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ABSTRACT. Long-range dependence in volatility is one of the most pnemt examples in fi-
nancial market research involving universal power lawsscltaracterization has recently spurred
attempts to provide some explanations of the underlyinghaeism. This paper contributes to
this recent line of research by analyzing a simple marketifsa asset pricing model with two
types of traders—fundamentalists who trade on the priceatiewi from estimated fundamental
value and trend followers whose conditional mean and veeafthe trend are updated through
a geometric learning process. Our analysis shows that dgeetogeneity, risk-adjusted trend
chasing through the geometric learning process, and tleepial of noisy fundamental and
demand processes and the underlying deterministic dysacaic be the source of power-law
distributed fluctuations. In particular, the noisy demalayp an important role in the generation
of insignificant autocorrelations (ACs) on returns, whiie significant decaying AC patterns of
the absolute returns and squared returns are more infludydie noisy fundamental process.
A statistical analysis based on Monte Carlo simulation®izdacted to characterize the decay
rate. Realistic estimates of the power-law decay indicestha (FI)\GARCH parameters are

presented.

JEL Classification: C15, D84, G12
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1. INTRODUCTION

It is well known that (high-frequency) financial time sergfgre some common features, the
so called stylized factsincluding excess volatility (relative to the dividendsdamnderlying
cash flows), volatility clustering (high/low fluctuationsedollowed by high/low fluctuations),
skewness, and excess kurtosis. Traditional economic aadditheory based on the repre-
sentative agent with rational expectations has encouhtgesat difficulties in explaining these
facts. As a result there has been an increase in interestdelsymmcorporating heterogeneous
agents and bounded rationality. These models characteazlynamics of financial asset prices
resulting from the interaction of heterogeneous agentmpalifferent attitudes to risk and hav-
ing different expectations about the future evolution at@¥. Some of these models derive
their price dynamics from nonlinear trading rules whileethconsider some nonlinear switch-
ing mechanism between different trading strategies.

One of the key aspects of these models is that they exhildbBek of expectations—the
agents’ decisions are based upon predictions of futureesabii endogenous variables whose
actual values are determined by equilibrium equationsattiqular, Brock and Hommes (1997,
1998) proposed ardaptive Belief Systenmodel of economic and financial markets. The
agents adapt their beliefs over time by choosing from déffiépredictors or expectations func-
tions, based upon their past performance. The resultinijneam dynamical system is, as Brock
and Hommes (1998) and Hommes (2002) show, capable of gemeaawide range of complex
behaviour from local stability to high order cycles and chabhey are also capable of explain-
ing some of the stylized facts of financial markets. It is vatgresting to find that adaptation,
evolution, heterogeneity, and even learning, can be irratpd into the Brock and Hommes
type of framework. This broader framework also gives riseédb and complicated dynamics
and can be used to obtain a deeper understanding of marketibel’. Moreover, recent works
by Westerhoff (2004), Chiarellet al. (2005, 2006a) and Westerhoff and Dieci (2006) show that

complex price dynamics may also result within a multi-assatket framework.

1See Pagan (1996) for a comprehensive discussion of stfizésicharacterizing financial time series.

2For a representative sample of this literature see, Fram@IFroot (1987), Day and Huang (1990), De Latg
al. (1990), Chiarella (1992), Dacorogeaal. (1995), Lux (1995, 1997, 1998), Brock and LeBaron (1996)hAr

et al. (1997), Brock and Hommes (1997, 1998), Chen and Yeh (19912)2Qux and Marchesi (1999), Bullard
and Duffy (1999), LeBarort al. (1999), LeBaron (2000, 2001, 2002), lori (2002), Homme<@tand Farmer
and Joshi (2002).

3In this regard see, Gaunersdorfer (2000), Hommes (2002)2Qhiarella and He (2001, 2002, 2003), Chiarella
et al.(2002), De Grauwe and Grimaldi (2003) and Westerhoff (2003)
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Among the stylized facts, volatility clustering and lorepge dependence (that is, insignif-
icant autocorrelations (ACs) of raw returns and hyperbaddiclide of ACs of the absolute and
squared returns) have been extensively studied since thiaaepaper of Dinget al. (1993).
Recently, a number of universal power ldliave been found to hold in financial markets. This
finding has spurred attempts at a theoretical explanatidntlaa search for an understanding
of the underlying mechanisms responsible for such poweslathis paper contributes to the
development of this literature.

Various models have been developed to explain the poweb&waviour . For instance the
popular GARCH class processes, initiated in Engle (1982),eh@iurns as a random process
with a time-varying variance that shows autoregressiveeddence. These models produce
fat tails of the unconditional distribution and capture #®rt-run dynamics of volatility au-
tocorrelations. However, the implied decay of the volgtiiutocorrelation of these models is
exponential rather than the hyperbolic as observed in higguiency (e.g. daily) data. In addi-
tion, the GARCH class of models does not provide an explanafidime empirical regularities
referred to earlier.

As a consequence of development in the rational bubble rmddetature, multiplicative
stochastic processes (with multiplicative and additieelsastic components) have been used to
explain the power-law behaviour (see Kesten (1973) and ROR4)). The power-law exponent
can be determined from the distribution of the multipligattcomponent, not the additive noise
components. However, as shown by Lux and Sornette (20@)atige of the exponent required
for the rational bubble models is very different from the émcpl findings. In addition, rational
bubble models share the conceptual problems of economielswadth fully rational agents.

Herding models of financial markets have been developedcrporate herding and con-
tagion phenomen@a.Using a stripped down version of an extremely parsimonidashsstic
herding model with fundamentalists (who trade on observisgmcing) and noise traders (who
follow the mood of the market), Alfaranet al. (2005) show that price changes are generated

by either exogenous inflow of new information about fundataksnor endogenous changes in

“They include cubic power distribution of large returns, églic decline of the return autocorrelation function,
temporal scaling of trading volume and multi-scaling offtégmoments of returns.

SWe refer to Lux (2004) for a recent survey on empirical evisermodels and mechanisms of various financial
power laws.

6See Kirman (1991, 1993), Lux (1995, 1997, 1998), Lux and Mesc (1999), Cheret al. (2001), Aoki and
Yoshikawa (2002), and Alfaranet al. (2005).
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demand and supply via the herding mechanism. The modeles@produce relatively realistic
time series for returns whose distributional and tempdnatacteristics are astonishingly close
to the empirical findings. This is partly due to a bi-modaliting distribution for the frac-
tion of noise traders in the optimistic and pessimistic goof individuals and partly due to
the stochastic nature of the process leading to recurrdtalss from one majority to another.
Lux and Marchesi (1999) argue that the indeterminatenefiseaiarket fractions in a market
equilibrium and the dependence of stability on the markattions exist in a broad class of
behaviour al finance models. This argument is supported agdia and Bouchaud (2003) and
Lux and Schornstein (2005). However, with the increase epibpulation size, the law of large
numbers comes into effect and the indeterminacy and pavesiatistics disappear.

As discussed earlier, the Brock and Hommes’ framework andiisus extensions are capa-
ble of explaining various types of market behaviour and irtgo@ stylized facts. For example,
a mechanism of switching between predictors and co-egisditractors is used in Gauners-
dorfer and Hommes (2006) to characterize volatility cldetg The highly nonlinear deter-
ministic system may exhibit co-existence of different tyjwé attractors and adding noise to
the deterministic system may then trigger switches betwewn and high-volatility phases.
Their numerical simulations show quite satisfactory stats between the simulated and actual
data. Compared to the herding mechanism, Brock and Hommaeséfvark allows an infinite
population of speculators. However, like most of the anedytheterogeneous agent literature
developed so far, the comparison with empirical facts isnlgddased upon visual inspection,
or upon a few realizations of the model. A formal investigatof the time series properties of
the heterogeneous agent models, including the estimatipoveer-law indices, is still lacking.
This paper seeks to fill this gap in the literature.

