
1 

Fingerprint enhancement using multi-scale classification dictionaries with reduced 
dimensionality 

Deqin Xu1,2, Weixin Bian1,2,3,*, Yongqiang Cheng3, Qingde Li3, Yonglong Luo1,2, Qingying Yu1,2 

1School of Computer and Information, Anhui Normal University, Wuhu, 241002, China 
2Anhui Province Key Laboratory of Network and Information Security, Wuhu, 241002, China 
3Department of Computer Science and Technology, University of Hull, Hull, HU6 7RX, UK 
*bwx2353@ahnu.edu.cn

Abstract: In order to improve the quality of fingerprint with large noise, this paper proposes a fingerprint enhancement
method by using a sparse representation of learned multi-scale classification dictionaries with reduced dimensionality. Multi-
scale dictionary is used to balance the contradiction between the accuracy and the anti-noise ability, which has been shown
to be an ideal solution to reconcile the demands of enhancement quality and computational performance. Principal
component analysis (PCA) is applied in our technique for dimension reduction of multi-scale classification dictionaries. Under
the quality grading scheme and multi-scale composite windows, the fingerprint patches are enhanced by using a sparse
representation of learned multi-scale classification dictionaries with reduced dimensionality according to their priorities. In
addition, the multi-scale composite windows help the more high quality spectra diffuse into the low quality fingerprint patches
and this can greatly improve the spectra quality of them. Experimental results and comparisons on FVC 2000 and FVC 2004
databases are reported. And it shows that the proposed method yields better result in terms of the robustness of fingerprint
enhancement as compared with latest techniques. Moreover, the results show that the proposed algorithm can obtain better
identification performance.

1. Inroduction

Fingerprints are the most common biometrics used for

personal identification in commercial and forensic areas [1-4]. 

The fingerprint image enhancement is a crucial task for most 

automatic fingerprint identification systems (AFIS). A 

fundamental requirement in AFIS is to extract reliable and 

faithful fingerprint features from fingerprint images even with 

poor quality [5]. We have to enhance fingerprint to improve 

performance of minutiae extraction algorithms. 

In recent years, various solutions have been proposed to 

enhance the fingerprint images [6-17]. Hong et al. [6] employed 

even symmetric Gabor filter in fingerprint filtering process, 

which is considered to be one of the most popular fingerprint 

enhancement methods. The filter is designed according to two 

parameters: ridge orientation and ridge frequency, and is used 

as band-pass filter to reduce the undesired noise and preserve 

the true ridge and valley structures of fingerprint images. 

However, Gabor filters have two main limitations [7]: the 

maximum bandwidth of a Gabor filter is limited to 

approximately one octave; and Gabor filters are not optimal if 

one is seeking broad spectral information with maximal spatial 

localization. Furthermore, the signal orthogonal to the local 

orientation in fingerprint images does not always result in an 

ideal sine wave [8]. In order to overcome the drawbacks, some 

modified methods based on Gabor filter have been proposed to 

meet the need of low quality fingerprint image enhancement 

[10-14]. These methods show a potential in fingerprint image 

enhancement in comparison to classical Gabor filter methods. 

Chikkerur et al. [15] proposed a filtering method to enhance 

fingerprint image by using short time Fourier transform (STFT). 

In this method, they designed a directional band-pass filter to 

improve the quality of the fingerprint image. Similar to [6], this 

method also need to use the parameters of patch frequency and 

orientation. The parameters involved in the filters are very 

difficult to be accurately computed by using a simple STFT. 

Sutthiwichaiporn et al. [16] employed an adaptive boosted 

spectral filtering (ABSF) to enhance fingerprint image. In their 

method, the fingerprint image is divided into patches in spatial 

domain and the patches are enhanced using a Gaussian-matched 

filter according to their quality grades. This strategy can 

iteratively propagate higher-quality spectra of enhanced 

patches to lower-quality patches to be enhanced. This helps 

improve the quality of the patches with large noise. The 

fingerprint ridge signal noise suppression and the fingerprint 

patch quality evaluation are the key to success. In [16], the 

authors used the percentile of high spectra as an empirical 

threshold to evaluate the ridge signal. However, the ridge signal 

spectra are unevenly distributed in different patches. 

Consequently, this approach is not appropriate to estimate the 

ridge signal and may lead to bad results of enhancement. As a 

fingerprint ridge is in general of an obvious orientation 

characteristic, using a 2D angular-pass filter (APF) with 

orientation-selectivity obviously helps to remove the noise 

spectra in a patch signal. In view of this, Ding et al. [17] 

designed a robust 2D adaptive Chebyshev band-pass filter 

(ACBF) with orientation-selectivity to enhance fingerprint 

based on the quality grading scheme. It succeeded with the aid 

of spectra diffusion. Comparing with the method in [16], its 

effects are better in terms of noise suppression and ridge signal 

preservation. Under the quality grading scheme, the fingerprint 

patches are enhanced based on its own quality grade. It means 

that the higher quality patches will be enhanced before the 

lower quality patches. So, it can ensure that the higher quality 

spectra diffuse into lower quality patches with the help of the 

scheme of patch quality grading. Bian et al. [18] designed a 

collaborative filtering model for enhancing fingerprint image, 

where the Gabor filter and linear contrast stretching (LCS) are 

employed to pre-enhance the original fingerprint, and 
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subsequently enhancing the pre-enhanced fingerprint using the 

collaborative model. 

