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ABSTRACT. Long-range dependence in volatility is one of the most prominent examples in fi-

nancial market research involving universal power laws. Its characterization has recently spurred

attempts to provide some explanations of the underlying mechanism. This paper contributes to

this recent line of research by analyzing a simple market fraction asset pricing model with two

types of traders—fundamentalists who trade on the price deviation from estimated fundamental

value and trend followers whose conditional mean and variance of the trend are updated through

a geometric learning process. Our analysis shows that agentheterogeneity, risk-adjusted trend

chasing through the geometric learning process, and the interplay of noisy fundamental and

demand processes and the underlying deterministic dynamics can be the source of power-law

distributed fluctuations. In particular, the noisy demand plays an important role in the generation

of insignificant autocorrelations (ACs) on returns, while the significant decaying AC patterns of

the absolute returns and squared returns are more influencedby the noisy fundamental process.

A statistical analysis based on Monte Carlo simulations is conducted to characterize the decay

rate. Realistic estimates of the power-law decay indices and the (FI)GARCH parameters are

presented.

JEL Classification: C15, D84, G12
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1. INTRODUCTION

It is well known that (high-frequency) financial time seriesshare some common features, the

so called stylized facts1; including excess volatility (relative to the dividends and underlying

cash flows), volatility clustering (high/low fluctuations are followed by high/low fluctuations),

skewness, and excess kurtosis. Traditional economic and finance theory based on the repre-

sentative agent with rational expectations has encountered great difficulties in explaining these

facts. As a result there has been an increase in interest in models incorporating heterogeneous

agents and bounded rationality. These models characterizethe dynamics of financial asset prices

resulting from the interaction of heterogeneous agents having different attitudes to risk and hav-

ing different expectations about the future evolution of prices2. Some of these models derive

their price dynamics from nonlinear trading rules while others consider some nonlinear switch-

ing mechanism between different trading strategies.

One of the key aspects of these models is that they exhibit feedback of expectations—the

agents’ decisions are based upon predictions of future values of endogenous variables whose

actual values are determined by equilibrium equations. In particular, Brock and Hommes (1997,

1998) proposed anAdaptive Belief Systemmodel of economic and financial markets. The

agents adapt their beliefs over time by choosing from different predictors or expectations func-

tions, based upon their past performance. The resulting nonlinear dynamical system is, as Brock

and Hommes (1998) and Hommes (2002) show, capable of generating a wide range of complex

behaviour from local stability to high order cycles and chaos. They are also capable of explain-

ing some of the stylized facts of financial markets. It is veryinteresting to find that adaptation,

evolution, heterogeneity, and even learning, can be incorporated into the Brock and Hommes

type of framework. This broader framework also gives rise torich and complicated dynamics

and can be used to obtain a deeper understanding of market behaviour3. Moreover, recent works

by Westerhoff (2004), Chiarellaet al. (2005, 2006a) and Westerhoff and Dieci (2006) show that

complex price dynamics may also result within a multi-assetmarket framework.

1See Pagan (1996) for a comprehensive discussion of stylizedfacts characterizing financial time series.
2For a representative sample of this literature see, Frankeland Froot (1987), Day and Huang (1990), De Longet
al. (1990), Chiarella (1992), Dacorognaet al. (1995), Lux (1995, 1997, 1998), Brock and LeBaron (1996), Arthur
et al. (1997), Brock and Hommes (1997, 1998), Chen and Yeh (1997, 2002), Lux and Marchesi (1999), Bullard
and Duffy (1999), LeBaronet al. (1999), LeBaron (2000, 2001, 2002), Iori (2002), Hommes (2002) and Farmer
and Joshi (2002).
3In this regard see, Gaunersdorfer (2000), Hommes (2001, 2002), Chiarella and He (2001, 2002, 2003), Chiarella
et al. (2002), De Grauwe and Grimaldi (2003) and Westerhoff (2003).
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Among the stylized facts, volatility clustering and long-range dependence (that is, insignif-

icant autocorrelations (ACs) of raw returns and hyperbolic decline of ACs of the absolute and

squared returns) have been extensively studied since the seminal paper of Dinget al. (1993).

Recently, a number of universal power laws4 have been found to hold in financial markets. This

finding has spurred attempts at a theoretical explanation and the search for an understanding

of the underlying mechanisms responsible for such power laws.5 This paper contributes to the

development of this literature.

Various models have been developed to explain the power-lawbehaviour . For instance the

popular GARCH class processes, initiated in Engle (1982), model returns as a random process

with a time-varying variance that shows autoregressive dependence. These models produce

fat tails of the unconditional distribution and capture theshort-run dynamics of volatility au-

tocorrelations. However, the implied decay of the volatility autocorrelation of these models is

exponential rather than the hyperbolic as observed in high frequency (e.g. daily) data. In addi-

tion, the GARCH class of models does not provide an explanationof the empirical regularities

referred to earlier.

As a consequence of development in the rational bubble models literature, multiplicative

stochastic processes (with multiplicative and additive stochastic components) have been used to

explain the power-law behaviour (see Kesten (1973) and Lux (2004)). The power-law exponent

can be determined from the distribution of the multiplicative component, not the additive noise

components. However, as shown by Lux and Sornette (2002), the range of the exponent required

for the rational bubble models is very different from the empirical findings. In addition, rational

bubble models share the conceptual problems of economic models withfully rational agents.

Herding models of financial markets have been developed to incorporate herding and con-

tagion phenomena.6 Using a stripped down version of an extremely parsimonious stochastic

herding model with fundamentalists (who trade on observed mispricing) and noise traders (who

follow the mood of the market), Alfaranoet al. (2005) show that price changes are generated

by either exogenous inflow of new information about fundamentals or endogenous changes in

4They include cubic power distribution of large returns, hyperbolic decline of the return autocorrelation function,
temporal scaling of trading volume and multi-scaling of higher moments of returns.
5We refer to Lux (2004) for a recent survey on empirical evidence, models and mechanisms of various financial
power laws.
6See Kirman (1991, 1993), Lux (1995, 1997, 1998), Lux and Marchesi (1999), Chenet al. (2001), Aoki and
Yoshikawa (2002), and Alfaranoet al. (2005).
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demand and supply via the herding mechanism. The model is able to produce relatively realistic

time series for returns whose distributional and temporal characteristics are astonishingly close

to the empirical findings. This is partly due to a bi-modal limiting distribution for the frac-

tion of noise traders in the optimistic and pessimistic groups of individuals and partly due to

the stochastic nature of the process leading to recurrent switches from one majority to another.