Overall both the herding and switching models discussedeahave shown their potential
to explain power-law behaviolrTo generate realistic time series, some kind of intermiitten
dynamics and self-amplification of fluctuations via herdargechnical trading are necessary.
As pointed out by Lux (2004)one of the more important problems of these models is the

relationship between system size, deterministic forcesséochastic elements”

’Other behaviour al finance explanations for volatility téuig exist. Manzan and Westerhoff (2005) develop a
model in which traders tend to over or under-react to thearaf new information.
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In this paper, we consider the market fraction (MF) modehldsthed in He and Li (2005)
and explore the potential mechanism of the model to gent#ratgower-law feature observed in
empirical data. The MF model is a simple stochastic asseingrimodel, involving two types
of traders (fundamentalists and trend followers) under a&atamaker scenario. He and Li
(2005) aim to explain various aspects of financial marketbehur and establish the connection
between the stochastic model and its underlying detertiarsgstem. Through a statistical
analysis, the paper shows that convergence of market wifentlamental value, long- and
short-run profitability of the two trading strategies, suability of trend followers and various
under- and over-reaction autocorrelation patterns of thehgastic model can be explained by
the dynamics, including the stability and bifurcationsthed underlying deterministic system.

This paper builds on He and Li (2005) and reveals the poteoitithe MF model to char-
acterize the volatility clustering and the long-range chej@nce of asset returns. We show that
heterogeneity, risk-adjusted trend chasing through a gémrearning process, and the inter-
play of a stable deterministic equilibrium and stochasticsy processes can be the source of
power-law distributed fluctuations. This is further vewffiga a Monte Carlo simulation, a sta-
tistical analysis of the decay patterns of autocorreldtmetions of returns, the squared returns
and the absolute returns, and the estimates of (FI)GARCH) parameters. Both the analysis
of the generating mechanism and the statistical estimates Monte Carlo simulation of the
power-law behaviour are the main contributions of the aurpaper.

The remainder of the paper is organized as follows. Sectioev2ws the MF model es-
tablished in He and Li (2005). Section 3 is devoted to an amlgf the potential of the MF
model to generate the power-law behaviour. In Section 4 \iienate the power-law decay
parameters of the autocorrelation of returns, the squatenins and the absolute returns and
(F)GARCH(1,1) parameters for the DAX 30, the FTSE 100, the KB 225 and the S&P
500 stock market daily closing price indices. The power{maperties of the market fraction

model and the comparison with the actual data is analyzedatidh 5. Section 6 concludes.

2. THE MARKET FRACTION MODEL

The market fraction (MF) model is a standard discountedevalsset pricing model with

heterogeneous agents. It is closely related to the franlewbBrock and Hommes (1997,
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1998) and Chiarella and He (2002). Here we outline the mod#lefer the readers to He and
Li (2005) for full details.

Consider an economy with one risky asset and one risk fre¢. dsseassumed that the risk
free asset is perfectly elastically supplied at gross netéiz = 1 + /K, wherer stands for a
constant risk-free rate per annum aikidstands for the trading frequency measured in units of a
year® Let P, and D, be the (ex dividend) price and dividend per share of the risget at time
t, respectively. Then the wealth of a typical inveskoatt + 1, W), ;1 1, is given by

Whit1 = RWh + [Pis1 + Dipr — RP 2y, (2.1)

wherez;, ; is the number of shares of the risky asset purchased by owesit¢. Let £, , and

Vi be thebeliefsof typeh traders about the conditional expectation and variance-atbased

on their information at time. Denote byR, (= P,.1 + D;11 — R P,) the excess capital gain
on the risky asset at+ 1. Assume that typé traders have constant absolute risk aversion
(CARA) utility functions with the risk aversion coefficient, (that isU;, (W) = —e=") and
their optimal demands for the risky assgt, are determined by maximizing their expected
utility of wealth. Then it turns out that

Eh,t<Rt+l)

= — 2.2
ahvh,t(RtJrl) ( )

Zh,t

Given the heterogeneity and the nature of asymmetric irdtion among traders, we con-
sider two popular trading strategies corresponding to fyes of boundedly rational traders—
fundamentalists and trend followers. Assume that the nidr&etions of the fundamentalists
and trend followers are; andn,, respectively. Letn = n; — ny € [—1, 1], thenm = 1(—1)
corresponds to the case when all the traders are fundansén{tiend followers). Assume zero
supply of outside shares. Then, using (2.2), the populateighted aggregate excess demand
e IS given by

14+m ELt[RtJrl] 1—m E27t [RtJrl:I

) 2.3
2 G1V1,t[Rt+1] 2 Clzvz,t[RtH] ( )

Zet =MN1214 + NoZoy =

8Typica||y, K = 1,12,52 and 250 representing trading periods of year, month, week and @spectively. To
calibrate the stylized facts observed from daily price nmeat in financial market, we seleéf = 250 in our
discussion.
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To complete the model, we assume that the market is clear@dnbgrket maker. The role
of the market maker is to take a long (when < 0) or short (wher,; > 0) position so as to
clear the market. At the end of periodafter the market maker has carried out all transactions,
he or she adjusts the price for the next period in the direaifcthe observed excess demand.
Let i be the speed of price adjustment of the market maker (thisusanbe interpreted as the
market aggregate risk tolerance). To capture unexpectekemaews or the excess demand
of noise traders, we introduce a noisy demand t&rmvhich is an i.i.d. normally distributed
random variable with, ~ N(0,c3). Based on these assumptions and (2.3), the market price is

determined by

I Ey 4[Rit1] Es4[Rit1] <
Poo=P+=|(1+m——+(1—-—m)———| + 6. 2.4
i ‘ 2 ( >CL1V1,t[Rt+1] ( )alvz,t [Rt-i—l] ! ( )
Now we turn to discuss the beliefs of fundamentalists anudtfellowers.
Fundamentalists—Denote byF, = {P,, P,_1, -+ ; Dy, D;_4, - - - } the common information

set formed at time. Apart from the common information set, the fundamentabse assumed
to havesuperiofinformation on the fundamental valug;, of the risky asset which is introduced
as an exogenous news arrival process. More precisely, dié/eereturn ¢, /P — 1) of the

fundamental value is assumed to follow a normal distrilbytaond hence we write
P =Pl+o0&], &~N(O1), o0.>0, P;=P>0, (2.5)

whereé, is independent of the noisy demand procéssThis specification ensures that nei-
ther fat tails nor volatility clustering are brought aboytthe exogenous news arrival process.
Hence, emergence of any autocorrelation pattern of therretiithe risky asset in our later
discussion would be driven by the trading process itsaffigiathan news. The fundamentalists
also realize the existence of non-fundamental trader$, asitrend followers to be introduced in
the following discussion. The fundamentalists believe tha stock price may be driven away
from the fundamental value in the short-run, but it will etteadly converge to the expected fun-
damental value in the long-run. Hence the conditional meahvariance of the fundamental

traders are assumed to follow

By (Pe1) = P+ o[Ey(Py) — P Vig(Pra) = o, (2.6)
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wherecs? stands for a constant variance of the fundamental valuee Her parametet €

[0, 1] represents the speed of price adjustment of the fundanstatadward their expected
fundamental value and it measures how fast the fundamststdelieve the price converges
to the fundamental value and reflects how confident they atbarfundamental value. In
particular, fora. = 1, the fundamental traders are fully confident about the foretdal value
and adjust their expected price in the next period instauasly to the expected fundamental
value. Fora = 0, the fundamentalists become naive traders.

Trend follower s—Unlike the fundamental traders, trend followers are téddriraders who
believe the future price change can be predicted from vanatterns or trends generated from
the historical prices. They are assumed to extrapolateatiestl observed price change over a
long-run sample mean price and to adjust their variancenagti accordingly. More precisely,

their conditional mean and variance are assumed to satisfy
Ez,t(Pt+1) =P+ ’Y(Pt - Ut), Vz,t(PtH) = U% + byvy, (2.7)

where~, b, > 0 are constants, ang. andv; are the sample mean and variance, respectively,
which may be generated from some learning processes. Thep#ary measures the extrap-
olation rate and high (low) values ofcorrespond to strong (weak) extrapolation by the trend
followers. The coefficienk, measures the influence of the sample variance on the camalitio
variance estimated by the trend followers who believe inananlatile price movements. In-
tuitively, the trend followers reduce their demand for tlsky asset when the estimated risk is
high. It turns out that this risk-adjusted demand mechamukays a very important role in the
price dynamic$ Various learning schemes (see for example Chiarella and2B@2( 2003))

can be used to estimate the sample meaand variance;. Here we assume that
U = Oup—1 + (1 - 5>Pt, v = 0V + 5(1 - 5)(Pt - Ut—l)Qv (2.8)

whered € [0,1] is a constant. These processes for the sample mean andceades the
limit of a geometric decay proceséen the memory lag length tends to infifftyBasically, a

geometric decay probability proceds—4){1, 6, 62, - - - } is associated with the historical prices

9A similar set up under a different learning process is use@hiarellaet al. (2006c) who show that the time-
varying second moment can alter the resulting nonlineaanhjos, particularly when the steady state is unstable.
105ee Chiarell®t. al. (2006b) for the proof.
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{P,, P,_1, P,_s,--- }. The parametes measures the geometric decay tatdhe rationale for
the selection of this process is two fold. First, traderslitenput a high weight on the most
recent prices and less weight on the more remote prices wWiggretstimate the sample mean
and variance. Secondly, we believe that this geometricydpiaess may contribute to certain
autocorrelation patterns, in particular the power-lawideaobserved in real financial markets.
In addition, the geometric decay process has the mathemhativantage of affording a degree
of tractability to the subsequent analysis.