Recently, the sparse representation theory in image 

processing arouses widespread concern [19]. It has made great 

achievements in face recognition [20, 21], image denoising [22, 

23], image super-resolution [24, 25] and image fusion [26, 27]. 

The relatively less active research on fingerprint image sparse 

representation also starts to attract the researcher’s attention. 

[28-31]. The focuses of these researches are mainly on 

exploring new and efficient methods to improve the 

performance of the AFIS, and some achievements and 

progresses have been made recently in this area. 

In order to overcome the limitations of the Gabor filter, Ding 

et al. [31] used a sparse representation-based classification 

dictionaries learning (CDL) to enhance the fingerprint image. 

According to the ridge orientation patterns, the authors classify 

the fingerprint patches into different classes and separately 

learn classification sparse representations to capture the more 

accurate ridge prior information. The proposed method 

improves the performance of fingerprint enhancement to some 

extent. However, there are some limitations and flaws in their 

method. The sparse representation-based dictionary learning for 

fingerprint enhancement is highly computationally expensive. 

Furthermore, the fingerprint is enhanced based on the 

dictionary with a single scale which cannot provide a good 

balance between the accuracy and the anti-noise ability of the 

enhanced fingerprint. 

To overcome the above mentioned limitations and flaws in 

[31], in this research, we propose a robust fingerprint 

enhancement via sparse representation over learned multi-scale 

classification dictionaries with reduced dimensionality. In fact 

the anti-noise ability of fingerprint patch enhancement varies in 

relation to the patch size. It is weakened when the patch is small 

and is strengthened when the patch is large. On the other hand, 

the smaller the size of a patch, the higher the accuracy of the 

enhancement. In other words, the distortion of the enhanced 

fingerprint patch becomes more noticeable when the patch size 

is enlarged. In this paper, the fingerprint image is enhanced by 

using the quality grading scheme, where the higher quality 

patches are enhanced using the dictionary with smaller size. By 

doing so, it is not only to be able to obtain a good balance 

between the accuracy and the anti-noise ability of enhanced 

fingerprint, but also can significantly reduce the computational 

complexity of proposed method. 

As described in [31], comparing to a generic image, a 

fingerprint image has an intrinsic ridge pattern. Reliable 

estimation of fingerprint ridge orientations is a fundamental 

prerequisite for a good image enhancement [32]. Data 

dimensionality reduction algorithm is a very important tool and 

methods to transform data from a high dimensional space to a 

low dimensional space to reveal the intrinsic structure of 

complex data [33, 34]. Instead of learning a shared sparse 

representation for all fingerprint patches, the proposed method 

learn classification dictionaries for each class training dataset 

by using dimension-reduced dictionaries achieved by the 

Principal Component Analysis (PCA). It can better capture the 

intrinsic ridge pattern prior. The fingerprint is enhanced by 

using multi-scale dictionaries and spectra diffusion based on the 

patches quality grading scheme. This is achieved by using the 

multi-scale window and quality assessment approach. Ideally, 

in a local neighborhood, fingerprint ridges and valleys form a 

sine wave which has a distinct orientation and frequency. 

Therefore, in order to improve the performance of algorithm, 

we learn the classification dictionaries with reduced 

dimensionality and different scales in frequency domain. 

The rest of the paper is organized as follows. The discussion 

on fingerprint pre-enhancing is provided in Section 2. The 

fingerprint patch dimension reduction techniques based on 

Principal Component Analysis (PCA) is introduced briefly in 

Section 3. In Section 4 we describe how to construct the multi-

scale classification dictionaries with reduced dimensionality 

and the proposed fingerprint enhancement method is described 

in detail in Section 5. Experiments conducted and relevant 

analysis are given in Section 6. Finally, some conclusions of 

this research are drawn in Section 7. 

2. The fingerprint image pre-enhancement 

To improve the fingerprint image quality, we first enhance 

original fingerprint image using Gabor filtering and thus 

improve the regions with weak noise. The details of this 

procedure are described in literature [6]. The even-symmetric 

Gabor filter has the general form below, 
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where   is the orientation of the Gabor filter, f is the frequency 

of a sinusoidal plane wave, and x  and y  are the space 

constants of the Gaussian envelope along x and y axes, 

respectively. The spatial characteristics of Gabor filter are 

illustrated in Fig. 1.  

Hong et al assumed that fingerprint ridge have distinct 

orientation and frequency in local region and form an ideal sine 

wave [6]. Therefore, if we can input the accurate ridge 

orientation and frequency into Gabor filters, then the noises in 

fingerprint ridge signal can be removed while preserving the 

genuine ridge and valley structures. 