Lux and Marchesi (1999) argue that the indeterminateness ofthe market fractions in a market

equilibrium and the dependence of stability on the market fractions exist in a broad class of

behaviour al finance models. This argument is supported by Giardina and Bouchaud (2003) and

Lux and Schornstein (2005). However, with the increase of the population size, the law of large

numbers comes into effect and the indeterminacy and power-law statistics disappear.

As discussed earlier, the Brock and Hommes’ framework and itsvarious extensions are capa-

ble of explaining various types of market behaviour and important stylized facts. For example,

a mechanism of switching between predictors and co-existing attractors is used in Gauners-

dorfer and Hommes (2006) to characterize volatility clustering. The highly nonlinear deter-

ministic system may exhibit co-existence of different types of attractors and adding noise to

the deterministic system may then trigger switches betweenlow- and high-volatility phases.

Their numerical simulations show quite satisfactory statistics between the simulated and actual

data. Compared to the herding mechanism, Brock and Hommes’ framework allows an infinite

population of speculators. However, like most of the analytical heterogeneous agent literature

developed so far, the comparison with empirical facts is mainly based upon visual inspection,

or upon a few realizations of the model. A formal investigation of the time series properties of

the heterogeneous agent models, including the estimation of power-law indices, is still lacking.

This paper seeks to fill this gap in the literature.

Overall both the herding and switching models discussed above have shown their potential

to explain power-law behaviour.7 To generate realistic time series, some kind of intermittent

dynamics and self-amplification of fluctuations via herdingor technical trading are necessary.

As pointed out by Lux (2004),“one of the more important problems of these models is the

relationship between system size, deterministic forces and stochastic elements”.

7Other behaviour al finance explanations for volatility clustering exist. Manzan and Westerhoff (2005) develop a
model in which traders tend to over or under-react to the arrival of new information.
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In this paper, we consider the market fraction (MF) model established in He and Li (2005)

and explore the potential mechanism of the model to generatethe power-law feature observed in

empirical data. The MF model is a simple stochastic asset pricing model, involving two types

of traders (fundamentalists and trend followers) under a market maker scenario. He and Li

(2005) aim to explain various aspects of financial market behaviour and establish the connection

between the stochastic model and its underlying deterministic system. Through a statistical

analysis, the paper shows that convergence of market price to fundamental value, long- and

short-run profitability of the two trading strategies, survivability of trend followers and various

under- and over-reaction autocorrelation patterns of the stochastic model can be explained by

the dynamics, including the stability and bifurcations, ofthe underlying deterministic system.

This paper builds on He and Li (2005) and reveals the potential of the MF model to char-

acterize the volatility clustering and the long-range dependence of asset returns. We show that

heterogeneity, risk-adjusted trend chasing through a geometric learning process, and the inter-

play of a stable deterministic equilibrium and stochastic noisy processes can be the source of

power-law distributed fluctuations. This is further verified via a Monte Carlo simulation, a sta-

tistical analysis of the decay patterns of autocorrelationfunctions of returns, the squared returns

and the absolute returns, and the estimates of (FI)GARCH(1, 1) parameters. Both the analysis

of the generating mechanism and the statistical estimates via a Monte Carlo simulation of the

power-law behaviour are the main contributions of the current paper.

The remainder of the paper is organized as follows. Section 2reviews the MF model es-

tablished in He and Li (2005). Section 3 is devoted to an analysis of the potential of the MF

model to generate the power-law behaviour. In Section 4 we estimate the power-law decay

parameters of the autocorrelation of returns, the squared returns and the absolute returns and

(FI)GARCH(1,1) parameters for the DAX 30, the FTSE 100, the NIKKEI 225 and the S&P

500 stock market daily closing price indices. The power-lawproperties of the market fraction

model and the comparison with the actual data is analyzed in Section 5. Section 6 concludes.

2. THE MARKET FRACTION MODEL

The market fraction (MF) model is a standard discounted value asset pricing model with

heterogeneous agents. It is closely related to the framework of Brock and Hommes (1997,
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1998) and Chiarella and He (2002). Here we outline the model and refer the readers to He and

Li (2005) for full details.

Consider an economy with one risky asset and one risk free asset. It is assumed that the risk

free asset is perfectly elastically supplied at gross return of R = 1 + r/K, wherer stands for a

constant risk-free rate per annum andK stands for the trading frequency measured in units of a

year.8 Let Pt andDt be the (ex dividend) price and dividend per share of the riskyasset at time

t, respectively. Then the wealth of a typical investor-h at t + 1, Wh,t+1, is given by

Wh,t+1 = RWh,t + [Pt+1 + Dt+1 − RPt]zh,t, (2.1)

wherezh,t is the number of shares of the risky asset purchased by investor-h at t. Let Eh,t and

Vh,t be thebeliefsof typeh traders about the conditional expectation and variance att+1 based

on their information at timet. Denote byRt+1(= Pt+1 + Dt+1 − R Pt) the excess capital gain

on the risky asset att + 1. Assume that typeh traders have constant absolute risk aversion

(CARA) utility functions with the risk aversion coefficientah (that isUh(W ) = −e−ahW ) and

their optimal demands for the risky assetzh,t are determined by maximizing their expected

utility of wealth. Then it turns out that

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (2.2)

Given the heterogeneity and the nature of asymmetric information among traders, we con-

sider two popular trading strategies corresponding to two types of boundedly rational traders—

fundamentalists and trend followers. Assume that the market fractions of the fundamentalists

and trend followers aren1 andn2, respectively. Letm = n1 − n2 ∈ [−1, 1], thenm = 1(−1)

corresponds to the case when all the traders are fundamentalists (trend followers). Assume zero

supply of outside shares. Then, using (2.2), the populationweighted aggregate excess demand

ze,t is given by

ze,t ≡ n1z1,t + n2z2,t =
1 + m

2

E1,t[Rt+1]

a1V1,t[Rt+1]
+

1 − m

2

E2,t[Rt+1]

a2V2,t[Rt+1]
. (2.3)

8Typically, K = 1, 12, 52 and250 representing trading periods of year, month, week and day, respectively. To
calibrate the stylized facts observed from daily price movement in financial market, we selectK = 250 in our
discussion.
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To complete the model, we assume that the market is cleared bya market maker. The role

of the market maker is to take a long (whenze,t < 0) or short (whenze,t > 0) position so as to

clear the market. At the end of periodt, after the market maker has carried out all transactions,

he or she adjusts the price for the next period in the direction of the observed excess demand.

