The dated garnets are wrapped by a steep D2 foliation 513 

and rimmed by pressure shadows that are elongate parallel to a gently-plunging L2 mineral and 514 

stretching lineation. A lower limit on the age of the D2 fabrics here is provided by an Rb-Sr white 515 

mica age of 459.4 ± 1.4 Ma obtained from a folded syn-kinematic pegmatite at the same locality 516 

(Walker et al. 2016). D2 deformation in NE Yell is thus constrained to have occurred between c. 517 

468 Ma and c. 460 Ma. 518 



 519 

Ages from Unst and Fetlar 520 

Two orange and two pink garnet fractions were analysed from AB08-14, a pelitic gneiss from the 521 

Westing Group of Unst.  A Lu-Hf errorchron of 837 ± 42 Ma (MSWD = 57) can be obtained from 522 

the three most radiogenic garnets and the flux-fused WR, while the Sm-Nd data yield an 523 

errorchron of 585 ± 17 Ma (MSWD = 24, N=5).  Neither colour garnet yields an isochron for either 524 

Lu-Hf or Sm-Nd, but pink garnet-WR two-point Lu-Hf ages are nearly within error at 837 and 846 525 

Ma, while the orange garnets yield 759 and 815 Ma.  176Lu/177Hf ratios in the garnets are fairly 526 

low (0.18-0.27), lower than the ttWR sample.  The three most radiogenic garnets (two pink, one 527 

orange) lie on a Lu-Hf isochron of age 907 ± 14 Ma, MSWD = 0.26.  The garnets have moderate 528 
147Sm/144Nd ratios (0.39-0.63) and give fairly consistent two-point ages from 573 ± 4 to 589 ± 3 529 

Ma.  There is no indication of older Sm-Nd ages for the pink garnets.  Three of the garnets (all 530 

except the least radiogenic) yield a Sm-Nd isochron of 607 ± 6 Ma, MSWD = 0.02.  The Lu-Hf data, 531 

especially the 3-garnet age, are consistent with the c. 930 Ma Tonian metamorphic event 532 

identified in the Westing Group by Cutts et al. (2009), while the lower Sm-Nd ages may reflect a 533 

late Proterozoic event or partial Caledonian reworking. 534 

The garnets of metabasite SW15-07 yield the oldest Caledonian age determined in this 535 

study. The sample comes from the metamorphic sole of the upper thrust sheet of the Shetland 536 

Ophiolite Complex on Fetlar. At outcrop, the lithology carries a strong, near horizontal 537 

deformation fabric, parallel to the contact with the overlying metaharzburgite. The lithology 538 

appears to have distinct relict garnet-clinopyroxene layers, which have a pronounced boundary, 539 

defined by titanite, with a stable garnet-amphibole assemblage. Trace-element profiles across 540 

garnets determined by LA-ICPMS show that concentrations of the HREE, including Lu, are slightly 541 

higher at the centre of the garnet crystals compared to the rims, although the crystals do not 542 

show a bell-shaped Lu profile which would be expected for a sample recording prograde growth. 543 

This may indicate some degree of diffusion of the HREE due to high-temperature metamorphism, 544 

or that the garnet analysed for trace-elements was not cut precisely down the centre of the 545 

crystal. Garnet-clinopyroxene thermometry was undertaken on this lithology by Spray (1988), 546 

which yielded temperatures of c. 750oC on the peak temperature assemblage. Garnets, 547 



pyroxenes, and amphiboles were separated from the two assemblages, using a saw to separate 548 

the two assemblages, to resolve any potential differences in the timing of formation of the 549 

garnet-pyroxene and garnet-amphibole assemblages. A Lu-Hf isochron of 491.4 ± 5.5 Ma (N=4, 550 

MSWD 4.1) is defined by both garnet fractions, the amphibole, and pyroxene. This indicates that 551 

the prograde and retrograde assemblages formed within the uncertainty of the isochron.  552 

The remaining analyses from Unst and Fetlar were all obtained from samples of the East 553 

Mainland Succession. The pink garnet fraction of pelite AB08-15 from west Unst yields early 554 

Ordovician Lu-Hf and Sm-Nd ages of 484.5 ± 1.5 Ma and 472.3 ± 4.8 Ma respectively, and we 555 

interpret this age as an early garnet population, perhaps garnet cores, based on thin-section and 556 

hand-specimen observations of garnet colouration. The presence of kyanite in the cores of these 557 

garnets indicates that this age relates to an early phase of kyanite-grade metamorphism. The 558 

sample was collected from the same lithology (although not the same outcrop) as sample KSH07-559 

12 from Cutts et al. (2011), who constrained the age and peak metamorphic conditions to 7.5 560 

Kbar and 630oC at 462 ± 10 Ma. Their age was determined by LA-ICPMS U-Pb dating of monazite 561 

inclusions within the rim of garnet. They did note that the garnets in this sample had distinct 562 

cores and rims, with different peak assemblages, but could not date the cores due to a lack of 563 

monazite inclusions. The orange garnet fraction of this pelite (AB08-15), which we interpret as 564 

the garnet rims, yields middle to late Ordovician ages (Lu-Hf 462.9 ± 1.7 Ma, Sm-Nd 455.4 ± 3.5), 565 

21 to 17 Ma younger than the (pink) garnet cores. The rim ages are within error of the 462 ± 10 566 

Ma U-Pb monazite age determined by Cutts et al. (2011), which is consistent with their location 567 

in the garnet rims. 568 

A pelitic gneiss from west Fetlar (sample SW12-14) was collected from approximately the 569 

same structural level as AB08-15 on Unst (Fig. 4), and yields an identical Lu-Hf isochron age of 570 

484.5 ± 1.4 Ma (n=5; MSWD = 1.6), indicating that the timing of garnet growth in this unit was 571 

synchronous with the equivalent unit in Unst. There appears to be no difference in the growth 572 

times of the pink and orange garnet fractions, which were separated based on colour when 573 

picking, given that they all fall on the same isochron with low MSWD. However, these garnets 574 

yield younger Sm-Nd ages. The first pair analysed yielded a late Ordovician isochron age of 453.7 575 