However, in fact this assumption in [6] is unreliable because 

some ridges will not form sine waves in some regions 

(especially in the regions with low quality). Nevertheless, a 

better algorithm should be able to enhance the low quality 

 

  

(a) (b) 

Fig.1.  Examples of even-symmetric Gabor filter in the spatial domain. (a) 

The Gabor filter with f=0.1, x = y =4.0， o0= . (b) The Gabor filter with 

f=0.1, x = y =4.0, 
o90= . 
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regions. Fig. 2 (b) gives an example to illustrate the 

enhancement results using Gabor filter. The sample fingerprint 

image is taken from FVC2000 DB1_B 108_6. As we can see 

from this example, Gabor filter does improve noticeably the 

quality of input fingerprint images in the regions with weak 

noise, but it does little to enhance the regions with strong noise.  

In fact, in the fingerprint image enhanced by Gabor filter, the 

gray level of a pixel in a fingerprint image constitutes 

approximately 50 percent of the total grayscale space or lower. 

This undoubtedly shrinks fingerprint image contrast space and 

weakens its contrast. In this research, we use the LCS [18] to 

enhance the contrast of fingerprint enhanced by Gabor filter 

[18]. As is shown in Fig. 2 (c), using LCS to enhance fingerprint 

contrast can significantly improve the fingerprint quality, also 

it can well preserve the ridge information. 

   

(a) (b) (c) 

Fig.2.  Fingerprint image pre-enhancement. (a) the original fingerprint image, 

(b) the fingerprint image enhanced by Gabor filter, (c) the fingerprint image 

contrast enhancement by the LCS . The original fingerprint image comes from 

FVC2000 DB1_B 108_6. 

3. Dimensionality reduction based on PCA 

In the training and enhancing algorithms, the computational 

complexity and the dimensionality of samples are closely 

related. Performing dimensionality reduction to the samples 

will correspondingly reduce the computational cost in the 

subsequent dictionary learning and fingerprint enhancing.  

One of the problems in high-dimensional datasets is that, in 

many cases, not all the measured variables are “important” for 

understanding the underlying phenomena of interest. Those less 

important factors can be removed by performing the PCA, a 

commonly used mathematical algorithm that can dramatically 

reduce the dimensionality of the data without losing much 

information for the key factors in the data set. PCA is, in the 

sense of mean-square error, the best linear dimension reduction 

technique [35]. In essence, PCA seeks to reduce the dimension 

of the data by finding a few orthogonal linear combinations (the 

PCs) of the original variables with the largest variances [36]. 

The first principal component is the linear combination of 

variables corresponding to the largest variance, and the second 

principal component corresponds to the linear combination of 

variables associated with the second largest variance, and so on. 

In general, for data sets with many variables, only several of the 

bigger variances of the principal components are important, all 

those smaller variances associated with the rest of principal 

components can be ignored without losing much information. 

This is usually referred to as dimensionality reduction of a data 

set. 

The fingerprint sample patches, partitioned as W×W=n pixel 

patches in spatial domain, are represented as 
n

m F  of n 

dimensions, and their corresponding spectra in frequency 

domain are represented as 
n

sm F . To reduce the dimension 

of fingerprint patches spectra, we apply the PCA on these patch 

vectors , 1,2, ,sm m M=F , and seek a subspace on which these 

vectors could be projected while preserving 99.9% of their 

average energy. The projection matrix that transforms the patch 

spectra 
n

sm F  to corresponding reduced feature spectra 
k

sm F , n>>k, is defined as k nP . And then, the reduced 

patch spectra 
k

sm F  can be obtained: 

sm sm=F PF          (4) 

4. The construction of multi-scale classification 
dictionaries with reduced dimensionality 

In order to achieve reasonable classification dictionaries to 

enhance the fingerprint, in this paper the ridge pattern prior and 

the patch size of the fingerprint are used to boost dictionary 

learning and fingerprint enhancement. In the following, we first 

address how to assess the quality of fingerprint patches, and 

then present the model of the multi-scale classification 

dictionaries with reduced dimensionality. 

4.1. The quality assessment of fingerprint patches 

There are two aspects to the assessment of the quality of a 

fingerprint patch: one is to build a reliable training patch set, 

and the other is to ensure that the higher quality fingerprint 

patches can be enhanced before the lower quality fingerprint 

patches. We assess the fingerprint patch quality using the 

coherence of point orientation in the patch [37, 38]. It can 

ensure that the high quality patches are assessed reliably. It may 

mistakenly classify some higher quality patches (e.g., 

singularity area) for lower quality ones only in rare cases, but it 

rarely misclassifies the lower quality patches as higher quality 

ones. That is what we need. 

According to the level of coherence of a patch, the fingerprint 

patch quality can be grouped into high, medium, low or poor. 

The coherence Coh, which ranges from 0 to 1, is estimated 

based on weighted linear projection analysis proposed by Bian 

et al. [38]. The type of patch quality ( , )p x yQ  can be defined as 

follow: 

( , )

1 [0.9,   1]

2 [0.8,   0.9)

3 [0.7,   0.8)

4

p x y

if Coh

if Coh
Q

if Coh

otherwise





= 




    (5) 

The values 1, 2, 3 and 4 correspond to the quality types of 

High, Medium, Low and Poor respectively. Fig. 3 gives an 

example of patch quality assessment and classification. As can 

be observed from the figure, the classification result is 

consistent with our expectations. 