To simplify the calculations, we assume that the dividemmtpssD; follows D; ~ N (D, ¢%),
the expected long-run fundamental value is giventby= D/(R — 1), and the unconditional
variances of the pricerf) and dividend §2)) over the trading period are relatétyy o2, = qo?.
Based on (2.6), we hav@, ;(R;1) = (P, — P) — (R—1)(P,— P),Vi4(Ri11) = (1 +q)o3

and hence the optimal demand of the fundamentalist is giyen b

L (P —P)— (R-1)(P— P)]. (2.9)

0= ——————=
bt ar(1+q)ot

Sim”arly, from (2.7),E2¢(Rt+1) = Pt + "}/(Pt — 'U/t> + D — RPt = ’}/(Pt — Ut) — (R — 1)<Pt —
P),Vai(Ri11) = 02(1 + q + bv,), whereb = by/o?. Hence the optimal demand of the trend

followers is given by

V(B —w) = (R=1)(Pi = P)

2.10
az03 (1 +q+bvy) ( )

2t =

Urors =0, the sample meawm; = P, which is the latest observed price, while= 0.1, 0.5, 0.95 and0.999 give
a half lives of 0.43 day, 1 day, 2.5 weeks and 2.7 years, résphc

12| et o5 be the annual volatility of?; andD; = rP; be the annual dividend. In this paper, we chooge=
0%/K andq = r?. In fact, the annual variance of the dividendsiy, = r°¢c%. Thereforeo}, = 67 /K =
r?’0% /K = r?of. For all numerical simulations in this paper, we choése- $100,r = 5% p.a.o = 20% p.a.,
op = 5/125%ndK = 250. CorrespondinglyR = 1 + 0.05/250 = 1.0002, 07 = (100 x 0.2)?/250 = 8/5 and
0p = .
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Subsisting (2.9) and (2.10) into (2.4), the market priceauradmarket maker is determined by

the following 4-dimensional stochastic difference system

( pl 1+m . _
Pt+1 :Pt+§ W[Q(Pt —Pt) — (R— 1)(Pt—P)]
VWP —uw)—(R=1)(P-P)]

1-— 0
+( m) a20%<1+q+b’(}t) + ts

2.11
up = dup—y + (1 - 6) P, (2.11)

Vs = (5vt_1 + (5(1 — 6)(Pt — ’LLt_l)2,

| i = B/[1+oé].

By using Monte Carlo simulation and statistical analysis, Hd &i (2005) found that the
long-run behaviour and convergence of the market priceg (short)-run profitability of the
fundamental (trend following) trading strategy, survivi&pof trend followers, and various un-
der and over-reaction autocorrelation patterns of retaamsbe characterized by the dynamics,
including the stability and bifurcations, of the underlyideterministic system. The analysis
provides some insights into the generating mechanism abwsrtypes of market behaviour
(such as under/over-reaction), market dominance anastyfacts in high frequency financial
markets. In the following discussion, we reveal the potdrdf the MF model to characterize
the volatility clustering and the long-range dependencasskt returns by examining the au-
tocorrelation patterns under different noise structurestay estimating the decay indices and

(FNGARCH parameters.

3. ANALYSIS OF THEVOLATILITY CLUSTERING AND POWER LAW BEHAVIOUR

We now proceed with an analysis of the volatility clusteramgl power-law mechanism of the
MF model. The aim of the analysis is to explore possible sssuaf volatility fluctuations. In
doing so, we provide some insights into the interplay beiwsestem size, deterministic forces
and stochastic elements, in particular, the potentialHar interplay to generate realistic time
series properties.

Aside from the parameter values of which were given prelyotise parameters used for the

simulations are given in Table 331

3The return volatilityo,. of the fundamental value corresponds to an annual volatitit20% (hences, =
(20/vK)% with K = 250) and the volatility of the noisy demangs = 1, which is about 1% of the average
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TABLE 3.1. Parameter settings and initial values

a v a a p m d b Oc os Py Fj
0.1 03 08 0.8 2 0 085 1 0.01265 1 100 100

Following from the stability and bifurcation analysis in Fied Li (2005), the constant steady
state fundamental price of the underlying deterministic system is locally asymistaity stable
for chosen parameter constellations. The intuition belimgl selection of parameters comes
from the analysis of the return autocorrelation (AC) patterear the Hopf bifurcation boundary
conducted in He and Li (2005). When the market prices convergke fundamental values
in an oscillating manner, the significant AC patterns of metsuare washed out by the noisy
market demand process with reasonable volatility. On therdtand, the noisy fundamental
process seems necessary to generate more realistic prieg. SEhe oscillatory convergence
of the underlying deterministic system and the noisy funelatal process lead to volatility
clustering—nhigh (low) volatility is more likely followedybhigh (low) volatility.

To see how the price dynamics, in particular, the AC pattemeturns, are affected by

different noise processes, we consider the four cased listEable 3.2. Case-00 corresponds to

TABLE 3.2. Four Cases of the noisy effect

Cases || Case-00 Case-01 | Case-10 Case-11
(s, 0¢) (0,0) |(0,0.01265) | (1,0) | (1,0.01265)

the deterministic case. Case-01 (Case-10) correspondsc¢agbeavith noisy fundamental price
(noisy excess demand) only and both noise processes appéase-11.

Fig. 3.1 illustrates the price series for the four cases tgpecal simulation. The correspond-
ing return series and their density distributions are gindrig. 3.2 for the three cases involving
noise. Fig. 3.3 shows the ACs of returns, absolute returnsauared returns. For comparison,
the same set of noisy demand and fundamental processediswuSase-11. Each simulation
is run for 6,000 time periods and the first 1,000 are droppevdkish out the initial effect of the
estimates of densities and ACs of returns and to make theasmobust.

Both Figs. 3.2 and 3.3 show significantly different impactshef different noise processes

on the volatility. In Case-01, the stochastic fundamentalgorocess is the only noise process.

fundamental price leveP = $100. In addition, simulations (not reported here) show thatréwailts obtained in
this paper are robust under slight modifications of thesamaters.



POWER-LAW BEHAVIOUR , HETEROGENEITY, AND TREND CHASING 13

100.05 3001
r Case-01
Case—-00 250
200
150
100
50
L L L L I} L L L L L L
0 200 400 600 800 1000 O 900 1800 2700 3600 4500 5400
110 3001
Case—-10 r
Case-11
105 [
I‘ 200
100 ‘}l‘" i
o5 100"
n L n L n L n L n L n L n L n L n L n L n L n L n L n
0 900 1800 2700 3600 4500 5400 0 900 1800 2700 3600 4500 5400
FIGURE 3.1. Time series of prices for the four cases in Table 3.2.
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FIGURE 3.2. Return series and their density distributions for Cdset0 and 11.