± 3.8 (N=3, MSWD 0.64), within error of the rim Sm-Nd age of AB08-15.  Orange and pink garnets 576 



analysed in a second analytical batch give an older age of 472 ± 10 Ma, but these have lower 577 

Sm/Nd and were not analysed at the same time as the WR, so it is hard to make accurate 578 

corrections for instrumental drift. The mica fabrics wrapping the garnets in this sample were 579 

dated using Rb-Sr on both white mica and biotite, yielding ages of 468.9 ± 1.4 Ma and 451.2 ± 1.4 580 

Ma respectively (Walker et al. 2016).  581 

Three garnet fractions and three separate fused WR samples from pelite SW12-16, from 582 

northeast Unst, define a Lu-Hf isochron age of 470.0 ± 1.2 Ma (n=4; MSWD: 1.1). Peak pressure-583 

temperature constraints of 7.5 kbar, 550oC have been calculated on the same unit (Cutts et al. 584 

2011). Given that the LA-ICPMS garnet traverse for this sample shows typical prograde Lu zoning 585 

pattern of a bell-shaped central peak (Fig. 5C), and the relatively low temperature determined in 586 

Cutts et al. (2011) it is very likely that these metamorphic conditions were reached at c. 470 Ma, 587 

and that the age represents garnet growth. 588 

A late Ordovician Lu-Hf garnet age was determined from SW12-15, a pelitic schist from 589 

western Unst that yielded a Lu-Hf age of 452.0 ± 1.4 Ma and a Sm-Nd age of 454.3 ± 7.5 Ma. 590 

Porphyroblasts of staurolite and chloritoid in this sample overprint the foliation that wraps the 591 

garnets, indicating that post-deformational metamorphism reached at least (lower) amphibolite 592 

facies after garnet growth at c. 452 Ma (Fig. 5D).   593 

The Saxa Vord pelite SW12-16 in NE Unst gives a Sm-Nd isochron age of 430.4 ± 4.2 Ma 594 

(N=4, MSWD=0.88), despite the same garnets giving a Lu-Hf isochron age of 470.0 ± 1.2 Ma.  This 595 

time gap suggests that a second Silurian metamorphic event re-equilibrated garnet Nd but not 596 

Hf.  The fact that 3 different garnet fractions lie on each isochron suggests that we are not 597 

preferentially sampling Lu-rich cores to obtain the older age.   598 

 599 

Discussion and regional correlations 600 

 601 

Pre-Caledonian events in Shetland 602 

The Lu-Hf age of c. 1050 Ma obtained from reworked Neoarchaean basement in NE Yell (sample 603 

AB-08-06) predates deposition of the Yell Sound and Westing groups (Cutts et al. 2009; Jahn et 604 

al 2017). It compares with Sm-Nd mineral isochron ages of c. 1082 Ma and c. 1010 Ma for eclogite 605 



facies metamorphism of the Eastern Glenelg basement inlier in the Caledonides of NW Scotland, 606 

which has been attributed to the Grenvillian orogeny (Sanders et al. 1984). It seems reasonable 607 

to assign the new age from NE Yell to the same tectonic event which in Scotland likely resulted 608 

from the collision of Baltica and Laurentia during the assembly of Rodinia (Li et al. 2008; Strachan 609 

et al. 2020a). The 3-garnet isochron age of 907 ± 14 Ma obtained from the Westing Group (sample 610 

AB-08-14) is consistent with the 938-925 Ma span of zircon and monazite ages reported by Cutts 611 

et al. (2009) and attributed to the Renlandian event of Cawood et al. (2010).   612 

 The Lu-Hf ages of c. 622-606 Ma and the Sm-Nd age of 617 ± 9 Ma obtained from the 613 

Walls Metamorphic Series (samples SW15-06 and 15-03) are more problematic as they suggest 614 

that these rocks were undergoing high-grade metamorphism at the same time as the East 615 

Mainland Succession was being deposited in an extensional basin immediately east of the Walls 616 

Boundary Fault (Prave et al. 2009). The mismatch could be explained in one of two ways. Either 617 

the Walls Metamorphic Series or the East Mainland Succession is grossly allochthonous and rests 618 

on an as-yet-undetected major thrust, or alternatively there has been substantial displacement 619 

along the Walls Boundary Fault. It is noteworthy that Slagstad et al. (2020) report a similar c. 623 620 

Ma age for high-grade metamorphism within the Uppermost Allochthon in Norway which is 621 

believed to have a Laurentian parentage. The eastern Laurentian margin is widely thought to 622 

have been under extension during the Ediacaran breakup of Pannotia, so the tectonic significance 623 

of c. 620 Ma metamorphic events represents an unresolved problem.  624 

The c. 510 Ma Lu-Hf age obtained from the Walls Metamorphic Series (sample SW-15-01) 625 

is easier to explain as there is no reason to suppose that it overlaps with the depositional history 626 

of the East Mainland Succession. Furthermore, it is only 20 Ma older than the onset of ophiolite 627 

obduction (see below) and could conceivably simply indicate that the Grampian I event was more 628 

complex and protracted than envisaged in current tectonic models. This solution is supported by 629 

the recognition of an early phase of thrusting at c. 515 Ma in the Uppermost Allochthon of 630 

Scandinavia (Slagstad et al. 2020).               631 

 632 

Onset and duration of Grampian I metamorphism in Shetland 633 



The garnet ages determined in this study show that the dominant period of garnet growth in 634 

Shetland related to Grampian (Ordovician) accretionary events. The new data are consistent with 635 

the ages obtained in Shetland in recent geochronological studies using U-Pb and Rb-Sr isotopic 636 

systems (Cutts et al. 2011; Crowley & Strachan 2015; Walker et al. 2016; Jahn et al. 2017). The 637 

Lu-Hf isochron age of 491.4 ± 5.5 Ma obtained from the metamorphic sole of the ophiolite on 638 

Fetlar consists of minerals that are not in metamorphic equilibrium. This suggests that the change 639 

from upper to middle amphibolite grade happened within the age uncertainty of 5.5 Ma. Titanite 640 

porphyroblasts along the boundaries of the regions that have preserved higher temperature 641 

pyroxene-bearing assemblages and those that have been completely recrystallized to amphibole 642 