4.2. Multi-scale classification reduction dictionaries 

Fingerprint ridge has a cyclical character in local region, 

which is well suited to frequency domain analysis. To get better 

performance, in a typical fingerprint enhancement algorithm 

fingerprint is partitioned in spatial domain first, and then is 

enhanced in frequency-domain. In this research, we propose to 

learn multi-scale classification reduction dictionaries from the 

corresponding spectrum training patch sets. To balance the 



 

4 

 

 

Fig.3.  An example of the quality of patch assessment: (a) the pre-enhanced fingerprint, (b) the assessment result. 

contradiction between the accuracy and the anti-noise, we learn 

the multi-scale dictionaries for enhancing fingerprint patches 

with different qualities. Furthermore, in order to obtain more 

reliable prior knowledge we learn C number of classification 

dictionaries in each scale. First of all, we build the training 

patch sets with different sizes separately. Then, the training 

patches with the same size are divided into C groups based on 

their own ridge orientation patterns. In the end, to further obtain 

more accurate ridge prior information, the quality of patches are 

assessed using the method described in Section 4.1, and the 

high quality patches in each of the training set are selected to 

build the ultimate training patch set. Before learning dictionary, 

all training patches are transformed to frequency domain using 

the 2-D discrete Fourier transform, and the patch spectra 

training sets are built. The 2-D discrete Fourier transform can 

be defined as follow: 

2 ( )1 1

( , ) ( , )2
0 0

1
( , ) ( , )

j mu nvW W

W
p x y p x y

m n

u v m n e
W

− +− −

= =

= F Y    (6) 

where Fp(x,y)(u,v) are the corresponding Fourier coefficients of 

Yp(x,y)(m,n). 

For notational convenience, let  1 2, , ,s s s sn=Y Y Y Y  be 

the sampled training fingerprint patches using a pre-specified 

scale s and  1 2, , ,s s s sn=F F F F  the corresponding set of patch 

spectra, where sN

si Y , , 1,2,sN

si i n =F . The patch 

spectra are the magnitude of the Fourier transform. Let 

 1 2, , , n  =θ  be the patch orientations computed using the 

approach described in [38] based on sample set Ys, then all 

fingerprint patches are divided into C groups according to 

different patch orientations θ  as 

𝐘𝑠 = {𝐘𝑠
1, 𝐘𝑠

2, ⋯ , 𝐘𝑠
𝐶 , }       (7) 

where 

𝐘𝑠
𝑖 = {𝐘𝑠1

𝑖 , 𝐘𝑠2
𝑖 , ⋯ , 𝐘𝑠𝑀

𝑖 , }, 𝑖 = 1,2, ⋯ , 𝐶  
and then the patch spectra set F are obtained 

𝐅𝑠 = {𝐅𝑠
1, 𝐅𝑠

2, ⋯ , 𝐅𝑠
𝐶 , }      (8) 

where 

𝐅𝑠
𝑖 = {𝐅𝑠1

𝑖 , 𝐅𝑠2
𝑖 , ⋯ , 𝐅𝑠𝑀

𝑖 , }, 𝑖 = 1,2, ⋯ , 𝐶 

where M is the training sample size of a class. 

For each classification, we firstly apply the PCA algorithm 

on the training set i

sF , and get the projection matrix 

,sk Ni

sk N


P , and then the dimensionality reduced 

training set 
i k

s F  can be obtained: 

i i i

s s=F P F           (9) 

The dictionary is learned from the corresponding training set 
i

sF . The K-SVD dictionary learning algorithm [39] is applied to 

the training set, resulting the dictionary sk Ni

s


D : 

𝐃𝑠
𝑖 = arg min

𝐃𝑠
𝑖 ,𝚪𝑠

𝑖
‖�̃�𝑠

𝑖 − 𝐃𝑠
𝑖 𝚪𝑠

𝑖‖
𝐹

2
     (10) 

𝑠. 𝑡 ∀𝑘 ‖𝛄𝑘‖0 ≤ 𝐿, 𝑖 = 1,2, ⋯ , 𝐶; 𝑘 = 1,2, , ⋯ , 𝐾 

Where L is the sparsity constrained item, K is the size of each 

class dictionary, kγ  is the sparsity representation coefficient 

vectors that corresponding to the training patches with reduced 

dimensionality. The dictionary 
i

sD  associated with a given scale 

s can be described as 

 1 2, , , C

s s s s=D D D D        (11) 

Let D0 be the initial dictionary. In general, D0 contains a lot 

of redundant information so that it can provide a sufficient 

representation for almost all possible fingerprint patterns and 

can characterize all sorts of spectra structures and details of 

fingerprints. In practice, D0 is initialized as the discrete cosine 

transform (DCT) overcomplete dictionary. DCT can in general 

provide an appropriate representation of fingerprint spectra. To 

create a more optimal dictionary, the K-SVD algorithm is used 

to remove the redundant information in the initial dictionary D0. 

The K-SVD algorithm typically includes two phases: sparse 

coding and dictionary updating. In the phase of sparse coding, 

the input signals in i

sF  are sparse-coded for the given estimation 

to the current dictionary, which produces a sparse 

representation matrix i

sΓ . In the phase of dictionary updating, 

the dictionary atoms are updated for the currently given sparse 

representations. In order to improve efficiency of dictionary 

learning, in proposed algorithm, the orthogonal matching 

pursuit (OMP) [40] is employed in the phase of sparse coding. 
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Fig.4.  Illustration of a sequence of operations performed by our proposed method. 