The market price displays strong under-reactiohAC pattern of returns, which is character-
ized by the significantly positive decaying ACs shown in the left panel in Fig. 3.3. This
significant AC pattern is also carried forward to the AC pausefor the absolute and squared
returns. In Case-10, the noisy excess demand is the only pasess. The market price dis-
plays no volatility clustering, which is characterized Imgignificant AC patterns for return,
the absolute and squared returns shown in the middle rowgn &i3. In Case-11, both the

noisy excess demand and noisy fundamental price procgsgeara\We observe relatively high

14see He and Li (2005) for more detailed analysis on the gangratechanism for various under- and over-
reaction AC patterns.
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FIGURE 3.3. ACs of returns (the left column), the absolute returhe (hiddle
column), and the squared returns (the right column) for @ds€-0 and 11.

kurtosis in Fig. 3.2 and insignificant ACs for returns, butngiigant ACs for the absolute and
squared returns shown in the bottom panel in Fig. 3.3. In thetestimates in Section 5 based
on Monte Carlo simulations show that the model is able to predalatively realistic volatility

pattern and the power-law features.
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FIGURE 3.4. The priceF; and the fundamental pricE* (top left); the geo-
metric moving average; (top right); the difference®; — P, (middle left) and
P, — u; (middle right) and the corresponding distributions (botjo
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The above result demonstrates that the simple MF model estaljgenerate realistic price
behaviour and appropriate long range dependence for eetunen both noise processes are
present. Because of the interaction of the nonlinear detestii dynamics and the noisy
processes, an explicit analysis of the generating meamaioisthis outcome seems to be diffi-

cult in general. In the following, we try to do so from threéfelient aspects.

First, we examine the roles that the two noise processesopldlye AC structure of the sto-
chastic system. When there is no noise process, as illustratéase-00 in Fig. 3.1, we obtain
the underlying deterministic systéfn The market price is oscillating initially but converging
to the fundamental value eventually. When the fundamenieg fluctuates stochastically, as
in the Case-01, the fundamental values are shifted to diffdexels over time. In this case,
the AC pattern in the top row in Fig. 3.3 shows a significant A@géturns and highly depen-
dent volatility measured by the significant ACs for the absoand squared returns. This may
be due to the stochastic shift of the fundamental price aedatal stability of the underlying
deterministic system. When the market price is also pertutiyethe noisy excess demand
process, the returns display insignificant AC patterns {seesecond and third rows in Fig.
3.3). Our simulations show that the two noise processesditigrent roles. For a given noisy
fundamental process wiihh > 0, there exists a critical valug; = o;(o.) > 0 for the noisy
demand process such that the ACs of the returns display disaqipattern for; < o; and an
insignificant pattern for; > o;. This implies that the noisy demand has a significant impact
on the ACs of returns. On the other hand, for a given noisy exdemand witlvs > 0, there
exists a critical value” = o(0s) > 0 such that the ACs for the absolute and squared returns
display an insignificant pattern for. < ¢ and a significant pattern fer. > o*. This implies
that the noisy fundamental price also has significant impacthe ACs of the absolute and
squared returns. Neither one of the two noise processes aaasponsible for the power-law
feature.

Second, we examine the impact of the noise processes on tiketrpaice and its relation
to the fundamental price. The convergence of the markeg poithe fundamental price for the
underlying deterministic system is destroyed after theoaiction of the two noise processes,

however, the market price moves closely to the fundamenteg pas illustrated in the top

15The authors would like to thank an anonymous referee to bmingome of the following points to our attention.
16\e refer to He and Li (2005) for the stability and bifurcatiemalysis in this case.



16 HE AND LI
left panel in Fig. 3.4. This indicates a temporary destaailon of the market price to the
fundamental price. From the middle left panel in Fig. 3.4e @an see that such temporary
deviation of the market price from the fundamental price lbarsignificant from time to time.
However, the density distribution of the differences in bodétom left panel in Fig. 3.4 shows
that the market prices are more concentrated near the fuardtahprices most of the time. For
comparison, we show the relation of the market price and ¢oengtric moving averaged price
in the right panels in Fig. 3.4. The moving averaged pricess lvolatile. Also, its difference
from the market price is less concentrated near zero, cadgarthe difference of the market
price from the fundamental price. The reaction of the funeiatalists to the deviation of the
market price from the fundamental price and the extrapmiadf the trend followers lead to a

more realistic price behaviour in this model.
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FIGURE 3.5. The geometric volatility{, top) and the demands of the trend
followers (zo;, middle) and the fundamentalists {, bottom).

The third important factor possibly affecting the voldsilclustering is the endogenous learn-
ing process engaged in by the risk averse trend followerse érdogenous development of
the expected mean and variance of the trend followers pesdasimple feedback effect. The
trend followers tend to push the market price away from thed&imental value by extrapo-
lating the trend, leading to high volatility. Because of trerqeived increase of risk, their
demand/supply is then reduced. The partial withdrawal @tténd followers then leads to less
volatile dynamics, which makes the trend followers revigerisk downward so that eventually

their demand/supply increases again. This simple feedimadhanism is clearly illustrated in
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Figs. 3.5 and 3.6. In Fig. 3.5, we plot the time series for thengetric moving variance,
(the top panel) and the excess demands of the trend followefthe middle panel) and of the
fundamentalistg,; (the bottom panel) over a short time period. We have low (hdgmand
from the trend followers following high (low) perceived aaillity. This is further confirmed by
the phase plot ofzy;, v;) in the left panel in Fig. 3.6 (observe the peaks on either gfdero
demand). As expected, the right panel in Fig. 3.6 shows tieattis no clear evidence of a
relationship between the perceived volatility)(of the trend followers and the excess demand

of the fundamentalists.

20 —
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FIGURE 3.6. The phase plots of the geometric moving varianggand the
demands of the trend followers,f, left) and of the fundamentalists,(, right).

Overall, we see that the interaction of speculators, thelgifieedback of the trend followers,
and the interplay of noises and the underlying determmidyinamics can generate realistic
volatility behaviour . We should notice that the size of tloese is a very subtle issue. For the
herding mechanism in Lux and Marchesi (2001), a balancqubdison among noise traders
is necessary. For the switching mechanism in GaunersdanigtHommes (2006), the noisy
component added to the excess demand is responsible fowitohiag between locally co-
existing attractors, and hence the noise level has to be targbtain realistic results. In our
model, the distributed fluctuations are due to the laggeatiieg and risk adjusted extrapolation
from the trend followers need to be balanced by the noisd tdwhe excess demand. At this
stage, a theoretical analysis of the interplay of deterstimdynamics and noise seems difficult.

Our analysis indicates that the noisy demand plays a morerianut role in the insignificant
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AC patterns for the returns, while the noisy fundamentatess plays a more important role
on the significant AC patterns for the absolute and squatedie

In the following discussion, we adopt statistical methodsdnl on Monte Carlo simulation
to estimate various models related to a power-law chaiaatem. The estimates are obtained
for both the MF model and the actual data, including the DAXtB@ FTSE 100, the NIKKEI
225 and the S&P 500. We also compare the estimates from thal aata with those from the
MF model.

4. EMPIRICAL EVIDENCE AND POWER LAW BEHAVIOUR OF THE ACTUAL DATA

This section provides a brief statistical analysis of thexC20, the FTSE 100, the NIKKEI
225, and the S&P 500 price indices from Datastream, whichbeilised as empirical evidence
and benchmarks for our comparison. There are altogethes 88y observations for each
index which start from Feb 1st, 1984. Ugeto denote the price index, e.g. the S&P 500, at

timet (t =0, ...,5305) and log returng, are defined ag, = Inp;, — Inp;_;.

4.1. Statistics and Autocorrelations of Returns. Table A.1 in Appendix A gives the sum-
mary statistics of; for the DAX 30, the FTSE 100, the NIKKEI 225, and the S&P 500r Fo
each index, we can see from Table A.1 that the kurtosis-fag much higher than that of a
normal distribution. The kurtosis and studentized rangéssics (which is the range divided
by the standard deviation) show the characteristic féédabehaviour compared with a nor-
mal distribution. The Jarque-Bera normality test statistiggests that, is far from a normal
distribution.

Ding et al. (1993) investigate autocorrelations of returns (and ttraimsformations) of the
daily S&P 500 index over the period 1928 to 1991 and find thatabsolute returns and the
squared returns tend to have very slow decaying autocbomtaand the sample autocorrela-
tions for the absolute returns are greater than those fagbared returns at every lag up to at
least 100 lags. This kind of AC feature indicates the lomgeadependence or the power-law
behaviour in volatility. The autocorrelations plotted iigFA.1 in Appendix A coincide with

the findings in Dinget al. (1993).