Let µ be the speed of price adjustment of the market maker (this canalso be interpreted as the

market aggregate risk tolerance). To capture unexpected market news or the excess demand

of noise traders, we introduce a noisy demand termδ̃t which is an i.i.d. normally distributed

random variable with̃δt ∼ N (0, σ2
δ ). Based on these assumptions and (2.3), the market price is

determined by

Pt+1 = Pt +
µ

2

[

(1 + m)
E1,t[Rt+1]

a1V1,t[Rt+1]
+ (1 − m)

E2,t[Rt+1]

a1V2,t[Rt+1]

]

+ δ̃t. (2.4)

Now we turn to discuss the beliefs of fundamentalists and trend followers.

Fundamentalists—Denote byFt = {Pt, Pt−1, · · · ; Dt, Dt−1, · · · } the common information

set formed at timet. Apart from the common information set, the fundamentalists are assumed

to havesuperiorinformation on the fundamental value,P ∗

t , of the risky asset which is introduced

as an exogenous news arrival process. More precisely, the relative return (P ∗

t+1/P
∗

t − 1) of the

fundamental value is assumed to follow a normal distribution, and hence we write

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t], ǫ̃t ∼ N (0, 1), σǫ ≥ 0, P ∗

0 = P̄ > 0, (2.5)

whereǫ̃t is independent of the noisy demand processδ̃t. This specification ensures that nei-

ther fat tails nor volatility clustering are brought about by the exogenous news arrival process.

Hence, emergence of any autocorrelation pattern of the return of the risky asset in our later

discussion would be driven by the trading process itself, rather than news. The fundamentalists

also realize the existence of non-fundamental traders, such as trend followers to be introduced in

the following discussion. The fundamentalists believe that the stock price may be driven away

from the fundamental value in the short-run, but it will eventually converge to the expected fun-

damental value in the long-run. Hence the conditional mean and variance of the fundamental

traders are assumed to follow

E1,t(Pt+1) = Pt + α[E1,t(P
∗

t+1) − Pt], V1,t(Pt+1) = σ2

1, (2.6)
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whereσ2
1 stands for a constant variance of the fundamental value. Here the parameterα ∈

[0, 1] represents the speed of price adjustment of the fundamentalists toward their expected

fundamental value and it measures how fast the fundamentalists believe the price converges

to the fundamental value and reflects how confident they are inthe fundamental value. In

particular, forα = 1, the fundamental traders are fully confident about the fundamental value

and adjust their expected price in the next period instantaneously to the expected fundamental

value. Forα = 0, the fundamentalists become naive traders.

Trend followers—Unlike the fundamental traders, trend followers are technical traders who

believe the future price change can be predicted from various patterns or trends generated from

the historical prices. They are assumed to extrapolate the latest observed price change over a

long-run sample mean price and to adjust their variance estimate accordingly. More precisely,

their conditional mean and variance are assumed to satisfy

E2,t(Pt+1) = Pt + γ(Pt − ut), V2,t(Pt+1) = σ2

1 + b2vt, (2.7)

whereγ, b2 ≥ 0 are constants, andut andvt are the sample mean and variance, respectively,

which may be generated from some learning processes. The parameterγ measures the extrap-

olation rate and high (low) values ofγ correspond to strong (weak) extrapolation by the trend

followers. The coefficientb2 measures the influence of the sample variance on the conditional

variance estimated by the trend followers who believe in more volatile price movements. In-

tuitively, the trend followers reduce their demand for the risky asset when the estimated risk is

high. It turns out that this risk-adjusted demand mechanismplays a very important role in the

price dynamics9. Various learning schemes (see for example Chiarella and He (2002, 2003))

can be used to estimate the sample meanut and variancevt. Here we assume that

ut = δut−1 + (1 − δ)Pt, vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2, (2.8)

whereδ ∈ [0, 1] is a constant. These processes for the sample mean and variance are the

limit of a geometric decay processwhen the memory lag length tends to infinity10. Basically, a

geometric decay probability process(1−δ){1, δ, δ2, · · · } is associated with the historical prices

9A similar set up under a different learning process is used inChiarellaet al. (2006c) who show that the time-
varying second moment can alter the resulting nonlinear dynamics, particularly when the steady state is unstable.
10See Chiarellaet. al.(2006b) for the proof.
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{Pt, Pt−1, Pt−2, · · · }. The parameterδ measures the geometric decay rate11. The rationale for

the selection of this process is two fold. First, traders tend to put a high weight on the most

recent prices and less weight on the more remote prices when they estimate the sample mean

and variance. Secondly, we believe that this geometric decay process may contribute to certain

autocorrelation patterns, in particular the power-law feature observed in real financial markets.

In addition, the geometric decay process has the mathematical advantage of affording a degree

of tractability to the subsequent analysis.

To simplify the calculations, we assume that the dividend processDt followsDt ∼ N (D̄, σ2
D),

the expected long-run fundamental value is given byP̄ = D̄/(R − 1), and the unconditional

variances of the price (σ2
1) and dividend (σ2

D) over the trading period are related12 by σ2
D = qσ2

1.