(Fig. 5) suggest that a calcic fluid was interacting with the rock at this time, and contributed to 643 

the mineralogical changes (Spray 1988). The age most likely relates to high temperature 644 

metamorphism of the subducting oceanic slab that formed the protolith of the metamorphic sole 645 

(Spray 1988). It is within analytical uncertainty of the 484 ± 4 Ma U-Pb zircon age obtained by 646 

Crowley & Strachan (2015) from the same unit on Unst, which we suggest probably relates to 647 

subsequent decompression melting during exhumation and obduction. Similar ages are found 648 

within the Highland Border Ophiolite in SW Mainland Scotland, where U-Pb zircon ages of 499 ± 649 

8 Ma have been interpreted as dating magmatism, and 40Ar/39Ar dating of hornblende and 650 

muscovite yield 490 ± 4 Ma and 488 ± 1 Ma ages respectively, and relate to the timing of 651 

obduction (Chew et al. 2010).  652 

 The age of (pink) garnet cores from western Unst pelite, AB08-15, and the metamorphic 653 

conditions calculated on the same unit by Cutts et al. (2011), indicate that prograde Barrovian 654 

metamorphism of 7 kbar and 630oC was underway in this part of Shetland as early as 484.5 ± 1.5 655 

Ma. This suggests that growth of a significant orogenic wedge took place within ~6 Ma of the 656 

formation of the metamorphic sole of the ophiolite. Near identical garnet ages are also recorded 657 

from the same structural level on Fetlar, and in rims of late Proterozoic garnets, and by Sm-Nd, 658 

in the Walls Metamorphic Series.   Slightly younger ages of 478-480 Ma in Yell, east Mainland and 659 

in the Eastern gneisses of North Roe indicate that this metamorphic event was widespread 660 

through Shetland. This suggests that the onset of peak Grampian metamorphism occurred 661 

slightly earlier than in the Dalradian Supergroup in mainland Scotland, where peak 662 



metamorphism occurred between 473 ± 3 Ma and 465 ± 3 Ma, giving a maximum possible 663 

duration of 14 Ma (Oliver et al. 2000; Baxter et al. 2002; Viete et al. 2013).  664 

 Peak Grampian I metamorphism in Shetland occurred over a duration of 33 Ma based on 665 

garnet core ages that span 491.4 ± 5.5 Ma to 466.3 ± 2.2 Ma, significantly longer than in mainland 666 

Scotland. Both age constraints are Lu-Hf garnet ages, and are therefore directly comparable, 667 

bypassing any potential differences between the Lu-Hf and Sm-Nd garnet systems (e.g. Bloch et 668 

al. 2015). Many of the samples that record Grampian ages exhibit prograde zoning in trace-669 

element (HREE) LA-ICPMS traverses, which suggests that these Lu-Hf ages relate to the prograde 670 

growth of garnet. The difference in the timing of Grampian peak metamorphism between 671 

Shetland and the Grampian Highlands shows that, in Shetland, this event is longer in duration 672 

and not just earlier than in mainland Scotland. 673 

 There are strong similarities between the Grampian I event in Shetland and coeval events 674 

preserved along strike in Scandinavia (Fig. 1A). It has long been recognised that the highest 675 

structural units in central Norway, grouped as the ‘Uppermost Allochthon’ (Fig. 1A; Roberts & 676 

Gee 1985), represent a fragment of Laurentia that was emplaced as a composite terrane onto 677 

the down-going Baltican plate during Scandian continental collision (Roberts 2003; Roberts et al. 678 

Ϯ00ϳ; Corfu Ϯ01ϰ and references therein). The ‘Uppermost Allochthon’ contains various 679 

metasedimentary units that have been deduced to have a Laurentian parentage, partly on 680 

palaeontological grounds (e.g. Bruton & Brockelie 1980), and record deformation and 681 

metamorphism during the Lower Ordovician (480-475 Ma) prior to emplacement of arc-related 682 

plutons (470-455 Ma) (e.g. Nordgulen et al. 1993; Yoshinobu et al. 2002; Barnes et al. 2007). In 683 

SW Norway, the Karmøy-Bergen ophiolites (Fig 1A) and associated island arc sequences are also 684 

thought to have originated in a peri-Laurentian setting (Pedersen & Hertogen 1990; Pedersen & 685 

Dunning 1997). The metasedimentary rocks of the Jæren nappe (Fig 1A) have Laurentian affinities 686 

and were affected by eclogite facies metamorphism at c. 470 Ma (Smit et al. 2010).  The Lower 687 

Ordovician tectonothermal events recorded within these structurally highest nappes have been 688 

correlated directly with the Grampian orogeny of Scotland (Roberts 2003; Roberts et al. 2007) 689 

and clearly correspond closely in timing to the ‘Grampian I’ event in Shetland. 690 

 691 



Evidence for the Grampian II event in Shetland 692 

The late Ordovician ages reported here significantly widen the geographical extent of the 693 

Grampian II event within the Scottish Caledonides. However, the differentiation between 694 

Grampian I and II events is less clear than in mainland Scotland. In Shetland, Lu-Hf data do not 695 

show any age gaps greater than 4 Ma between 453 and 484 Ma. However, there is a gap from 696 

466.3 to 458.8 Ma if only core ages are considered, which may reflect the gap between Grampian 697 

I and II. Within this gap there are only two Lu-Hf rim ages, and one Sm-Nd rim age. In Shetland, 698 

evidence of garnet growth during the late Ordovician is found on both sides of the Walls 699 

Boundary Fault. In North Roe, garnets of this age are found in two samples (AB08-11 and AB08-700 

13; 446.5 and 456.7 Ma), east of and structurally above the Wester Keolka Shear Zone. In 701 

contrast, samples (AB08-12 and SW13-08) collected 250m and 130m southeast from the previous 702 

samples, and also from the Eastern Gneisses, but from amphibolites rather than pelites, yield 703 

Grampian I ages (479.6 and 466.3 Ma respectively). The difference in ages may indicate that the 704 

two samples are separated by a cryptic tectonic break.  The Hillswick pelite, SW13-27, also yields 705 

a core age (458.8 Ma) on the boundary between late and middle Ordovician, and a clearly late 706 