5. Fingerprint enhancement based on multi-scale 
classification dictionaries with reduced 
dimensionality 

In our algorithm, the fingerprint is enhanced by using the 

quality grading scheme and the strategy of the multi-scale 

composite windows (MCW). It makes the patches with higher 

quality being enhanced by just using the dictionaries with 

smaller sizes. Our proposed fingerprint enhancing process 

method is illustrated in Fig. 4. 

5.1. The fingerprint patch enhancement 

Once the multi-scale classification reduction dictionaries 
{ }i

sD  are constructed, the fingerprint patch enhancement phase 

attempts to reconstruct an enhanced patch ˆ
sy  from an original 

input patch sy  ( sN

s y ), and they have the same size s. The 

patch enhancement can be performed in the following steps: 

Step 1). Estimate the patch orientation sy  by using the 

method proposed in [38]. The patch is then divided into 

corresponding class i based on the computed orientation. 
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Step 2). Transform patch 
sy  into frequency domain 

according to Eq. (6), which generates patch spectra 
sf . The DC 

spectrum in sf  is then removed by replacing them with zero. 

The patch spectra ˆ k

s f  with reduced dimension can be 

obtained by transforming the patch spectra sf  using the 

projection matrix sk N
P : 

ˆ
s s=f Pf           (12) 

Step 3). Apply the OMP algorithm to the patch spectra ˆ
sf , 

and calculate the sparse representation vector 
* sN
γ  using 

the corresponding dictionary 
i

sD  according to the patch size and 

the patch classification obtained in step 1). 

 
2

*

12

ˆ= min     ,  i

s s i 1,2, ,C− + =
γ

γ f D γ γ   (13) 

Step 4). Transform the sparse representation vector 
*
γ  using 

the dictionary 
i

sD  to generate the enhanced patch spectra 
k

s f

: 
i

s s

=f D γ          (14) 

Step 5). Restore the enhanced patch spectra sf  to the size of 

original patch. This can be achieved by transforming sf  using 

PT. Thus, the enhanced patch spectra sNE

s f  can be computed 

by 
E T

s s=f P f          (15) 

Step 6). Calculate the enhanced patch Fourier coefficients by 

multiplying the enhanced patch spectra E

sf  with the Fourier 

coefficients ( , ) ( , )p x y u vF  of original patch: 

( , ) ( , )
ˆ ( , ) ( , ) E

p x y p x y su v u v=F F f       (16) 

Step 7). Generate the enhanced patch ( , )
ˆ

p x yy  in the spatial 

domain by performing 2D inverse fast Fourier transform: 

2 ( )1 1

( , ) ( , )

0 0

ˆˆ ( , ) ( , )
j mu nvW W

W
p x y p x y

u v

m n u v e
 +− −

= =

=y F   (17) 

Step 8). The intensity of the enhanced ridge always in ( , )
ˆ

p x yy  

is far less than zero. On the contrary, it always is far greater than 

zero in the valley or background. So the final binary 

representation of the enhanced fingerprint patch can be 

achieved by transforming ( , )
ˆ

p x yy  into binary image in the 

following way:  

( , )

( , )

ˆ255,   ( , ) 0
ˆ ( , )

0,      

p x y

p x y

if m n
m n

otherwise


= 


y
y    (18) 

5.2. The fingerprint image enhancement 

With our proposed algorithm, the pre-enhanced fingerprint 

image is first partitioned into patches with a pre-specified size 

Win in spatial domain. These patches are then transformed into 

frequency domain and enhanced iteratively in a certain order.  

As discussed in Section 1, the enhanced fingerprint is more 

accurate but more sensitive to noise if we use a small scale 

window; on the other hand, while using a large scale window 

can have better tolerance to noise interference, it will lead to an 

accuracy drop. To balance the contradiction between the 

accuracy and the noise tolerance, we use the MCW to enhance 

the patches with different qualities. The MCW consists of an 

inner window and several outer windows with different sizes, 

they all possess the same central point, as shown in Fig. 5. In 

essence, it is similar to that described literatures [37, 38]. The 

difference is that our composite window method is multi-scale-

based, not a single scale-based. As can be seen later, the use of 

multi-scale windows is of vital importance in the enhancement 

of patches with different qualities. 

The use of MCW has two benefits. One is that the patches 

with different quality can be enhanced by using the 

classification dictionaries with a proper scale. Not only can it 

better improve the quality of patch, but it can also reduce the 

complexity of computation. The other is that it can ensure the 

 

Fig.5.  The multi-scale composite windows. 

achievement of spectra diffusion and further improve the 

quality of patch. 

We begin enhance patches by evaluating the candidate 

patches according to two criteria in order to prioritize them for 

further processing. The two criteria are the quality and 

neighborhood priority of patch. The quality of patches are 

assessed by the method described in Section 4.1. The 

neighborhood priority PNei of patch is given as: 

1,    6

2,    5 4

3,   

Nei

Nei Nei

if Num

P if Num

otherwise




=  



     (19) 

where NumNei is the number of enhanced patches in 8-

neighborhoods. The possible values of PNei are: 1, 2 or 3, 

corresponding to the neighborhood priority types High, 

Medium and Low respectively. 