Based on (2.6), we haveE1,t(Rt+1) = α(P ∗

t+1 −Pt)− (R− 1)(Pt − P̄ ), V1,t(Rt+1) = (1+ q)σ2
1

and hence the optimal demand of the fundamentalist is given by

z1,t =
1

a1(1 + q)σ2
1

[α(P ∗

t − Pt) − (R − 1)(Pt − P̄ )]. (2.9)

Similarly, from (2.7),E2,t(Rt+1) = Pt + γ(Pt − ut) + D̄ −R Pt = γ(Pt − ut)− (R− 1)(Pt −
P̄ ), V2,t(Rt+1) = σ2

1(1 + q + b vt), whereb = b2/σ
2
1. Hence the optimal demand of the trend

followers is given by

z2,t =
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

. (2.10)

11For δ = 0, the sample meanut = Pt, which is the latest observed price, whileδ = 0.1, 0.5, 0.95 and0.999 give
a half lives of 0.43 day, 1 day, 2.5 weeks and 2.7 years, respectively.
12 Let σP̄ be the annual volatility ofP ∗

t andD̄t = rP ∗

t be the annual dividend. In this paper, we chooseσ2

1
=

σ2

P̄
/K and q = r2. In fact, the annual variance of the dividend isσ̄2

D
= r2σ2

P̄
. Thereforeσ2

D
= σ̄2

D
/K =

r2σ2

P̄
/K = r2σ2

1
. For all numerical simulations in this paper, we chooseP̄ = $100, r = 5% p.a. σ = 20% p.a.,

σP̄ = σP̄ andK = 250. Correspondingly,R = 1 + 0.05/250 = 1.0002, σ2

1
= (100 × 0.2)2/250 = 8/5 and

σ2

D
= 1/250.
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Subsisting (2.9) and (2.10) into (2.4), the market price under a market maker is determined by

the following 4-dimensional stochastic difference system



































































Pt+1 = Pt +
µ

2

[

1 + m

a1(1 + q)σ2
1

[α(P ∗

t − Pt) − (R − 1)(Pt − P̄ )]

+ (1 − m)
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

]

+ δ̃t,

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2,

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t].

(2.11)

By using Monte Carlo simulation and statistical analysis, He and Li (2005) found that the

long-run behaviour and convergence of the market prices, long (short)-run profitability of the

fundamental (trend following) trading strategy, survivability of trend followers, and various un-

der and over-reaction autocorrelation patterns of returnscan be characterized by the dynamics,

including the stability and bifurcations, of the underlying deterministic system. The analysis

provides some insights into the generating mechanism of various types of market behaviour

(such as under/over-reaction), market dominance and stylized facts in high frequency financial

markets. In the following discussion, we reveal the potential of the MF model to characterize

the volatility clustering and the long-range dependence ofasset returns by examining the au-

tocorrelation patterns under different noise structures and by estimating the decay indices and

(FI)GARCH parameters.

3. ANALYSIS OF THE VOLATILITY CLUSTERING AND POWER LAW BEHAVIOUR

We now proceed with an analysis of the volatility clusteringand power-law mechanism of the

MF model. The aim of the analysis is to explore possible sources of volatility fluctuations. In

doing so, we provide some insights into the interplay between system size, deterministic forces

and stochastic elements, in particular, the potential for this interplay to generate realistic time

series properties.

Aside from the parameter values of which were given previously, the parameters used for the

simulations are given in Table 3.113.

13The return volatilityσǫ of the fundamental value corresponds to an annual volatility of 20% (henceσǫ =
(20/

√
K)% with K = 250) and the volatility of the noisy demandσδ = 1, which is about 1% of the average
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TABLE 3.1. Parameter settings and initial values

α γ a1 a2 µ m δ b σǫ σδ P0 P ∗

0

0.1 0.3 0.8 0.8 2 0 0.85 1 0.01265 1 100 100

Following from the stability and bifurcation analysis in Heand Li (2005), the constant steady

state fundamental pricēP of the underlying deterministic system is locally asymptotically stable

for chosen parameter constellations. The intuition behindthis selection of parameters comes

from the analysis of the return autocorrelation (AC) patterns near the Hopf bifurcation boundary

conducted in He and Li (2005). When the market prices convergeto the fundamental values

in an oscillating manner, the significant AC patterns of returns are washed out by the noisy

market demand process with reasonable volatility. On the other hand, the noisy fundamental

process seems necessary to generate more realistic price series. The oscillatory convergence

of the underlying deterministic system and the noisy fundamental process lead to volatility

clustering—high (low) volatility is more likely followed by high (low) volatility.

To see how the price dynamics, in particular, the AC patternsof returns, are affected by

different noise processes, we consider the four cases listed in Table 3.2. Case-00 corresponds to

TABLE 3.2. Four Cases of the noisy effect

Cases Case-00 Case-01 Case-10 Case-11
(σδ, σǫ) (0, 0) (0, 0.01265) (1, 0) (1, 0.01265)

the deterministic case. Case-01 (Case-10) corresponds to thecase with noisy fundamental price

(noisy excess demand) only and both noise processes appear in Case-11.

Fig. 3.1 illustrates the price series for the four cases for atypical simulation. The correspond-

ing return series and their density distributions are givenin Fig. 3.2 for the three cases involving

noise. Fig. 3.3 shows the ACs of returns, absolute returns andsquared returns. For comparison,

the same set of noisy demand and fundamental processes is used in Case-11. Each simulation

is run for 6,000 time periods and the first 1,000 are dropped towash out the initial effect of the

estimates of densities and ACs of returns and to make the estimates robust.

Both Figs. 3.2 and 3.3 show significantly different impacts ofthe different noise processes

on the volatility. In Case-01, the stochastic fundamental price process is the only noise process.

fundamental price level̄P = $100. In addition, simulations (not reported here) show that theresults obtained in
this paper are robust under slight modifications of these parameters.
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FIGURE 3.1. Time series of prices for the four cases in Table 3.2.
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FIGURE 3.2. Return series and their density distributions for Case-01, 10 and 11.

The market price displays astrong under-reaction14 AC pattern of returns, which is character-

ized by the significantly positive decaying ACs shown in the top left panel in Fig. 3.3. This

significant AC pattern is also carried forward to the AC patterns for the absolute and squared

returns. In Case-10, the noisy excess demand is the only noiseprocess. The market price dis-

plays no volatility clustering, which is characterized by insignificant AC patterns for return,

the absolute and squared returns shown in the middle row in Fig. 3.3. In Case-11, both the

noisy excess demand and noisy fundamental price processes appear. We observe relatively high

14See He and Li (2005) for more detailed analysis on the generating mechanism for various under- and over-
reaction AC patterns.
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FIGURE 3.3. ACs of returns (the left column), the absolute returns (the middle
column), and the squared returns (the right column) for Case-01, 10 and 11.

kurtosis in Fig. 3.2 and insignificant ACs for returns, but significant ACs for the absolute and

squared returns shown in the bottom panel in Fig. 3.3. In fact, the estimates in Section 5 based

on Monte Carlo simulations show that the model is able to produce relatively realistic volatility

pattern and the power-law features.