Ordovician rim age (453.0 Ma). A Late Ordovician age of 452.0 ± 1.4Ma is also recorded in western 707 

Unst, and can be attributed to the Grampian II event. Pressure-temperature estimates for 708 

western Unst range between 7.5 – 8.5 kbar, and 630 – 650oC (Cutts et al. 2011). This suggests 709 

that regional metamorphism in Unst occurred at both c. 450 Ma and c. 470 Ma.  There is also 710 

some evidence for late Ordovician garnet growth on Yell (sample AB08-8), although the garnets 711 

from this sample are relatively unradiogenic.  712 

There is evidence of a possible structural control on the locations of Grampian II garnet 713 

growth. Post-Grampian I metamorphism only occurs where the dominant tectonic fabrics are 714 

shallowly dipping (i.e. not in the Central Steep Zone in Central Shetland and Yell, Fig. 2), which 715 

may reflect that these were easier to reactivate during subsequent tectonic events. Set against 716 

this, sample AB08-18 was obtained from an area of steeply-dipping fabrics in the Lunna Ness 717 

peninsula (Fig. 4) and yielded a Lu-Hf age of c. 449 Ma. However, this anomaly might indicate that 718 

some fabric steepening occurred after c. 450-445 Ma. Areas with shallowly-dipping fabrics do not 719 

exclusively record later Caledonian events as there are several examples of these west of the 720 



Walls Boundary Fault and in the footwall of the Shetland Ophiolite Complex in both Unst and 721 

Fetlar where only c. 480-470 Ma garnet ages have been recorded. 722 

Metamorphic events of broadly the same age have been recorded along strike of Shetland 723 

in the Uppermost Allochthon of Scandinavia, for example the c. 450 Ma eclogite facies event of 724 

Corfu et al. (2003). One possibility is that here the Late Ordovician event(s) resulted from the 725 

accretion to Laurentia of the outermost segments of a hyper-extended Baltican continental 726 

margin (Jakob et al. 2019).  727 

 728 

Scandian garnet growth in Shetland 729 

Our data provides evidence of Silurian metamorphism on both sides of the Walls Boundary Fault. 730 

The 427 Ma Lu-Hf age obtained from reworked Archaean basement between the Uyea and 731 

Wester Keolka shear zones is only slightly older than the Rb-Sr muscovite ages of c. 416 Ma and 732 

c. 410 Ma yielded by the same orthogneisses c. 2 km farther west (Walker et al. 2016). The 733 

consistency of the two data sets provides an additional indication that the widespread reworking 734 

of basement here occurred at least in part during the Scandian orogenic event. However, if garnet 735 

grade metamorphic conditions prevailed during the Silurian, it is difficult to understand why c. 736 

720-700 Ma Rb-Sr muscovite ages recorded from the vicinity of the Wester Keolka Shear Zone 737 

(Walker et al. 2016) only 300 m structurally higher were not reset. Further isotopic investigations 738 

are needed to resolve this issue. The Sm-Nd age of 430 Ma recorded in NE Unst is also consistent 739 

with Scandian metamorphism, and published Rb-Sr mica ages of 440-430 Ma from Unst (Walker 740 

et al. 2016).  741 

The Silurian to Lower Devonian age indicated for Scandian deformation and 742 

metamorphism in Shetland overlaps with that established along strike in both the Northern 743 

Highland Terrane of mainland Scotland (Dallmeyer et al. 2001; Kinny et al. 2003; Goodenough et 744 

al. 2011; Mako et al. 2019; Strachan et al. 2020b) and the thrust allochthons of Scandinavia (Corfu 745 

2014).    746 

 747 

Significance of the Walls Boundary Fault 748 



Substantial displacements have been proposed for the Great Glen Fault in mainland Scotland, 749 

which has been correlated with the Walls Boundary Fault (Flinn 1961, 1977, 1992; Watts et al. 750 

2007). Both terranes either side of the Great Glen Fault were affected by Grampian I deformation 751 

and metamorphism (Kinny et al. 1999; Cutts et al. 2010; Bird et al. 2013), but evidence for the 752 

Scandian orogenic event and Grampian II episode are restricted to the Northern Highland Terrane 753 

(Kinny et al. 2003). Because the Scandian orogeny is attributed to the collision of Laurentia and 754 

Baltica, it is thought that the Northern Highland Terrane must have been located opposite 755 

southern Norway during plate collision, and was then displaced sinistrally along the Great Glen 756 

Fault by c.700-500 km to juxtapose it against the Grampian Terrane (Coward 1990; Dallmeyer et 757 

al. 2001; Dewey & Strachan 2003; Strachan et al. 2020b). By contrast, there does not appear to 758 

be any significant difference in the timing of Caledonian metamorphic events either side of the 759 

Walls Boundary Fault (Fig. 6), although this is not unexpected given that any northern extension 760 

of the Great Glen Fault would at some point be separating crustal blocks that were both affected 761 

by the Scandian orogeny.  However, the potential incompatibility of Ediacaran events either side 762 

of the Walls Boundary Fault alluded to above may be indicative of significant lateral displacement 763 

and requires further investigation.   764 

     765 

Conclusions 766 

1. The Lu-Hf and Sm-Nd garnet ages presented here indicate a complex Neoproterozoic 767 

and Lower Palaeozoic orogenic history for the Laurentian Caledonides of Shetland.   768 