4.2. Estimates of Power-Law Decay Index. Besides the visual inspection of autocorrelations

of r;, r? and|r;|, one can also construct models to estimate the decay rdte afitocorrelations
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of r;, r? and|r;|. For instance, we can semi-parametrically model powerdahaviour in a

covariance stationary serieg t = 0, +1, ..., by

2d

s(w) = qw ™, w— 07, (4.1)

where0 < ¢; < oo, s(w) is the spectral density af;, andw is the frequency. Under (4.1),
s(w) has apole av = 0 for 0 < d < 1/2 (when there is a power-law in,), while d > 1/2
implies the process is not covariance stationaffyy) is positive and finite ford = 0; for
—1/2 < d < 0, we have short and negative dependence, or antipersist&éheeACs can be
described by, ~ c,k??~!, wherec; is a constant and = 2d — 1 corresponds to the hyperbolic
decay index.

Geweke and Poter-Hudak (1983), henceforth GPH, suggeshgpa@metric estimator of
the fractional differencing parametet, that is based on a regression of the ordinates of the
log spectral density. Given spectral ordinatgs= 27;/7(j; = 1,2,...,m), GPH suggest
estimatingd from a regression of the ordinates from the periodogiém). Hence, forj =
1,2,...,m,

log I(w;) = ¢ — dlog(4sin*(w;/2)) + v}, (4.2)

wherev; is assumed to be i.i.d. with zero mean and variarfgé. If the number of ordinates:
is chosen such that = ¢(7"), whereg(T') is such thatimy_... g(T') = oo, limy_, g(T)/T =
0 andlimy_(log(7)?)/g(T) = 0, then the OLS estimator afbased on (4.2) has the limiting

distribution
2

Vin(darn — d) % N(0, 7). (4.3)
Robinson (1995) provides a formal proof ferl/2 < d < 1/2, Velasco (1999) proves the
consistency ofl;py in the casd /2 < d < 1 and its asymptotic normality in the cas¢g2 <
d < 3/4. Itis clear from this result that the GPH estimator is @8t? consistent and will
converge at a slower rate.
Another most often used estimator®is developed by Robinson and Henry (1999), hence-
forth RH. They suggest a semiparametric Gaussian estimateeahemory parametet, by

considering

. , 1 <y d &
dry = argmin R(d), R(d) = log {E ;%‘ I(%‘)} -2 ; log wj, (4.4)
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in whichm € (0, [T/2]). They prove that/m(dgy — d) = N'(0,%) whenm < [T/2] such

thatl/m + m/T — 0 asT — oo and under some further conditions (see Robinson and Henry
(1999)).

A major issue in the application of the GPH and the RH estinsatthe choice ofn, due
to the fact that some limited knowledge is how available eoning this issue (see, Geweke
(1998), for instance), it is a wise precaution to report then@ated results for a range of band-
widths. So in our study, for both the GPH and the RH estimatels wk report the correspond-
ing estimates form = 50, 100,150,200, and250, respectively, in Appendix A.

For instance, for the DAX 300, Table A.2 reports the GPH aredRiH estimates off for
returns, the squared returns, and the absolute returmeately. In the panel of, in Table
A.2, the first row reports the results from the GPH and the Riinagés withm = 50, the
second row reports the results of the GPH and the RH estimatesw= 100, and so on. This
also holds for the panels of and|r;|, and for other tables in this section. The estimates of
the parameted for the FTSE 100, the NIKKEI 225 and the S&P 500 are summarizdables
A.3, A.4, and A.5, respectively.

We see that all of the estimatédor the returns are not significant at all conventional digni
icance levels while those for the squared returns, and tbelatie returns are significant. Thus,
for the DAX 30, the FTSE 100, the NIKKEI 225 and the S&P 500¢his clear evidence of
power-law for the squared and the absolute returns wiiéseositive, and the persistence in
the absolute returns is much stronger than that in the squatarns. These results coincide

with the well-established findings in the empirical finanterature.

4.3. Volatility Clustering, Power-Law and (FI)GARCH Estimates. Another striking fea-
ture of the return series wolatility clustering A number of econometric models of changing
conditional variance have been developed to test and mewslatility clustering. Engle (1982)
suggested a test where the null hypothesis is that the @sidfia regression model are i.i.d.
and the alternative hypothesis is that the errors are ARLCIHuppose the stock returns follow
an AR(1) process with innovations. If the returns are homoscedastic, then the variance can-
not be predicted and the variationsshwill be purely random. However, if ARCH effects are
present, large values ef will be predicted by large values of the past squared retsdTéis

leads to &I’ R? test statistic. In order to compute the test statistic, v fit the returns series
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with an AR(1) model, and then regress the squared residijais a constant angf |, ..., &7 .
The R? is then computed from this regression. Under the null hygsiththat there is no ARCH,
the test statistic is asymptotically distributed as a chiage distribution withy degrees of free-
dom. We implement the test for the four indices and the resark reported in Table A.6 in
Appendix A. In all the cases, the null hypothesis is strorgjgcted and, in terms of Engle’s
test, the four indices do have clear ARCH effects.

We now consider the family of ARCH models. The most widely usee is that introduced
by Engle (1982) and its generalization, the GARCH model, thiced by Bollerslev (1986).
Following their specification, for instance, if we model tie¢urns as an AR(1) process, then a
GARCH(p, ) model is defined by:

Ty =a + bri_q + &4, € = 0124,
(4.5)
0% =ag + (L) + B(L)o?, =~ N(0,1),
whereL is the lag operatory(L) = > 7, o; L and3(L) = >°%_, 3;I/. Definingv; = &7 — o7,

the process can be rewritten as an ARMA p) process
[1—a(L) = B(L)]ef = ao + [1 = B(L)]v, (4.6)

with m = max{p, q}. Table A.7 in Appendix A reports the estimates of the GARQH1)
model, where the mean process follows an AR(1) structure.

Based on the estimates, one can see that a small influence ofasterecent innovation
(small o) is accompanied by a strong persistence of the variancéiaeat (larges,). Itis
also interesting to observe that the sum of the coefficientss, is close to one, which indicates
that the process is close to an integrated GARCH (IGARCH) pro&ssh parameter estimates
are rather common when considering returns from high frequeaily financial data of both
share and foreign exchange markets (see, Pagan (1996)GAREH implies that shocks to
the conditional variance decay exponentially. Howevel@®&RCH implies that the shocks to
the conditional variance persist indefinitely.

In response to the finding that most financial time series aneeplaw volatility processes,
Baillie et al. (1996) consider the Fractional Integrated GARCH (FIGARCH) pss¢ where a

shock to the conditional variance dies out at a slow hypétate. Later on, Chung (1999)
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suggests a slightly different parameterization of the mode
o(L)(1 — L) e? — 0%) = ag + [1 — B(L)]vy, (4.7)

whereg(L) = 1 - Y7 ¢, L%, ap = ¢(L)(1 — L)?0?, ands? is the unconditional variance
of the corresponding GARCH model. Table A.8 in Appendix A répdhe estimates of the
FIGARCH (1, d, 1) model, where the mean process follows an AR(1) model. Theastifor
the fractional differencing parametdris statistically very different from both zero and one.
This is consistent with the well known findings that the stwottkthe conditional variance die

out at a slow hyperbolic rate.

5. ECONOMETRIC CHARACTERIZATION OF THE POWER-LAW PROPERTIES OFTHE MF

MODEL

This section is devoted to an econometric analysis on theptaw behaviour and the volatil-
ity persistence of the MF model. Various models are estichaseng the MF model-generated
data outlined in Section 3 and then compared with those oD#w§ 30, the FTSE 100, the
NIKKEI 225, and the S&P 500 estimated in the previous sectibme analysis and estimates
are based on Monte Carlo simulations. For the chosen setafeders and two noise processes
specified in Case-11 in Section 3, we ran 1,000 independentations over 6,306 time periods
and discarded the first 1,000 time periods to wash out anylpessitial noise effect. For each
run of the model we have 5,306 observations, which matclesample size of the actual data

that we used in the previous section.

5.1. Autocorrelations of Returns. First, we look at the ACs of returns, the squared returns
and the absolute returns. It is interesting to see whethesiowlation model can replicate the
well known findings as described in Fig. A.1. By running 1,000apendent simulations, we
estimate the autocorrelation coefficients and calculatedyéNest corrected standard errors of
returns, the squared returns and the absolute returnsdbmrea of the model, and we then take
the average. We plot the ACs and their corresponding confedieervals in Fig. 5.1.

From Fig. 5.1, we see that for the market fraction model, ndt are the sample correlations
of r? and|r;| all outside thed5% confidence interval of;, but they are also all positive over
long lags. Further, the sample autocorrelations for thelatesreturns are greater than that for

the squared returns at every lag up to at least 100 lags. Corgpaith Fig. A.1 for the four
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FIGURE5.1. Autocorrelations of, (bottom),r? (middle) andr;| (top) for the
MF model.

indices, we see that the patterns of decay of the autocboelanctions of return, the squared

return and the absolute return are quite similar.