500 600 700 800 900 1000

80

100

120
Pt

P*
t

500 600 700 800 900 1000

100

120

Pt

ut

500 600 700 800 900 1000

−5

0

5

10 Pt−P*
t+1

500 600 700 800 900 1000

0

5 Pt−ut

−30 −20 −10 0 10 20

0.05

0.10
Density

Pt−P*
t+1

p_fp N(s=4.55) 

−10 −5 0 5 10

0.1

0.2
Density

Pt−ut

p_u N(s=2.04) 
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Pt − ut (middle right) and the corresponding distributions (bottom).
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The above result demonstrates that the simple MF model is able to generate realistic price

behaviour and appropriate long range dependence for returns when both noise processes are

present. Because of the interaction of the nonlinear deterministic dynamics and the noisy

processes, an explicit analysis of the generating mechanism for this outcome seems to be diffi-

cult in general. In the following, we try to do so from three different aspects15.

First, we examine the roles that the two noise processes playon the AC structure of the sto-

chastic system. When there is no noise process, as illustrated in Case-00 in Fig. 3.1, we obtain

the underlying deterministic system16. The market price is oscillating initially but converging

to the fundamental value eventually. When the fundamental price fluctuates stochastically, as

in the Case-01, the fundamental values are shifted to different levels over time. In this case,

the AC pattern in the top row in Fig. 3.3 shows a significant ACs for returns and highly depen-

dent volatility measured by the significant ACs for the absolute and squared returns. This may

be due to the stochastic shift of the fundamental price and the local stability of the underlying

deterministic system. When the market price is also perturbed by the noisy excess demand

process, the returns display insignificant AC patterns (seethe second and third rows in Fig.

3.3). Our simulations show that the two noise processes playdifferent roles. For a given noisy

fundamental process withσǫ > 0, there exists a critical valueσ∗

δ = σ∗

δ (σǫ) > 0 for the noisy

demand process such that the ACs of the returns display a significant pattern forσδ < σ∗

δ and an

insignificant pattern forσδ > σ∗

δ . This implies that the noisy demand has a significant impact

on the ACs of returns. On the other hand, for a given noisy excess demand withσδ > 0, there

exists a critical valueσ∗

ǫ = σ∗

ǫ (σδ) > 0 such that the ACs for the absolute and squared returns

display an insignificant pattern forσǫ < σ∗

ǫ and a significant pattern forσǫ > σ∗

ǫ . This implies

that the noisy fundamental price also has significant impacton the ACs of the absolute and

squared returns. Neither one of the two noise processes alone is responsible for the power-law

feature.

Second, we examine the impact of the noise processes on the market price and its relation

to the fundamental price. The convergence of the market price to the fundamental price for the

underlying deterministic system is destroyed after the introduction of the two noise processes,

however, the market price moves closely to the fundamental price, as illustrated in the top

15The authors would like to thank an anonymous referee to bringing some of the following points to our attention.
16We refer to He and Li (2005) for the stability and bifurcationanalysis in this case.
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left panel in Fig. 3.4. This indicates a temporary destabilization of the market price to the

fundamental price. From the middle left panel in Fig. 3.4, one can see that such temporary

deviation of the market price from the fundamental price canbe significant from time to time.

However, the density distribution of the differences in thebottom left panel in Fig. 3.4 shows

that the market prices are more concentrated near the fundamental prices most of the time. For

comparison, we show the relation of the market price and the geometric moving averaged price

in the right panels in Fig. 3.4. The moving averaged price is less volatile. Also, its difference

from the market price is less concentrated near zero, compared to the difference of the market

price from the fundamental price. The reaction of the fundamentalists to the deviation of the

market price from the fundamental price and the extrapolation of the trend followers lead to a

more realistic price behaviour in this model.
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FIGURE 3.5. The geometric volatility (vt, top) and the demands of the trend
followers (z2t, middle) and the fundamentalists (z1t, bottom).

The third important factor possibly affecting the volatility clustering is the endogenous learn-

ing process engaged in by the risk averse trend followers. The endogenous development of

the expected mean and variance of the trend followers produces a simple feedback effect. The

trend followers tend to push the market price away from the fundamental value by extrapo-

lating the trend, leading to high volatility. Because of the perceived increase of risk, their

demand/supply is then reduced. The partial withdrawal of the trend followers then leads to less

volatile dynamics, which makes the trend followers revise the risk downward so that eventually

their demand/supply increases again. This simple feedbackmechanism is clearly illustrated in
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Figs. 3.5 and 3.6. In Fig. 3.5, we plot the time series for the geometric moving variancevt

(the top panel) and the excess demands of the trend followersz2t (the middle panel) and of the

fundamentalistsz1t (the bottom panel) over a short time period. We have low (high) demand

from the trend followers following high (low) perceived volatility. This is further confirmed by

the phase plot of(z2t, vt) in the left panel in Fig. 3.6 (observe the peaks on either sideof zero

demand). As expected, the right panel in Fig. 3.6 shows that there is no clear evidence of a

relationship between the perceived volatility (vt) of the trend followers and the excess demand

of the fundamentalists.
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FIGURE 3.6. The phase plots of the geometric moving variance (vt) and the
demands of the trend followers (z2t, left) and of the fundamentalists (z1t, right).

Overall, we see that the interaction of speculators, the simple feedback of the trend followers,

and the interplay of noises and the underlying deterministic dynamics can generate realistic

volatility behaviour . We should notice that the size of the noise is a very subtle issue. For the

herding mechanism in Lux and Marchesi (2001), a balanced disposition among noise traders

is necessary. For the switching mechanism in Gaunersdorferand Hommes (2006), the noisy

component added to the excess demand is responsible for the switching between locally co-

existing attractors, and hence the noise level has to be large to obtain realistic results. In our

model, the distributed fluctuations are due to the lagged learning and risk adjusted extrapolation

from the trend followers need to be balanced by the noise level of the excess demand. At this

stage, a theoretical analysis of the interplay of deterministic dynamics and noise seems difficult.

Our analysis indicates that the noisy demand plays a more important role in the insignificant
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AC patterns for the returns, while the noisy fundamental process plays a more important role

on the significant AC patterns for the absolute and squared returns.