The next step is prioritizing and enhancing. The priority of 

patches are determined only by the quality of patches in the 

initial state. In this stage, all high quality patches are enhanced 

by using the classification dictionaries with smaller sizes, and 

the all enhanced patches are fed into the fingerprint 

enhancement process simultaneously. During the following 

iteration process, the priority of a patch is determined according 

to the quality and the neighborhood priority of it, as follows. 

First, the non-enhanced patches with the highest quality are 

selected as candidate patches. And then, the neighborhood 

priority of these candidate patches are calculated using Eq. (19). 

Finally the patches with the highest neighborhood priority are 

enhanced in current iteration process. When all non-enhanced 

patches are enhanced, the iteration stops.  

In our proposed algorithm, we perform fingerprint 

enhancement in the frequency domain, and multi-scale 

composite windows are used to enhance the patches with 

different quality. In the composite window, the patch to be 

enhanced is the inner patch. In order to further assist spectrum 

diffusion, we use a smaller scale slide window to introduce 
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more high quality spectrum. 

    

    

Fig.6.  The poor quality fingerprint image enhancement. The original fingerprint comes from 110_2 of FVC2000 DB2_B. The original input fingerprint image, 

Gabor filtering enhancement, LCS enhancement, the patches quality evaluation, iterating enhancement (High quality), iterating enhancement (Medium quality), 

iterating enhancement (Low quality) and the enhanced fingerprint image are shown in the figure from row 1 to row 2, from left to right, respectively. 

During fingerprint enhancement, the high quality patches are 

enhanced before the rest of patches with lower quality. We use 

a smaller size classification dictionaries to enhance the patches 

with high quality. In most fingerprint images, especially for the 

fingerprints enhanced with Gabor filtering, the regions with low 

quality are relatively small and most of the regions are with high 

quality. As a result, we can greatly reduce the calculation time 

while ensure the accuracy and reliability of the enhanced 

patches. What follows are to enhance the patches with lower 

quality using larger size classification dictionaries. The patches 

with higher priority are enhanced before the patches with lower 

priority. The multi-scale composite windows strategy makes 

sure that the patches with the lower quality have the composite 

window with the larger size. This can be a great way to improve 

the spectrum diffusion and reinforce the ability of the sparse 

representation based on dictionary learning for enhancing the 

patches with lower quality. Our algorithm fully take account of 

the contradiction between accuracy and noise tolerance, and 

greatly reduce the processing time. 

An example of fingerprint enhancement via sparse 

representation over learned multi-scale classification 

dictionaries with reduced dimensionality is shown in Fig. 6. The 

high quality patches are first enhanced using the classification 

dictionaries with smaller sizes and dimensionality reduction 

based on the corresponding composite window, and then the 

inner patches of them are fed back into corresponding 

fingerprint image region, as shown in Fig. 6 row 2 column 1. 

The rest of lower quality patches are enhanced and fed to repeat 

the process by using dictionaries with a proper size and 

dimensionality reduction based on the corresponding composite 

window. The process is iterated until all patches have been 

enhanced, as shown in Fig. 6 row 2 column 4. 

6.  Experimental Results 

To validate our proposed method on fingerprint enhancement 

performance, the performance of proposed algorithm is 

evaluation based on the public competition fingerprint 

databases FVC 2000 and FVC 2004. The comparative 

experimental results demonstrate that the proposed method is 

more effective and efficient in fingerprint image enhancement 

than the existing methods such as Gabor filter method [6], 

Chikkerur’s STFT method [15], Sutthiwichaiporn’s ABSF 

method [16], Ding’s ACBF [17] method and Ding’s CDL 

method [31]. 

6.1. The construction of multi-scale classification 
dictionaries with reduced dimensionality 

In our proposed method, the fingerprint patches are enhanced 

by multi-scale composite windows. The size of the inner patch 

is set to 9×9 pixels, and the composite windows are defined by 

extending the inner patch to 17×17, 31×31 and 37×37 pixels, 

corresponding respectively to high, medium, and low qualities 

of the inner patches. The step-size of sliding window is 7 pixels. 

The corresponding multi-scale dictionary sizes are set to 

289×289, 961×961 and 1369×1369. We select 500 high quality 

fingerprints from FVC 2000 and FVC 2004 to construct multi-

scale classification dictionaries with reduced dimensionality 

training sample set. The fingerprints image in the selected 
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training sample set are enhanced by using the open source 

software program VeriFinger Algorithm Demo (Publisher: 

Neurotechnology, https://www.directoryofshareware.com/ 

preview/verifinger_algorithm_demo_for_ms_windows/). And 

then, the fingerprints are partitioned into various size patches to 

construct the multi-scale dictionaries training sets. The training 

patches with the same size are divided into 8 groups according 

to their own ridge orientation patterns. After sampling these 

patches, we select 50000 high quality patches from each class 

to build the classification dictionary training patches set. And 

then we transform all patches to frequency domain and the 

classification spectrum training sample sets are built. Finally, 

the multi-scale classification reduction dictionaries can be 

constructed using the method described in Section 4.2.  