5.2. Estimates of Power-Law Decay Index. We also look at the decay rate of the autocorre-
lations of returns, the squared returns, and the absolutmesthat are estimated from the GPH
the RH method. The resulting estimates are reported in TaBleAppendix A, where the col-
umn ‘Sig%’ indicates the percentage of simulations for Witiee corresponding estimates are
significant at the 5% level over 1,000 independent simutatioVe find that forn = 50, 100,
most of the estimates af for returns are not significant, but most of them are signitidar
largerm, although the corresponding averagedalues are large. However, all of the estimates
of d for the squared returns and the absolute returns are posithere is a clear evidence of a
power-law for the squared returns and the absolute retanmusalso the patterns of the estimates
of d for the returns, the squared returns, and the absolutensstie comparable to those of the

actual data (see Tables A.2, A.3, A.4, and A.5).

5.3. Volatility Clustering, Power-Law and (FI)GARCH Estimates. We now check for
ARCH/GARCH effects, in order to see whether the MF model is cagpabtapturing the fea-
ture of volatility clustering. We implement the test suggesby Engle (1982). Corresponding
to the Table A.6 of such test for the indices, the resultirsg $tatistics for the MF model are
140.8, 228.2, 372.7, 391.8 and 710.8 with the percenta@esy¥® 99.3%, 99.8%, 99.9%, and
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100%, respectively, so that the test statistics are sigmifiat the5% level over 1000 indepen-
dent simulations. In terms of Engle’s test, the MF model dee® clear ARCH effects. So, we
turn to study the GARCH and the FIGARCH estimates that descrilzdiMy persistence.

We report the estimates of the GARCH and the FIGARCH models inegabl10 and A.11,
respectively. The reported estimates and standard emeith@ averages of those across 1000
independent simulations. The specifications of the modelshee same as what we estimated
for the indices. Again, all these estimates are obtainenh filoe estimates for each run of
the simulation model and then averaged over independeniaions. The results from the
GARCH model are astonishingly similar to what one usually aots from real life data: a
small influence of the most recent innovatien (< 0.1) is accompanied by strong persistence
of the variance coefficienty{ > 0.9) and the sum of the coefficients + 5, = 0.9928 is close
to one. For the estimates of the FIGARQK, 1), we see that the estimate &fs significantly
different from zero and one.

Overall, we find that the MF model does provide a mechanismdaa generate the long-
range dependence in volatility observed in actual markiet déow we turn to assess the differ-

ences between the MF model and the real world quantitatively

5.4. Comparing with the Actual Data in Terms of the Power-Law Characteristics. Here
we compare the MF model with the four indices in terms of the ACeeturns, the squared
returns and the absolute returns, the power-law decay iddard the parametet in the FI-
GARCH(1,1) specification, respectively.

In Figures 5.2, we plot the autocorrelation coefficientsedtims, the squared returns and
the absolute returns for the MF model together with the DAXtB@ FTSE 100, the NIKKEI
225 and the S&P 500 respectively. For the purpose of congpgrise plot the corresponding
confidence intervals for corresponding quantities comingifthe actual data.

For the returns, we see from the first column of Fig. 5.2 thlabfalhe autocorrelations of
the MF model lies inside the confidence intervals of the datata. However, for the squared
returns, we see from the second column of Fig. 5.2 that whidihe of the MF model looks
reasonable compared to the DAX 30, it is different from whatsge from the S&P 500. The
last column of Fig. 5.2 also provides a mixed picture for thedute returns, the MF model

seems to fit the DAX 30 better than the other indices, espgdallarge lags.
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FIGURE 5.2. The ACs of the returns, the squared returns and the dbselu
turns for the MF model and the DAX 30 (a), the FTSE 100 (b), theKEI 225

(c), and the S&P 500 (d). The smooth lines refer to the MF medele the
confidence intervals are those for the actual data.

For the decay index of the returns, the squared returns or the absolute retwensyant to
test whether the parametetestimated from both the actual data (for instance, the DAX 30
and the MF model are the same. In other words, we want toHgst dpax = dyr, apart
from checking whethed,, - lies in the confidence interval af, 4 x or not. The null hypothesis
can also be tested by the Wald test by assuming that both tinéeruof simulations and the
number of time periods for each simulation go to infinity. e iconstruction of the Wald test,
W = (dpax —dyr)S " (dpax —dar), wherel is simply the variance afp 4 x. We notice that
dyr is estimated from the simulated data by running the MF mod#pendently many times,
sody converges much faster than thatdof,x and we can ignore the estimation inaccuracy
in dy-. For a more general discussion on a comparison of simulatiodels with the real
world data, see Let al. (2006, 200). The resulting test statistics are summarized in Table
A.12 in Appendix A, in the column ‘DAX 30’, the first sub-colunreports the test statistics
corresponding talpy, and the second sub-column correspondindﬁ,g, and so on. Notice
that the critical values of the Wald test at 5% and 1% sigmtidaevels are 3.842 and 6.635,
respectively. For the returns, we see that the estimatédhe FTSE 100 and the MF model are
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not significantly different, except for the RH estimate with= 250; in addition, most of the
test statistics are not significant for = 50, 100, but they are significant for larger. For the
squared returns, except for the GPH estimates of the DAXh&0estimated of the MF model

Is significantly different from almost all of those of the aat data. For the absolute returns, the
differences between the estimatéaf the actual data and the MF model are not statistically
significant, except for the: = 50.

We can also test the equality @in the FIGARCH specification between the actual data and
the MF model by the Wald test. The resulting Wald statistarsttie DAX 30, FTSE 100, the
NIKKEI 225 and the S&P 500 are 586, 4.140, 29.5 and 4.853 e@spely. So the estimated
in the FIGARCH1, d, 1) model of the MF model is not significantly different from tleosf the
FTSE 100 and the S&P 500, but it is significantly differentnfrchose of the DAX 30 and the
NIKKEI 225.

The above analysis indicates that the simple market fractiodel is able to replicate the
power-law properties of the actual stock market quali&dyiv However, the formal statistical
tests find that the decay rate and the (FI)GARCH estimates fnenMt- model do not easily
completely match those of any particular single indeXhis is probably due to the simplicity
of the MF model and different features across different fomelrmarkets. The power-law mech-
anism of the MF model is different from either herding (fost@ance, the mechanism developed
in Lux and Marchesi (1999)) or switching mechanisms (sucthasdaptive switching mech-
anism in Brock and Hommes (1997, 1998)) in terms of modelingjttshares the same spirit
in a much simpler way. This is one of the main contributionghag paper. It is this simplicity
that makes it possible to identify potential sources andhaeisms that can generate certain

characteristics.

6. CONCLUSION

Motivated by the recent interest in the power-law behavaiurigh frequency financial mar-
ket time series and the explanatory power of heterogenagest asset-pricing models, this
paper investigates the power-law properties of a simpleketdraction model involving two
types of traders (fundamentalists and trend followers}efoing earlier work on long-run as-

set price behaviour , profitability, survivability, varisunder- and over-reaction AC patterns,

This is not too surprising, we might note that these pararseteo differ across stock indices.



POWER-LAW BEHAVIOUR , HETEROGENEITY, AND TREND CHASING 27
and their connections to the underlying deterministic ayica, we studied in the characteri-
zation of the power-law volatility behaviour of the MF moaeld its comparison with the real
world. We found that the agent heterogeneity, risk-adgltend chasing through the geomet-
ric learning process, and the interplay of noise and the nlyidg deterministic dynamics can
explain the power-law distributed fluctuations.

It is interesting and important to see how the determingicamics and noise interact with
each other, and further, to understand the connectionsleetthe nonlinear dynamics of the un-
derlying deterministic system and certain time series @itigs of the corresponding stochastic
system. The theoretical analysis is important but diffigiden the current state of knowledge
on nonlinear random dynamic system. Therefore statisticalysis with powerful econometric
tools seems necessary. Based upon Monte Carlo simulatiatistisal analysis, including es-
timates of the (FI)GARCH parameters and related tests, we #hetwwthe MF model is able to
explain some of the characteristics that are well estaddish the empirical finance literature.
There is a clear evidence of the power-law and GARCH effects Wiorth emphasizing that
all these interesting qualitative and quantitative fezgiarise from the simple model with fixed
market fractions.