In the following discussion, we adopt statistical methods based on Monte Carlo simulation

to estimate various models related to a power-law characterization. The estimates are obtained

for both the MF model and the actual data, including the DAX 30, the FTSE 100, the NIKKEI

225 and the S&P 500. We also compare the estimates from the actual data with those from the

MF model.

4. EMPIRICAL EVIDENCE AND POWER LAW BEHAVIOUR OF THE ACTUAL DATA

This section provides a brief statistical analysis of the DAX 30, the FTSE 100, the NIKKEI

225, and the S&P 500 price indices from Datastream, which will be used as empirical evidence

and benchmarks for our comparison. There are altogether 5306 daily observations for each

index which start from Feb 1st, 1984. Usept to denote the price index, e.g. the S&P 500, at

time t (t = 0, ..., 5305) and log returnsrt are defined asrt = ln pt − ln pt−1.

4.1. Statistics and Autocorrelations of Returns. Table A.1 in Appendix A gives the sum-

mary statistics ofrt for the DAX 30, the FTSE 100, the NIKKEI 225, and the S&P 500. For

each index, we can see from Table A.1 that the kurtosis forrt is much higher than that of a

normal distribution. The kurtosis and studentized range statistics (which is the range divided

by the standard deviation) show the characteristic fat-tailed behaviour compared with a nor-

mal distribution. The Jarque-Bera normality test statisticsuggests thatrt is far from a normal

distribution.

Ding et al. (1993) investigate autocorrelations of returns (and theirtransformations) of the

daily S&P 500 index over the period 1928 to 1991 and find that the absolute returns and the

squared returns tend to have very slow decaying autocorrelations and the sample autocorrela-

tions for the absolute returns are greater than those for thesquared returns at every lag up to at

least 100 lags. This kind of AC feature indicates the long-range dependence or the power-law

behaviour in volatility. The autocorrelations plotted in Fig. A.1 in Appendix A coincide with

the findings in Dinget al. (1993).

4.2. Estimates of Power-Law Decay Index. Besides the visual inspection of autocorrelations

of rt, r2
t and|rt|, one can also construct models to estimate the decay rate of the autocorrelations
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of rt, r2
t and |rt|. For instance, we can semi-parametrically model power-lawbehaviour in a

covariance stationary seriesxt, t = 0, ±1, ..., by

s(ω) ≈ c1ω
−2d, ω → 0+, (4.1)

where0 < c1 < ∞, s(ω) is the spectral density ofxt, andω is the frequency. Under (4.1),

s(ω) has a pole atω = 0 for 0 < d < 1/2 (when there is a power-law inxt), while d ≥ 1/2

implies the process is not covariance stationary;s(ω) is positive and finite ford = 0; for

−1/2 < d < 0, we have short and negative dependence, or antipersistence. The ACs can be

described byρk ≈ c2k
2d−1, wherec2 is a constant andµ ≡ 2d−1 corresponds to the hyperbolic

decay index.

Geweke and Poter-Hudak (1983), henceforth GPH, suggest a semiparametric estimator of

the fractional differencing parameter,d, that is based on a regression of the ordinates of the

log spectral density. Given spectral ordinatesωj = 2πj/T (j = 1, 2, ...,m), GPH suggest

estimatingd from a regression of the ordinates from the periodogramI(ωj). Hence, forj =

1, 2, ...,m,

log I(ωj) = c − d log(4 sin2(ωj/2)) + vj, (4.2)

wherevj is assumed to be i.i.d. with zero mean and varianceπ2/6. If the number of ordinatesm

is chosen such thatm = g(T ), whereg(T ) is such thatlimT→∞ g(T ) = ∞, limT→∞ g(T )/T =

0 andlimT→∞(log(T )2)/g(T ) = 0, then the OLS estimator ofd based on (4.2) has the limiting

distribution
√

m(d̂GPH − d)
d→ N (0,

π2

24
). (4.3)

Robinson (1995) provides a formal proof for−1/2 < d < 1/2, Velasco (1999) proves the

consistency of̂dGPH in the case1/2 ≤ d < 1 and its asymptotic normality in the case1/2 ≤
d < 3/4. It is clear from this result that the GPH estimator is notT 1/2 consistent and will

converge at a slower rate.

Another most often used estimator ofd is developed by Robinson and Henry (1999), hence-

forth RH. They suggest a semiparametric Gaussian estimate ofthe memory parameterd, by

considering

d̂RH = arg min
d

R(d), R(d) = log

{

1

m

m
∑

j=1

ω2d
j I(ωj)

}

− 2
d

m

m
∑

j=1

log ωj, (4.4)



20 HE AND LI

in which m ∈ (0, [T/2]). They prove that
√

m(d̂RH − d)
d→ N (0, 1

4
) whenm < [T/2] such

that1/m + m/T → 0 asT → ∞ and under some further conditions (see Robinson and Henry

(1999)).

A major issue in the application of the GPH and the RH estimators is the choice ofm, due

to the fact that some limited knowledge is now available concerning this issue (see, Geweke

(1998), for instance), it is a wise precaution to report the estimated results for a range of band-

widths. So in our study, for both the GPH and the RH estimates ofd, we report the correspond-

ing estimates form = 50, 100,150,200, and250, respectively, in Appendix A.

For instance, for the DAX 300, Table A.2 reports the GPH and the RH estimates ofd for

returns, the squared returns, and the absolute returns, respectively. In the panel ofrt in Table

A.2, the first row reports the results from the GPH and the RH estimates withm = 50, the

second row reports the results of the GPH and the RH estimates with m = 100, and so on. This

also holds for the panels ofr2
t and |rt|, and for other tables in this section. The estimates of

the parameterd for the FTSE 100, the NIKKEI 225 and the S&P 500 are summarizedin Tables

A.3, A.4, and A.5, respectively.

We see that all of the estimatedd for the returns are not significant at all conventional signif-

icance levels while those for the squared returns, and the absolute returns are significant. Thus,

for the DAX 30, the FTSE 100, the NIKKEI 225 and the S&P 500, there is clear evidence of

power-law for the squared and the absolute returns whered is positive, and the persistence in

the absolute returns is much stronger than that in the squared returns. These results coincide

with the well-established findings in the empirical finance literature.