The size of the dictionary is critical for the computation 

performance of any enhancement method based on dictionary 

learning. Usually, the larger the dictionary the better the 

representation ability, however this comes with a higher 

computational cost. In the previous subsections we discussed 

the relationship between the patch enhancement and the patch 

size. In general, the anti-noise ability and the accuracy of an 

enhancement algorithm are mutually exclusive, and they both 

are closely related to the size of the patch: The larger the patch 

size, the better the anti-noise ability, however lower the 

enhanced accuracy it may lead to, and vice versa. Our solution 

to this issue is to enhance the fingerprint under the quality 

grading scheme. Under the scheme, we choose to enhance the 

higher quality patch (weak noise) using the dictionary with a 

smaller size. It can not only balance well between the accuracy 

and the anti-noise ability, but can also significantly reduce the 

computational complexity of fingerprint enhancement based 

dictionary learning, which is the double benefit of the scheme. 

In addition, we perform a dimensionality reduction to further 

save computations in the subsequent multi-scale classification 

dictionaries learning and fingerprint enhancement algorithms.  

In Table 1, we report the results of dimensionality reduction 

over all classifications using each scale dictionary. According 

to the sizes of the dictionaries with reduced dimensionality in 

Table 1, we can find that the number of dimensions of the 

dictionaries can be significantly reduced by performing PCA 

dimension reduction operation. The computational complexity 

of each enhancement algorithm can be measured by its average 

execution time. The proposed method and the similar CDL 

method proposed in [31] are employed to enhance the 

fingerprints in FVC2000 DB1_B, and the corresponding 

execution times are shown in Fig. 7. As can be see directly, the 

proposed method greatly reduces the time required in 

enhancing the fingerprint image, mainly due to the use of the 

multi-scale dictionaries and the PCA for the dictionary 

dimensionality reduction. 

6.1. Comparative experiments based on visual 
inspection 

The proposed method has several advantages, ranging from 

dynamic dictionaries scale selecting, fingerprint ridge pattern 

preserving, and ridge spectrum diffusing. The use of multi-scale 

dictionaries ensures that the patches with various qualities can 

be enhanced by the dictionaries with proper sizes, which 

ensures the proposed method will perform much better in 

general. In addition, the proposed method is more reliable to 

preserve the ridges because the all patches are enhanced based 

on their own ridge pattern constraints. Moreover, the use of the 

spectrum diffusion based on multi-scale composite windows is 

helpful for improving the spectrum quality of low quality 

patches. In this subsection, we evaluate the performance of 

these algorithms from the perspective of visualization. The 

parameter of sparsity-constrained L is set to 3 in our 

experiments.

Table 1 Dimension Comparison of Different Scale Classification Dictionaries with Reduced Dimensionality 

Dictionary size 
The size of classification dictionaries with reduced dimensionality  

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 

289×289 44×289 72×289 60×289 70×289 52×289 67×289 56×289 69×289 
961×961 142×961 239×961 198×961 238×961 169×961 230×961 184×961 230×961 

1369×1369 208×1369 335×1369 284×1369 342×1369 240×1369 332×1369 267×1369 330×1369 

 
Fig. 7.  The comparison of the fingerprint enhancement computation cost using FVC2000 DB1 by the different methods. Number of images 

https://www.directoryofshareware.com/
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Fig.8.  Examples of fingerprint enhancement by proposed method. The original fingerprints come from FVC2000, DB1_B_106_1, DB2_B_104_2, DB2_B_108_6 

and FVC2004, DB1_B_107_8 are shown in row 1. Correspondingly, row 2 show the enhanced fingerprints by the method proposed. 

 

    

   
Fig.9.  The fingerprints enhanced by various method, the original fingerprint image comes from FVC2004 DB2 4_8. The original fingerprint is shown in row 1 

column 1. Correspondingly, the enhanced fingerprints by Gabor filtering method [6], STFT method [15], ABSF method [16], ACBF method [17], CDL method 

[31] and proposed method are shown from row 1 column 2 to row 2 column 3. 
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Fig.10.  The fingerprints enhanced by various method, the original fingerprint image comes from FVC2004 DB2 16_8. The original fingerprint is shown in row 1 
column 1. Correspondingly, the enhanced fingerprints by Gabor filtering method [6], STFT method [15], ABSF method [16], ACBF method [17], CDL method 

[31] and proposed method are shown from row 1 column 2 to row 2 column 3. 

As it can be seen in Fig. 8, proposed method has enhanced a 

wide range of low quality fingerprint images successfully. And 

then we conduct a series of experiments based on different 

algorithms to validate the robustness and efficacy of the 

proposed method, several results are shown in Fig. 9 and Fig. 

10. From these figures, it can be seen that although the 

fingerprint ridges with weak noise can be enhanced well by 

various enhancement methods, they often fail to enhance the 

ridges with large noises. These fingerprints enhanced by our 

proposed method have achieved superior results with better 

visual inspection quality, for both ridge enhancement and noise 

suppression, which shows the proposed method is of a 

significant strength to balance and solve efficiently the conflict 

between ridge enhancement and noise suppression. 