2. A Lu-Hf age of c. 1050 Ma obtained from Neoarchaean basement in NE Yell compares 769 

with the timing of eclogite facies metamorphism of basement in the Caledonides of NW Scotland 770 

during the Grenvillian orogeny. We assign the new age from NE Yell to the same tectonic event 771 

which in Scotland probably resulted from the collision of Baltica and Laurentia during the 772 

assembly of Rodinia (Li et al. 2008; Strachan et al. 2020a).  773 

3. A 3-garnet Lu-Hf isochron age of 907 ± 14 Ma obtained from the Westing Group is 774 

consistent with the 938-925 Ma span of published zircon and monazite ages and attributed to 775 

the Renlandian accretionary orogenic event of Cawood et al. (2010).  776 



4. Ediacaran garnet ages of c. 622-606 Ma obtained from the Walls Metamorphic Series 777 

are more difficult to explain because the eastern margin of Laurentia is thought to have been in 778 

extension at that time during the break-up of Pannotia. However, similar metamorphic ages have 779 

been recorded from Laurentian-derived allochthons in Scandinavia, suggesting a more 780 

widespread event that is not yet understood fully. 781 

5. Lu-Hf garnet ages of c. 510 Ma obtained from the Walls Metamorphic Series and c. 491 782 

from metamorphic sole of the Shetland ophiolite are interpreted as corresponding to the onset 783 

of Grampian I orogenic activity which has been widely documented in mainland Scotland, Ireland 784 

and in the Laurentian-derived allochthons of Scandinavia. Peak metamorphism was reached by 785 

c. 485 Ma, which is c. 10 Ma earlier than in mainland Scotland. There is widespread evidence of 786 

garnet growth on both sides of the Walls Boundary Fault until c. 466 Ma which also indicates a 787 

more protracted Grampian event in Shetland.  788 

6. Lu-Hf and Sm-Nd ages ranging between c. 459 and c. 442 Ma are attributed to the Late 789 

Ordovician Grampian II event, significantly widening its geographical extent from mainland 790 

Scotland and providing linkage with similar-age events in the Laurentian-derived allochthons of 791 

Scandinavia. Garnet growth of this age is recorded on both sides of the Walls Boundary Fault and 792 

appears to have been focused in areas where pre-existing foliations were gently-inclined and 793 

thus may have been relatively easily reworked.    794 

7. Lu-Hf and Sm-Nd ages of c. 430 Ma obtained from two samples in Shetland are 795 

interpreted to correspond to the Scandian orogeny. The relative paucity of Silurian ages suggests 796 

that the Scandian orogenic event here was not characterized by sufficiently high temperatures 797 

and pressures to result in widespread garnet growth. 798 

8. There is no significant difference in the timing of Caledonian orogenic events either 799 

side of the Walls Boundary Fault, although this need not preclude linkage with the Great Glen 800 

Fault. However, the incompatibility of Ediacaran events either side of the Walls Boundary Fault 801 

may indicate significant lateral displacement and requires further investigation.   802 
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Figure and table captions  1096 

 1097 

Fig. 1. (A) Regional context of Shetland in its pre-Mesozoic rifting setting (modified from Bird et 1098 

al. 2013) NHT – Northern Highland Terrane; MTZ = Moine Thrust Zone; GGF – Great Glen Fault; 1099 



SUF – Southern Uplands Fault; HBF – Highland Boundary Fault; IS – Iapetus Suture; CB – Clew Bay 1100 

(B) Geological map of Shetland including sample locations. 1101 

 1102 

Fig.2. Speculative, sketch cross-section of the orogenic wedge in the Shetland region following 1103 

west-directed ophiolite obduction and Grampian I folding and ductile thrusting, and showing the 1104 

east-facing recumbent fold which developed east of the Walls Boundary Fault (the Shetland 1105 

‘mega-monocline’ of Flinn Ϯ00ϳ). Late (Mesozoic?) east-side-down displacement on the Bluemull 1106 

Sound Fault resulted in the present juxtaposition of lower, west-dipping (east Yell) and upper, 1107 

east-dipping (Unst) fold limbs. The kinematic significance of this fold is uncertain, one possibility 1108 

is that it resulted from backthrusting, perhaps in combination with underthrusting/tectonic 1109 

wedging of a basement block. SVG, Sand Voe Group; YSG, Yell Sound Group; WMC, Walls 1110 

Metamorphic Complex; WBF, Walls Boundary fault; A, Archaean; WG, Westing Group; SG, Scatsta 1111 

Group, WNG, Whiteness Group; CHG, Clif Hills Group; BSF, Bluemull Sound Fault. 1112 

 1113 

Fig. 3. Example of the relationship of colour, trace-element characteristics, and age of garnets. 1114 

This is sample SW13-27 from the Hillswick Peninsula in western Mainland Shetland.  1115 

 1116 

Fig. 4. Geological map of Shetland with sample locations and garnet ages placed in geographical 1117 

setting.  1118 

 1119 

Fig. 5. Thin section photographs of samples (A) SW15-12, (B) SW15-07, (C) SW12-16, and (D) 1120 

SW12-15 along with LA-ICPMS traverse data for those samples. Note that the LA-ICPMS traverses 1121 

were not determined on the minerals shown in this figure, and that they are representative of 1122 

the garnets in each sample. Mineral abbreviations from Kretz (1983).   1123 

 1124 

Fig. 6. Graphical representation of Caledonian Lu-Hf and Sm-Nd garnet ages determined in this 1125 

study, along with those from other modern geochronological studies from metamorphic 1126 

lithologies in Shetland. 1 = Walker et al. 2016; 2 = Crowley & Strachan 2015; 3 = Cutts et al. 2011; 1127 

4 = Jahn et al. 2017. 1128 



  1129 

Table 1. Locations, lithologies, geological significance, and mineral assemblages of the dated 1130 

samples. WG – Wilgi Geos group; WKSZ – Wester Keolka Shear Zone; SVG – Sand Voe Group; EG 1131 

– Eastern Gneisses; WMS – Walls Metamorphic Series; BFL – Burra Firth Lineament; YSG – Yell 1132 

Sound Group; EMS – East Mainland Succession. Mineral abbreviations from Kretz (1983).  1133 

 1134 

Table 2. Lu-Hf and Sm-Nd data and ages. Samples marked with * are not considered robust and 1135 

are not discussed in the text. Ages in italics are multi-point isochrons. Samples marked with § 1136 

were analysed at the Institute of Geological Sciences, Polish Academy of Sciences, Kraków. All 1137 

uncertainties are stated at 2σ. Mineral abbreviations from Kretz (1983).  1138 

 1139 

 1140 



Table 1. 
Sample Location Grid Ref Lithology Geological significance Mineral assemblage 