Further investigation and extension of the simple modeinsegecessary. It may be inter-
esting to extend our analysis to the model established tigdanDieci et al. (2006), in which
part of the market fractions are governed by market mood laadest follows some adaptive
switching process. One way to start might be to estimate thaehfirst, and then implement
misspecification tests. Econometric methods, such asesftionethods of moments could be
used. Allowing for market mood and switching mechanisms#sidg these econometric esti-
mation approaches, we may gain a better characterizatobaraaerstanding of the mechanisms

deriving financial markets.

APPENDIXA. STATISTICAL RESULTS

TABLE A.1. Summary statistics of.

data mean std.  skewness kurtosis  min max stud. range Jarque-Bera
DAX 30 0.0003 0.0143  -0.467 8.940 -0.137 0.076 14.91 7991
FTSE 100 0.0003 0.0105 -0.735 13.07 -0.130 0.076 19.60 22879
NIKKEI 225 0.0000 0.0137 -0.142 10.47 -0.161 0.124 20.78 6823

S&P 500 0.0004 0.0107 -1.997 45.96 -0.228 0.087 29.35 411423
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FIGURE A.1l. Autocorrelations of returns, the squared returns aedabsolute
returns for the DAX 30 (a), the FTSE 100 (b), the NIKKEI 225, @)d the S&P
500 (d). The lines from the bottom to the top are the autotatioms for returns,
the squared returns, and the absolute returns, respgctivel

TABLE A.2. The estimates af for the DAX 30 withm = 50, 100, 150, 200, 250

daprPH t p-value 95% CI drH t p-value 95% CI

r; 0.0884 0.858 0.391 [-0.1136, 0.2908]-0.0034 -0.048 0.962 [-0.1420, 0.1352]
0.0491 0.707 0.480 [-0.0870, 0.1852]0.0634 1.267 0.205 [-0.0346, 0.1614]
0.0527 0.948 0.343 [-0.0563, 0.161f]0.0901 2.208 0.027 [0.0101, 0.1702]
0.0348 0.730 0.465 [-0.0586,0.128[1]10.0528 1.493 0.135 [-0.0165, 0.1221]
0.0434 1.027 0.305 [-0.0395,0.126{%]0.0609 1.926 0.054 [-0.0011, 0.1229]

T? 0.4380 4.252 0.000 [0.2361, 0.640(] 0.4156 5.878 0.000 [0.2770, 0.5542]
0.4727 6.807 0.000 [0.3366, 0.6089] 0.4570 9.139 0.000 [0.3590, 0.5550]
0.4111 7.391 0.000 [0.3021, 0.5201] 0.3887 9.521 0.000 [0.3087, 0.4687]
0.3710 7.787 0.000 [0.2776, 0.4648] 0.3649 10.32 0.000 [0.2956, 0.4342]
0.3830 9.054 0.000 [0.3001, 0.466Q] 0.3714 11.74 0.000 [0.3094, 0.4334]

|r¢] 0.6478 6.287 0.000 [0.4458, 0.8491] 0.6137 8.678 0.000 [0.4751, 0.7522]
0.6013 8.658 0.000 [0.4652, 0.7374] 0.5986 11.97 0.000 [0.5006, 0.6966]
0.5846 10.51 0.000 [0.4756, 0.693@] 0.5565 13.63 0.000 [0.4765, 0.6366]
0.5404 11.34 0.000 [0.4471, 0.6338] 0.5366 15.18 0.000 [0.4673, 0.6059]
0.5215 12.33 0.000 [0.4386, 0.6044] 0.5166 16.34 0.000 [0.4546, 0.5785]
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TABLE A.3. The estimates af for the FTSE 100 withn = 50, 100, 150, 200, 250

darn t  p-value 95% ClI dry t  p-value 95% ClI

r. -0.0641 -0.623 0534 [-0.2661,0.1378]0.0109 0.155 0.877 [-0.1277, 0.1495]
-0.0560 -0.806 0.420 [-0.1921,0.0801]-0.0174 -0.349 0.727 [-0.1154, 0.0806]
-0.0881 -1.582 0.114 [-0.1972,0.02111]-0.0410 -1.004 0.315 [-0.1210, 0.0390]
-0.0695 -1.458 0.145 [-0.1628,0.0239]-0.0289 -0.817 0.414 [-0.0982, 0.0404]
-0.0178 -0.421 0.673 [-0.1008, 0.065{]-0.0051 -0.162 0.871 [-0.0671, 0.0569]

rZ  0.2739 2.658 0.008 [0.0719, 0.4758] 0.2958 4.184 0.000 [0.1572, 0.4344]
0.2802 4.035 0.000 [0.1441,0.4164] 0.2923 5.845 0.000 [0.1943, 0.3903]
0.2469 4.439 0.000 [0.1379,0.3559] 0.2684 6.575 0.000 [0.1884, 0.3485]
0.2201 4.621 0.000 [0.1268,0.3135] 0.2560 7.239 0.000 [0.1867, 0.3253]
0.2297 5.430 0.000 [0.1468,0.3126] 0.2630 8.318 0.000  [0.2011, 0.3250]

] 05609 5.444 0.000 [0.3589,0.7628] 0.5797 8.197 0.000 [0.4411,0.7182]
0.6044 8.702 0.000 [0.4682,0.740%] 0.5666 11.33 0.000 [0.4686, 0.6646]
0.5656 10.17 0.000 [0.4566, 0.6746] 0.5242 12.84 0.000 [0.4441, 0.6042]
05156 10.82 0.000 [0.4222,0.6089] 0.5023 14.21 0.000 [0.4330, 0.5716]
0.5134 12.13 0.000 [0.4305,0.5968] 0.5003 15.82 0.000 [0.4384, 0.5623]

TABLE A.4. The estimates af for the NIKKEI 225 withm = 50, 100, 150, 200, 250

dapH t p-value 95% ClI dru t p-value 95% CI

re 0.1560 1.514 0.130 [-0.0460,0.3579]0.0476 0.673 0.501 [-0.0910, 0.1862]
0.1107 1594 0.111 [-0.0254, 0.2469]0.0411 0.821 0.411 [-0.0569, 0.1391]
0.0796 1.431 0.152 [-0.0294, 0.1886]0.0483 1.183 0.237 [-0.0317,0.1283]
0.0518 1.088 0.277 [-0.0415, 0.145p]0.0347 0.981 0.326 [-0.0346, 0.1040]
0.0283 0.668 0.504 [-0.0547,0.111]0.0127 0.403 0.687 [-0.0493,0.0747]

rz 0.3277 3.180 0.001 [0.1257,0.5294]0.3746 5.298 0.000 [0.2361, 0.5132]
0.3251 4.681 0.000 [0.1890, 0.4612]0.3250 6.500 0.000 [0.2270, 0.4230]
0.3231 5.810 0.000 [0.2141,0.4321]0.3145 7.704 0.000 [0.2345, 0.3945]
0.3211 6.740 0.000 [0.2277,0.4145]0.3164 8.948 0.000 [0.2471, 0.3857]
0.3147 7.437 0.000 [0.2317,0.3976]0.3059 9.673 0.000 [0.2439, 0.3679]

|rs] 0.6019 5.841 0.000 [0.3999, 0.8038]0.6060 8.570 0.000 [0.4674,0.7446]
0.5174 7.449 0.000 [0.3812,0.653§]0.5270 10.54 0.000 [0.4290, 0.6250]
0.5356 9.631 0.000 [0.4266,0.6444]0.5193 12.72 0.000 [0.4393, 0.5993]
0.5103 10.71 0.000 [0.4169,0.60311]0.5112 14.46 0.000 [0.4419, 0.5805]
0.5121 12.11 0.000 [0.4292,0.5951]0.5090 16.09 0.000 [0.4470,0.5709]