6.2. Fingerprint matching 

In this subsection, we evaluate the performance of these 

algorithms from the perspective of fingerprint matching. It can 

illustrate the performance of various algorithms in AFIS for the 

purpose of getting a more accurate evaluation. We incorporate 

the enhancement scheme in the fingerprint identification system 

as a complete solution to assess the performance of our method 

in the entire fingerprint processing chain, from pre-processing, 

orientation field extraction, fingerprint enhancement and 

minutiae extraction to fingerprint matching. For minutiae-based 

fingerprint matchers, fingerprint enhancement is particularly 

important, because the matching reliability and robustness of 

the minutiae-based matcher are closely related with the 

accuracy of minutiae extraction which relies heavily on 

fingerprint enhancement. 

The performance of AFIS can be evaluated by two indices: 

false match rate (FMR) and the false non-match rate (FNMR). 

In addition, in some cases the equal error rate (EER) also is used 

to evaluate the performance of AFIS. The lower the EER, the 

better the performance by the AFIS. We report the performance 

of various methods in terms of the evaluation indexes FMR, 

FNMR and EER. In real applications, the AFIS desires to far 

from the EER point by decreasing the FMR in order to assure a 

high level of security. However, decreasing the FMR will cause 

the FNMR to increase. It is therefore not surprising that the 

performance of an AFIS is often evaluated using the indicator 

FMR100, which is defined as the value of the FNMR when 

FMR is 1%. 

In proposed method, we use an open source framework in C# 

(https://www.codeproject.com/Articles/97590/A-Framework-

in-C-for-Fingerprint-Verification-2) for fingerprint matching 

and thus complete fingerprint identification. The matching 

algorithm that is employed in our experiments is based on 

minutia triplets [41], named M3gl. It should be noted that the 

fingerprint matching process is fixed except for the specific 

enhancement algorithm in this experiment. In order to show the 

differences of various enhancement methods, we did the 

experiments on the FVC2000 DB1_B, DB2_B, and DB4_B 

respectively. 

The ROC curves for the six algorithms are shown in Fig. 11. 

They illustrates the performance of various methods, 

respectively. Compared with other similar algorithms, the 

proposed method shows a much better performance in terms of 

EERs, it provides a lower FMR100s in most cases. This is 

attributed to a combination of the use of the multi-scale 

classification dictionaries and the spectrum diffusion based on 

multi-scale composite windows. The proposed method 

effectively enhances the input fingerprint and improves 

reliability and accuracy of minutiae extraction and matching, as 

can be seen from the EERs and FMR100s listed in Table 2 for 

all algorithms. From Table 2, we can see that proposed method 

improves the accuracy of the equal error rates of Gabor filter by 

about 61%, 78% and 65% on FVC2000 DB1_B, DB2_B and 

DB4_B respectively. Furthermore, proposed method improves 

the accuracy of the FMR100s of Gabor filter by about 63%, 

80% and 70% on FVC2000 DB1_B, DB2_B and DB4_B 

respectively. Experimental results show that the performance of 

AFIS is greatly improved when the input fingerprint images are 

enhanced using proposed method.  
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Fig.11.  ROC curves of different fingerprint enhanced by different methods on FVC2000 databases. 

Table 2 Performance Comparison of Different Enhancement Algorithms on FVC2000 DB1_B, DB2_B and DB4_B 
Fingerprint  Our Method Gabor_En [6] ABSF[16] CDL [31] ACBF [17] STFT [15] 

DB1_B EER(%) 2.150 5.536 3.276 2.639 2.778 3.548 

 
FMR100(%) 3.850 10.357 5.109 4.286 4.643 6.469 

DB2_B 
EER(%) 2.105 9.504 6.630 2.222 2.639 10.200 

 
FMR100(%) 3.214 16.071 10.235 4.643 2.857 15.998 

DB4_B 
EER(%) 2.639 

 

7.440 8.288 4.683 3.730 11.179 

 
FMR100(%) 3.929 13.214 15.156 8.214 6.786 22.626 

*The minimum EER or FMR100 in each row is bolded. 

7. Conclusion 

In this paper, an effective fingerprint enhancement algorithm 

using sparse representation over learned multi-scale 

classification dictionaries with reduced dimensionality has been 

proposed. In order to balance the contradiction between the 

anti-noise ability and accuracy while reducing the processing 

time complexity, a multi-scale windows-based scheme is 

proposed. The goal is achieved under the quality grading 

scheme combined with the multi-scale composite windows 

strategy. To reduce the computational complexity and improve 

the computational efficiency, PCA is introduced into the 

scheme to reduce the dimensionality of dictionary used in 

training and enhancing. With the proposed algorithm, training 

samples are classified into eight groups according to ridge 

orientations. The use of the classification dictionaries created 

based on ridge patterns improves the effectiveness of sparse 

modeling of information in a fingerprint patch. By assessing the 

quality of a given patch, the patches with higher quality are 

firstly enhanced by the dictionary with smaller sizes, which is 

essential for generating a high quality enhancement while 

keeping the time complexity low. The combination of quality 

assessment and the multi-scale composite windows promises to 

ensure that spectra diffusion is successfully applied. The 

proposed algorithm can evidently improve the quality of 

fingerprint and obtain better identification performance. 
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