West of the WBF      

SW15-12 North Roe HU 34860 91768 WG Garnet amphibolite 
Metamorphism west of 

the WKSZ Amph+Ep+Qtz+Grt+Bt+Opaque 

AB08-11 Fethaland HU 37230 93435 SVG Benigarth Pelite Eastern Gneiss basement Qtz+Wm+Bt+Chl+Grt+Opaque+Tur 
AB08-12 Fethaland HU 37388 93234 Amphibolite Eastern Gneiss basement Qtz+Pl+Mc+Amph+Grt+Ttn+Zo+Rt+Wm+Ap+Chl 
AB08-13 Burra Voe HU 37410 89054 SVG Pelitic schist Moine-equivalent Grt+Wm+Qtz+Chl+Ttn+Chd 

SW13-8 Burra Voe HU 37340 89159 EG Amphibolite 
Interleaved basement 

inlier Amph+Qtz+Grt+Wm+Bt+Czt+Ap+Zrc+Rt 

SW13-27 Hillswick HU 2795 7723 EG Pelite 
Metamorphism in the 

Eastern Gneisses Amph+Qtz+Plag+Wm+Rt+Grt+Chl+Zrc+Bt 

SW15-5 Queyfirth HU 354 829 Amphibolite 
Metamorphism in the 

Eastern Gneisses Amph+Qtz+Ep+Bt+Grt+Ap+Zrc+Ttn 

SW15-01 Shaabers Head HU 27817 59096 WMS pelite 
Metamorphism in the 

WMS Qtz+Kspar+Pl+Wm+Bt+Chl+Grt+Opaque 

SW15-3 Neeans HU 27249 59112 WMS Granite gneiss 
Metamorphism in the 

WMS Qtz+Kspar+Wm+Chl+Bt+Ep+Zrc+Grt+Rt 

SW15-6 West Burrafirth HU 24896 56918 WMS amphibolite 
Metamorphism in the 

WMS 
Qtz+Kspar+Pl+Bt+Chl+Grt+Zrc+Opaque+Amph+Ap+Rt 

East of the WBF      
Mainland      

SW12-7 East Burrafirth HU 3695 5080 Semi-pelitic gneiss 
Metamorphism in Central 

Mainland 
Qtz+Pl+Wm+Ep+Grt 

AB08-18 Lunna Ness HU 51842 74106 Valayre Gneiss amphibolite 
Metamorphism of the 

Valayre Gneiss Qtz+Amph+Pl+Grt+Opaque+Ttn 

Yell      
AB08-4 Sands of Breckon HP 52751 05341 YSG paragneiss Migmatisation of the YSG Qtz+Pl+Wm+Bt+Grt+Opaque+Ap+Zrc+Ttn+Rt+Chl 
AB08-6 Migga Ness HP 53974 05230 Basement amphibolite Basement metamorphism Qtz+Cpx+Amph+Pl+Ttn+Opaques 

AB08-8 Kirkrabister HU 54004 9501 Amphibolite 
Prograde metamorphism 

in the YSG 
Grt+Amph+Pl+Qtz+Opaques+Zrc 

SW12-20 North Sandwick HP 5501 9696 Pelite 
Prograde metamorphism 

in the YSG 
Qtz+Kspar+Bt+Wm+Chl+Grt+Ky+Zrc+Gr+Rt 

Unst      
AB08-14 Westing Group HP 56784 07120 Gneiss Metamorphism in the Qtz+Pl+Wm+Bt+Grt+Ky+Stau+Opaque+Zrc+Sill 

Wable COicN heUe WR acceVV/dRZQORad;WabOe;TabOe 1_gaUQeW VaPSOe WabOe.dRc[
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Westing Group 

AB08-15 Burrafirth HP 58766 11098 Valla Field Pelite 
Metamorphism W of the 

BFL 
Qtz+Plag+Wm+Bt+St+Ky+And+Sil+Grt+Chd+Chl+Zrc+Opaque 

SW12-15 W. of Watlee HP 5814 0548 Valla Field Pelite 
Metamorphism W of the 

BFL Qtz+Wm+Opaque+Staur+Ky+Chd+Chl 

SW12-16 Saxa Vord HP 6315 1652 Saxa Vord Pelite 
Metamorphism E of the 

BFL Wm+Chd+Grt+Chl+Opaque+Staur+Qtz 

Fetlar      

SW12-14 Hamars Ness HU 5789 9287 EMS migmatitic schist 
High grade met in 
ophiolite footwall Qtz+Pl+Kspar+Wm+Bt+Grt+Chl+Opaque+Zrc+Rt 

SW15-7 Virva HU 64449 92009 Metabasite 
Metamorphic sole of the 

ophiolite Cpx+Pg+Grt+Ttn+Cal+Chl 

      
 



Table 2. 
Sample fraction Lu 

ppm 
Hf 

ppm 
176Lu/176

Hf 
176Hf/177Hf 2se 176Hf/177Hf0 Age (Ma) Sm 

ppm 
Nd 

ppm 
147Sm/144

Nd 
143Nd/144Nd 2se   

               
West of the WBF               
               
SW15-12 wr tt 0.3094 0.5355 0.08164 0.283025 0.000018          
SW15-12 grt 3.047 0.4930 0.8746 0.289363 0.000025 0.282353±20 426.9±2.5        
               
AB08-11 wr § 0.5813 2.970 0.02766 0.282493 0.000006 X  3.639 15.01 0.1466 0.511967 0.000007 X  
AB08-11 wr fl * 0.5858 5.245 0.01578 0.282437 0.000008 0.282305±8 446.5±1.3        
AB08-11 grt red § 4.845 1.464 0.4680 0.286221 0.000008 N=3 MSWD=0.17 1.508 6.772 0.1346 0.512001 0.000007 X  
AB08-11 grt ora § 7.408 1.214 0.8634 0.289522 0.000012   0.7020 2.859 0.1484 0.512039 0.000008 X  
               
               
AB08-12 wr tt 0.7099 1.042 0.09629 0.283517 0.000009 X  4.727 17.41 0.1641 0.512440 0.000006 X  
AB08-12 wr fl* 0.7184 5.163 0.01966 0.282576 0.000009 0.282399±10 479.6±1.2        
AB08-12 grt 1 2.728 0.3711 1.0405 0.291758 0.000016  MSWD=1.4 0.2947 1.1172 0.1595 0.512432 0.000010 X  
AB08-12 grt 2 0.5118 0.0553 1.3107 0.294164 0.000017   1.711 6.465 0.1600 0.512445 0.000005 X  
AB08-12 amph 0.2014 0.9177 0.03101 0.283157 0.000006 X  4.373 15.88 0.1665 0.512493 0.000006 X  
               