TABLE A.5. The estimates af for the S&P 500 withn = 50, 100, 150, 200, 250

daprH t p-value 95% ClI drH t p-value 95% ClI

r. 0.0606 0.588 0.557 [-0.1414,0.2625]0.0575 0.814 0.416 [-0.0811, 0.1961]
0.0375 0.537 0.591 [-0.0994,0.1744]0.0306 0.612 0.541 [-0.0674,0.1286]
0.0287 0.515 0.606 [-0.0804, 0.1378]0.0137 0.335 0.737 [-0.0663, 0.0937]
0.0232 0.488 0.626 [-0.0701,0.116/$]0.0028 0.078 0.938 [-0.0665, 0.0721]
0.0155 0.367 0.714 [-0.0674, 0.0985]-0.0023 -0.072 0.943 [-0.0643, 0.0597]

rZ 0.2425 2354 0.018 [0.0406, 0.444%] 0.2558 3.618 0.000 [0.1172, 0.3944]
0.2249 3.239 0.001 [0.0888,0.3611] 0.2455 4.909 0.000 [0.1475, 0.3435]
0.1707 3.070 0.002 [0.0617,0.2791] 0.1905 4.667 0.000 [0.1105, 0.2706]
0.1493 3.133 0.002 [0.0559, 0.242¢] 0.1732 4.899 0.000 [0.1039, 0.2425]
0.1418 3.351 0.001 [0.0589,0.2247] 0.1700 5.374 0.000 [0.1080, 0.2319]

|r¢] 0.6241 6.057 0.000 [0.4221,0.826(] 0.6139 8.682 0.000 [0.4753,0.7525]
0.6096 8.778 0.000 [0.4735,0.7458] 0.6084 12.17 0.000 [0.5104, 0.7064]
0.5530 9.943 0.000 [0.4440,0.662(0] 0.5152 12.62 0.000 [0.4352, 0.5952]
0.4888 10.26 0.000 [0.3954,0.582%] 0.4856 13.74 0.000 [0.4163, 0.5549]
0.4515 10.67 0.000 [0.3686,0.5344] 0.4659 14.73 0.000 [0.4039, 0.5279]
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TABLE A.6. Engle’s test statistics for the presence of ARCH/GARCHatfe

data lagl lag2 lag5 lag10 lag50
DAX 30 2345 4409 6205 713.4 809.1
FTSE 100 1415 1433 1462 1497 1596

NIKKEI 225 240.1 261.8 347.4 364.3 4384

S&P 500

85.65 182.8 280.5 293.6 351.7

TABLE A.7. GARCH(1, 1) Parameter Estimates

data a x 107 b ag x 107 a B
DAX 30 0.655(0.161) 0.0335(0.0162) 0.048(0.004) 0.118%89) 0.8604(0.0071)
FTSE 100 0.514(0.120) 0.0404(0.0149) 0.023(0.003) 0.WV6666) 0.8824(0.0085)

NIKKEI 225 0.751(0.138)

S&P 500

0.600(0.119)

0.0415(0.0150)
0.0267(0.0154)

0.023(0.003)

024(®.0036)

0.013(0.002) 0.07.90Q0)

0.8608(0.0046)
0.9114(0.0036)

Note: The numbers in parentheses are standard errors. This alsddoléble A.8.

TABLE A.8. FIGARCH(1,d, 1) Parameter Estimates

b

oo X 104

d

$1

B

data ax 103
DAX 30 0.694(0.142)
FTSE 100 0.528(0.118)
NIKKEI 225 20.75(0.070)
S&P 500  0.629(0.116)

0.0358(0.0144)
0.0459(0.0143)

-0.0460(0.0010)
0.0290(0.0158)

0.933(0.057) 0.067B(R9)

0.673(0

.093)

0.GROR59)

0.056(0.024) 0&LA(0.0046)
0.665(0.094) 0.385202)

0.9608(0.0044) 0.9059(0.0088)

0.0150(0.0556)
0.1454(0.0029)
0.2765(0.0367)

0.2559(0.0739)
0.7542(0.0027)
0.5032(0.0447)

TABLE A.9. The estimates af for the MF model withm = 50, 100, 150, 200, 250

depr t p-value 95% ClI Sig%| drm t p-value 95% ClI Sig%
7. -0.0500 -0.4856 0.4123 [-0.0564,-0.0436] 13]2-0.0581 -0.8215 0.3318 [-0.0625,-0.0537] 26.3
-0.0892 -1.2842 0.2890 [-0.0935,-0.0849] 37/4-0.0916 -1.8311 0.2251 [-0.0947,-0.0885] 47.6
-0.1111 -1.9976 0.2057 [-0.1146,-0.1077] 52/3-0.1091 -2.6722 0.1513 [-0.1116,-0.1066] 63.6
-0.1133 -2.3783 0.1670 [-0.1163,-0.1104] 60/8-0.1091 -3.0862 0.1161 [-0.1113,-0.1069] 71.0
-0.1065 -2.5173 0.1340 [-0.1091,-0.1039] 67/1-0.1021 -3.2294 0.1027 [-0.1041,-0.1002] 76.3
77 0.7529 7.3072 0.0000 [0.7465, 0.7593] 1000.7380 10.436 0.0000 [0.7336,0.7423] 100
0.5876 8.4603 0.0000 [0.5833,0.5919] 1000.5964 11.929 0.0000 [0.5933,0.5995] 100
0.4884 8.7822 0.0000 [0.4850,0.4919] 1Q00.5175 12.676 0.0000 [0.5150,0.5200] 100
0.4258 8.9378 0.0000 [0.4228,0.4288] 1000.4698 13.288 0.0000 [0.4676,0.4720] 100
0.3791 8.9610 0.0000 [0.3765,0.3818] 1Q00.4341 13.727 0.0000 [0.4321,0.4360] 100
[r.] 0.8696 8.4395 0.0000 [0.8632,0.8760] 1000.8519 12.048 0.0000 [0.8475,0.8563] 100
0.7068 10.176 0.0000 [0.7025,0.7111] 1Q00.7125 14.250 0.0000 [0.7094,0.7156] 100
0.5975 10.741 0.0000 [0.5940,0.6009] 1Q00.6279 15.379 0.0000 [0.6253,0.6304] 100
0.5235 10.987 0.0000 [0.5205,0.5265] 1000.5731 16.208 0.0000 [0.5709,0.5753] 100
0.4683 11.066 0.0000 [0.4657,0.4709] 1Q00.5327 16.845 0.0000 [0.5307,0.5347] 100
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TABLE A.10. The GARCH(1, 1) Parameter Estimates for the MF Model

a x 10° b ao x 107 Qs [¢]
0.0740  0.0725 0.0078 0.0260 0.9738
(0.2300) (0.0139) (0.0035) (0.0032) (0.0033)
47 77.1 17.7 100 100
Note: The numbers in parentheses are the standard errors, andrthersun the last row are the percent-
ages that the test statistics are significarit%tlevel over 1000 independent simulations. This also holds
for Table A.11.

TABLE A.11. The FIGARCH(1, d, 1) Parameter Estimates for the MF Model

a b Ozo><104 d (b1 ﬁ
0.0137 0.0769 0.3620 0.3797 0.3439 0.7933
(0.0010) (0.0195) (0.6112) (0.0386) (0.0281) (0.0295)
41.2 72.6 35.6 87.6 83.1 98.5

TABLE A.12. The Wald test off with m = 50, 100, 150, 200, 250

DAX 30 FTSE 100 NIKKEI 225 S&P 500
re 1.806 0.599 0.019 0.953| 4.000 2.235 1.153 2.674
3.960 9.610| 0.228 2.202| 8.273 7.044| 3.323 5.973
8.679 23.84/ 0.171 2.786| 11.76 14.88| 6.322 9.059
9.681 20.92| 0.847 5.133 12.03 16.50] 8.223 9.992
1256 26.61] 4.397 9.423 10.16 13.20| 8.318 9.974
r; 9.347 20.79] 21.63 39.12[ 17.04 26.42 2456 46.52
2733 7.773 19.56 36.99| 14.27 29.46| 27.23 49.25
1.933 9.966| 18.87 37.28| 8.839 24.76| 32.65 64.24
1.325 8.781| 18.67 36.48 4.838 18.78 33.74 70.20
0.009 3.937| 12.47 29.32| 2.318 16.46| 31.47 69.85
|r¢] 4.637 11.35/ 8.983 14.82 6.755 12.10/ 5.681 11.33
2.304 2595 2.171 4.259 7.427 6.884) 1.956 2.168
0.054 1.020] 0.329 2.151] 1.240 2.360] 0.641 2.541
0.126 0.267] 0.028 1.003 0.077 0.767] 0.531 1.532
1.582 0.052| 1.137 0.210| 1.072 0.112] 0.158 0.893
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