4.3. Volatility Clustering, Power-Law and (FI)GARCH Estimates. Another striking fea-

ture of the return series isvolatility clustering. A number of econometric models of changing

conditional variance have been developed to test and measure volatility clustering. Engle (1982)

suggested a test where the null hypothesis is that the residuals of a regression model are i.i.d.

and the alternative hypothesis is that the errors are ARCH(q). Suppose the stock returns follow

an AR(1) process with innovationsεt. If the returns are homoscedastic, then the variance can-

not be predicted and the variations inε2
t will be purely random. However, if ARCH effects are

present, large values ofε2
t will be predicted by large values of the past squared residuals. This

leads to aTR2 test statistic. In order to compute the test statistic, we first fit the returns series
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with an AR(1) model, and then regress the squared residualsε2
t on a constant andε2

t−1, ..., ε
2
t−q.

TheR2 is then computed from this regression. Under the null hypothesis that there is no ARCH,

the test statistic is asymptotically distributed as a chi-square distribution withq degrees of free-

dom. We implement the test for the four indices and the results are reported in Table A.6 in

Appendix A. In all the cases, the null hypothesis is stronglyrejected and, in terms of Engle’s

test, the four indices do have clear ARCH effects.

We now consider the family of ARCH models. The most widely used one is that introduced

by Engle (1982) and its generalization, the GARCH model, introduced by Bollerslev (1986).

Following their specification, for instance, if we model thereturns as an AR(1) process, then a

GARCH(p, q) model is defined by:











rt =a + brt−1 + εt, εt = σtzt,

σ2

t =α0 + α(L)ε2

t + β(L)σ2

t , zt ∼ N(0, 1),

(4.5)

whereL is the lag operator,α(L) =
∑q

i=1
αiL

i andβ(L) =
∑p

j=1
βiL

j. Definingvt = ε2
t −σ2

t ,

the process can be rewritten as an ARMA(m, p) process

[1 − α(L) − β(L)]ε2

t = α0 + [1 − β(L)]vt (4.6)

with m = max{p, q}. Table A.7 in Appendix A reports the estimates of the GARCH(1, 1)

model, where the mean process follows an AR(1) structure.

Based on the estimates, one can see that a small influence of themost recent innovation

(small α1) is accompanied by a strong persistence of the variance coefficient (largeβ1). It is

also interesting to observe that the sum of the coefficientsα1+β1 is close to one, which indicates

that the process is close to an integrated GARCH (IGARCH) process. Such parameter estimates

are rather common when considering returns from high frequency daily financial data of both

share and foreign exchange markets (see, Pagan (1996)). TheGARCH implies that shocks to

the conditional variance decay exponentially. However theIGARCH implies that the shocks to

the conditional variance persist indefinitely.

In response to the finding that most financial time series are power-law volatility processes,

Baillie et al. (1996) consider the Fractional Integrated GARCH (FIGARCH) process, where a

shock to the conditional variance dies out at a slow hyperbolic rate. Later on, Chung (1999)
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suggests a slightly different parameterization of the model:

φ(L)(1 − L)d(ε2

t − σ2) = α0 + [1 − β(L)]vt, (4.7)

whereφ(L) = 1 − ∑q
i=1

φiL
i, α0 = φ(L)(1 − L)dσ2, andσ2 is the unconditional variance

of the corresponding GARCH model. Table A.8 in Appendix A reports the estimates of the

FIGARCH (1, d, 1) model, where the mean process follows an AR(1) model. The estimate for

the fractional differencing parameter̂d is statistically very different from both zero and one.

This is consistent with the well known findings that the shocks to the conditional variance die

out at a slow hyperbolic rate.

5. ECONOMETRICCHARACTERIZATION OF THE POWER-LAW PROPERTIES OFTHE MF

MODEL

This section is devoted to an econometric analysis on the power-law behaviour and the volatil-

ity persistence of the MF model. Various models are estimated using the MF model-generated

data outlined in Section 3 and then compared with those of theDAX 30, the FTSE 100, the

NIKKEI 225, and the S&P 500 estimated in the previous section. The analysis and estimates

are based on Monte Carlo simulations. For the chosen set of parameters and two noise processes

specified in Case-11 in Section 3, we ran 1,000 independent simulations over 6,306 time periods

and discarded the first 1,000 time periods to wash out any possible initial noise effect. For each

run of the model we have 5,306 observations, which matches the sample size of the actual data

that we used in the previous section.

5.1. Autocorrelations of Returns. First, we look at the ACs of returns, the squared returns

and the absolute returns. It is interesting to see whether our simulation model can replicate the

well known findings as described in Fig. A.1. By running 1,000 independent simulations, we

estimate the autocorrelation coefficients and calculate Newey-West corrected standard errors of

returns, the squared returns and the absolute returns for each run of the model, and we then take

the average. We plot the ACs and their corresponding confidence intervals in Fig. 5.1.

From Fig. 5.1, we see that for the market fraction model, not only are the sample correlations

of r2
t and |rt| all outside the95% confidence interval ofrt, but they are also all positive over

long lags. Further, the sample autocorrelations for the absolute returns are greater than that for

the squared returns at every lag up to at least 100 lags. Comparing with Fig. A.1 for the four



POWER-LAW BEHAVIOUR , HETEROGENEITY, AND TREND CHASING 23

0 20 40 60 80 100
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

FIGURE 5.1. Autocorrelations ofrt (bottom),r2
t (middle) and|rt| (top) for the

MF model.

indices, we see that the patterns of decay of the autocorrelation functions of return, the squared

return and the absolute return are quite similar.

5.2. Estimates of Power-Law Decay Index. We also look at the decay rate of the autocorre-

lations of returns, the squared returns, and the absolute returns that are estimated from the GPH

the RH method. The resulting estimates are reported in Table A.9 in Appendix A, where the col-

umn ‘Sig%’ indicates the percentage of simulations for which the corresponding estimates are

significant at the 5% level over 1,000 independent simulations. We find that form = 50, 100,

most of the estimates ofd for returns are not significant, but most of them are significant for

largerm, although the corresponding averagedp-values are large. However, all of the estimates

of d for the squared returns and the absolute returns are positive. There is a clear evidence of a

power-law for the squared returns and the absolute returns,and also the patterns of the estimates

of d for the returns, the squared returns, and the absolute returns are comparable to those of the

actual data (see Tables A.2, A.3, A.4, and A.5).