               
AB08-13 wr tt 0.4289 2.672 0.02268 0.282402 0.000009 X  4.019 17.87 0.13594 0.511779 0.000009  470±6 

AB08-13 wr fl* 
0.5228 7.371 

0.01002 
0.282247 0.000005 

  
      MSWD 1.7, 

N=3 
AB08-13 grt ora 3.742 1.0393 0.5092 0.286517 0.000013 0.282161±5 456.7±2.0 4.563 22.44 0.12291 0.511748 0.000011   
AB08-13 grt pur 1.793 4.548 0.05572 0.282746 0.000006 0.282138±6 582±9* 1.890 2.753 0.4151 0.512643 0.000009 0.511358±14  
               
SW13-08 wr tt        2.581 13.40 0.11650 0.512453    
SW13-08 wr fl* 0.3684 2.063 0.02523 0.282707 0.000049          
SW13-08 grt ora § 3.547 0.3110 1.616 0.296601 0.000014 0.282487±50 466.3±2.2        
SW13-08 grt red § 3.839 0.8053 0.6744 0.288297 0.000007 0.282490±50 459.7±4.3        
               
SW15-01 wr tt 0.289 0.2367 0.171 0.283595 0.000051          
SW15-01 wr fl* 0.3193 7.092 0.00636 0.281940 0.000005          
SW15-01 grt Ora 4.922 2.804 0.2481 0.284269 0.000018 0.281879±5 514.1±4.4        
SW15-01 grt Pink 4.548 2.015 0.3190 0.284919 0.000010 0.281879±5 508.5±2.5        
               
SW15-03 wr tt 0.4036 0.2782 0.2051 0.283871 0.000032 X  4.459 21.74 0.12396 0.511810 0.000010   
SW15-03 wr fl* 0.4145 8.122 0.00721 0.282111 0.000006          
SW15-03 grt ora 8.736 15.90 0.07765 0.283022 0.000008 0.282018±6 689±8* 1.906 2.924 0.3942 0.512903 0.000013 0.511309±16 617±9 

Wable Click here to access/doZnload;table;Table 2 Lu-Hf and Sm-Nd ages (original).doc[
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SW15-03 grt red 6.798 2.897 0.3318 0.285068 0.000011 0.282045±6 486.3±2.5 1.641 1.900 0.5224 0.513045 0.000016 0.511426±14 473.2±7.2 
               
SW15-05 wr tt § 0.620 0.9137 0.095 0.283284 0.000016          
SW15-05 wr fl 0.6415 4.702 0.01928 0.282252 0.000011          
SW15-05 grt § 2.024 0.2324 1.234 0.293400 0.000074 0.282426±15 474.3±3.5        
               
SW15-06 wr tt § 0.7507 5.186 0.02045 0.282405 0.000012   9.273 47.46 0.11810 0.511925 0.000009   
SW15-06 wr fl 0.8067 9.529 0.01196 0.282299 0.000008 N=3 MSWD=0.93        
SW15-06 grt ora 7.218 3.668 0.2782 0.285407 0.000010 0.282162±7 621.9±3.1 0.9478 0.5520 1.0386 0.514710 0.000020 0.511568±10 461.9±3.7 
SW15-06 grt pink 15.36 4.207 0.5164 0.288039 0.000010 0.282163±8 606.4±2.9 2.019 1.0078 1.2121 0.515388 0.000034 0.511551±11 483.3±4.9 
      N=3 MSWD=1.7        
               
SW13-27 wr tt § 0.2744 0.2816 0.1377 0.283187 0.000019   2.311 9.605 0.1455 0.511470 0.000006   
SW13-27 wr fl 0.2913 3.527 0.01167 0.282078 0.000011          

SW13-27 grt ora § 3.298 0.9347 0.4990 0.286266 0.000013 0.281978±11 458.8±2.3 0.8421 1.867 0.2727 0.511868 0.000010 0.511015±17 478±14 
SW13-27 grt red § 3.935 1.123 0.4955 0.286183 0.000012 0.281979±11 453.0±2.3 1.0058 2.649 0.2295 0.511748 0.000010 0.510988±24 505±21 
               
East of the WBF               
Mainland                
               
SW12-07 wr tt 0.2093 0.6808 0.04344 0.282583 0.000020 X  0.8049 2.405 0.2023 0.512022 0.000018   

SW12-07 wr fl 0.2255 1.234 0.02583 0.282394 0.000044          

SW12-07 grt 47.06 1.438 4.659 0.323966 0.000013 0.282162±44 479.0±1.5 4.830 0.5261 5.572 0.528577 0.000026 0.511398±18 470.7±1.0 
               
AB08-18 wr tt 0.7555 1.968 0.05427 0.283061 0.000007          
AB08-18 grt ora 3.053 0.6278 0.6881 0.288637 0.000023 0.282584±8 469.6±2.5        
AB08-18 grt red 3.417 1.1798 0.4096 0.286050 0.000009 0.282605±8 449.2±2.3        
AB08-18 grt pink 2.886 1.1863 0.3439 0.285436 0.000017 0.282616±9 437.9±3.7        
               
               
               
Yell               
               
AB08-04 wr tt        4.388 21.83 0.1215 0.511842 0.000009   
AB08-04 grt        2.487 0.5463 2.757 0.519908 0.000021 0.511470±9 467.2±1.4 
               
AB08-06 wr tt 0.7905 0.4009 0.2789 0.287950 0.000037 X  3.256 9.754 0.2019 0.512864 0.000012   
AB08-06 wr fl 0.7745 1.467 0.07464 0.284861 0.000030          
AB08-06 grt 4.518 0.1193 6.735 0.416718 0.000080 0.283383±32 1051.2±3.2 2.849 1.743 0.9891 0.517320 0.000013 0.511721±16 863.1±3.6 
               
               
AB08-08 wr tt 0.8507 0.4315 0.2787 0.285073 0.000023 0.282707±16 453.6±5.1 2.521 4.735 0.3218 0.512924 0.000015 0.511916±19 478.1±2.3 



AB08-08 wr fl 0.8553 2.625 0.04604 0.283099 0.000011 N=3 MSWD=0.16      N=3 MSWD=0.42 
AB08-08 grt purp 1.083 0.9945 0.1539 0.284017 0.000006   1.489 0.5826 1.5472 0.516766 0.000017   
AB08-08 grt ora 1.121 0.9123 0.1737 0.284156 0.000010 0.282718±16 442±6 1.282 0.4901 1.5835 0.516872 0.000015   
               
SW12-20 wr tt 0.4186 0.2627 0.2253 0.284157 0.000023 X  5.869 29.94 0.11849 0.511821 0.000008   
SW12-20 wr fl 0.4696 5.356 0.01239 0.282095 0.000005          
SW12-20 grt 18.62 2.241 1.1762 0.292509 0.000014 0.281984±5 477.7±1.6 0.6775 0.3528 1.16184 0.515010 0.000044 0.511459±10 466.6±6.6 
               
Unst               
               
AB08-14 wr tt 0.6710 0.2030 0.4676 0.288160 0.000090 X  2.653 12.41 0.12925 0.511765 0.000005   
AB08-14 wr fl 0.7937 6.595 0.01700 0.282236 0.000005  or 1 change        
AB08-14 ora 1 2.862 2.178 0.1858 0.284820 0.000013 0.281976±6 814.6±5.1 1.751 1.717 0.6166 0.513645 0.000007 0.511266±7 588.7±2.8 
AB08-14 ora 2 2.608 2.074 0.1778 0.284530 0.000008 0.281994±6 759.5±4.0 1.651 1.587 0.6293 0.513666 0.000006 0.511274±7 580.2±2.5 
AB08-14 pink 1 3.586 1.852 0.2739 0.286323 0.000010 0.281966±6 846.3±3.5 1.882 2.919 0.3899 0.512744 0.000005 0.511280±8 573.2±4.2 
AB08-14 pink 2 3.520 2.103 0.2366 0.285692 0.000012 0.281969±6 837.3±4.1 1.796 2.071 0.5244 0.513279 0.000005 0.511270±7 584.7±2.8 
               
AB08-15 wr tt 0.4122 0.9122 0.06386 0.282678 0.000015 X  3.633 20.62 0.10650 0.511449 0.000009   
AB08-15 wr fl 1 0.4513 4.702 0.01356 0.282103 0.000007          
AB08-15 wr fl 2 0.4201 4.200 0.01413 0.282114 0.000008          
AB08-15 pink 10.050 1.270 1.1204 0.292153 0.000008 0.281982±5 484.5±1.5 0.9312 0.7170 0.7853 0.513549 0.000019 0.511120±11 472.3±4.8 
AB08-15 ora 7.537 1.546 0.6897 0.287968 0.000012 0.281988±5 462.9±1.7 1.0770 0.5214 1.2494 0.514858 0.000024 0.511131±10 455.4±3.5 

      MSWD=1.2 
For both: 3-
point using 
both fl WR 

       

SW12-15 wr tt 0.2632 0.2426 0.1534 0.283418 0.000042 X  7.696 43.70 0.10643 0.511514 0.000004   
SW12-15 wr fl 0.3716 4.708 0.01115 0.281966 0.000008          
SW12-15 grt 15.21 0.5859 3.6893 0.313103 0.000026 0.281872±8 452.0±1.4 0.6459 0.3890 1.0041 0.514185 0.000044 0.511197±6 454.3±7.5 
               
SW12-16 wr tt 1 0.2218 1.369 0.02290 0.282123 0.000009 X  2.715 16.28 0.10079 0.511302 0.000005 0.511018±6 430.4±4.2 
SW12-16 wr fl1 0.2542 4.176 0.00860 0.281883 0.000008 0.281814±4 470.0±1.2      N=4 MSWD=0.88 
SW12-16 wr fl2 0.2575 4.157 0.00875 0.281892 0.000007 N=6 MSWD=1.1        
SW12-16 wr fl3* 0.2481 4.068 0.00862 0.281891 0.000005          
SW12-16 grt 1 4.351 1.867 0.3295 0.284714 0.000007   0.2175 0.1941 0.6774 0.512936 0.000020   
SW12-16 grt 2 4.376 1.837 0.3368 0.284774 0.000008   0.2023 0.1865 0.6559 0.512854 0.000027   
SW12-16 grt 3 3.641 1.831 0.2811 0.284293 0.000006   0.2214 0.2009 0.6662 0.512889 0.000036   
               
               
Fetlar               
***swapped 12-14WR 
for 12-16WR and vv 

              

SW12-14 wr 1 tt 0.3200 0.2958 0.1529 0.283223 0.000025 X  6.783 38.02 0.10782 0.511584 0.000006   
SW12-14 wr 2 tt 0.2934 0.1337 0.3101 0.284685 0.000044 X         



SW12-14 wr fl 0.4198 7.100 0.00835 0.281933 0.000008          
SW12-14 grt 1 7.801 1.983 0.5564 0.286919 0.000007   0.9167 1.1249 0.4927 0.512731 0.000011 0.511264±8 453.7±3.8 
SW12-14 grt 2 7.860 1.985 0.5601 0.286935 0.000008   0.8715 0.8987 0.5863 0.513002 0.000014 N=3 MSWD=0.64 
SW12-14 grt pink § 7.742 1.978 0.5536 0.286885 0.000008   0.9355 1.4208 0.3980 0.512473 0.000011 0.511251±8 472±10 
SW12-14 grt ora § 8.545 2.243 0.5388 0.286731 0.000016 0.281857±4 484.5 ± 1.4 0.9835 1.5489 0.3839 0.512444 0.000010 N=3 MSWD=3.8 
       MSWD=1.6        
               
SW15-07 cpx § 0.0879 0.7649 0.01624 0.282801 0.000034          
SW15-07 grt core § 3.840 0.3192 1.705 0.298404 0.000078          
SW15-07 amph § 0.1685 1.145 0.02079 0.282912 0.000044          

SW15-07 grt rim § 2.592 0.3688 0.9950 0.291772 0.000096 
N=4, MSWD 

4.1 
491.4±5.5 
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