5.3. Volatility Clustering, Power-Law and (FI)GARCH Estimates. We now check for

ARCH/GARCH effects, in order to see whether the MF model is capable of capturing the fea-

ture of volatility clustering. We implement the test suggested by Engle (1982). Corresponding

to the Table A.6 of such test for the indices, the resulting test statistics for the MF model are

140.8, 228.2, 372.7, 391.8 and 710.8 with the percentages, 98.7%, 99.3%, 99.8%, 99.9%, and
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100%, respectively, so that the test statistics are significant at the5% level over 1000 indepen-

dent simulations. In terms of Engle’s test, the MF model doeshave clear ARCH effects. So, we

turn to study the GARCH and the FIGARCH estimates that describe volatility persistence.

We report the estimates of the GARCH and the FIGARCH models in Tables A.10 and A.11,

respectively. The reported estimates and standard errors are the averages of those across 1000

independent simulations. The specifications of the models are the same as what we estimated

for the indices. Again, all these estimates are obtained from the estimates for each run of

the simulation model and then averaged over independent simulations. The results from the

GARCH model are astonishingly similar to what one usually extracts from real life data: a

small influence of the most recent innovation (α1 < 0.1) is accompanied by strong persistence

of the variance coefficient (β1 > 0.9) and the sum of the coefficientsα1 + β1 = 0.9928 is close

to one. For the estimates of the FIGARCH(1, d, 1), we see that the estimate ofd is significantly

different from zero and one.

Overall, we find that the MF model does provide a mechanism that can generate the long-

range dependence in volatility observed in actual market data. Now we turn to assess the differ-

ences between the MF model and the real world quantitatively.

5.4. Comparing with the Actual Data in Terms of the Power-Law Characteristics. Here

we compare the MF model with the four indices in terms of the ACsof returns, the squared

returns and the absolute returns, the power-law decay indexd, and the parameterd in the FI-

GARCH(1,1) specification, respectively.

In Figures 5.2, we plot the autocorrelation coefficients of returns, the squared returns and

the absolute returns for the MF model together with the DAX 30, the FTSE 100, the NIKKEI

225 and the S&P 500 respectively. For the purpose of comparison, we plot the corresponding

confidence intervals for corresponding quantities coming from the actual data.

For the returns, we see from the first column of Fig. 5.2 that all of the autocorrelations of

the MF model lies inside the confidence intervals of the actual data. However, for the squared

returns, we see from the second column of Fig. 5.2 that while the line of the MF model looks

reasonable compared to the DAX 30, it is different from what we see from the S&P 500. The

last column of Fig. 5.2 also provides a mixed picture for the absolute returns, the MF model

seems to fit the DAX 30 better than the other indices, especially for large lags.
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FIGURE 5.2. The ACs of the returns, the squared returns and the absolute re-
turns for the MF model and the DAX 30 (a), the FTSE 100 (b), the NIKKEI 225
(c), and the S&P 500 (d). The smooth lines refer to the MF modelwhile the
confidence intervals are those for the actual data.

For the decay indexd of the returns, the squared returns or the absolute returns,we want to

test whether the parametersd estimated from both the actual data (for instance, the DAX 30)

and the MF model are the same. In other words, we want to testH0 : dDAX = dMF , apart

from checking whether̂dMF lies in the confidence interval of̂dDAX or not. The null hypothesis

can also be tested by the Wald test by assuming that both the number of simulations and the

number of time periods for each simulation go to infinity. In the construction of the Wald test,

W = (d̂DAX−d̂MF )Σ̂−1(d̂DAX−d̂MF ), whereΣ̂ is simply the variance of̂dDAX . We notice that

dMF is estimated from the simulated data by running the MF model independently many times,

so d̂MF converges much faster than that ofd̂DAX and we can ignore the estimation inaccuracy

in d̂MF . For a more general discussion on a comparison of simulationmodels with the real

world data, see Liet al. (2006a, 2006b). The resulting test statistics are summarized in Table

A.12 in Appendix A, in the column ‘DAX 30’, the first sub-column reports the test statistics

corresponding tôdGPH , and the second sub-column corresponding tod̂RH , and so on. Notice

that the critical values of the Wald test at 5% and 1% significant levels are 3.842 and 6.635,

respectively. For the returns, we see that the estimatedd of the FTSE 100 and the MF model are
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not significantly different, except for the RH estimate withm = 250; in addition, most of the

test statistics are not significant form = 50, 100, but they are significant for largerm. For the

squared returns, except for the GPH estimates of the DAX 30, the estimatedd of the MF model

is significantly different from almost all of those of the actual data. For the absolute returns, the

differences between the estimatedd of the actual data and the MF model are not statistically

significant, except for them = 50.

We can also test the equality ofd in the FIGARCH specification between the actual data and

the MF model by the Wald test. The resulting Wald statistics for the DAX 30, FTSE 100, the

NIKKEI 225 and the S&P 500 are 586, 4.140, 29.5 and 4.853, respectively. So the estimatedd

in the FIGARCH(1, d, 1) model of the MF model is not significantly different from those of the

FTSE 100 and the S&P 500, but it is significantly different from those of the DAX 30 and the

NIKKEI 225.

The above analysis indicates that the simple market fraction model is able to replicate the

power-law properties of the actual stock market qualitatively. However, the formal statistical

tests find that the decay rate and the (FI)GARCH estimates from the MF model do not easily

completely match those of any particular single index17. This is probably due to the simplicity

of the MF model and different features across different financial markets. The power-law mech-

anism of the MF model is different from either herding (for instance, the mechanism developed

in Lux and Marchesi (1999)) or switching mechanisms (such asthe adaptive switching mech-

anism in Brock and Hommes (1997, 1998)) in terms of modeling, but it shares the same spirit

in a much simpler way. This is one of the main contributions ofthis paper. It is this simplicity

that makes it possible to identify potential sources and mechanisms that can generate certain

characteristics.

6. CONCLUSION

Motivated by the recent interest in the power-law behaviourof high frequency financial mar-

ket time series and the explanatory power of heterogeneous-agent asset-pricing models, this

paper investigates the power-law properties of a simple market fraction model involving two

types of traders (fundamentalists and trend followers). Extending earlier work on long-run as-

set price behaviour , profitability, survivability, various under- and over-reaction AC patterns,

17This is not too surprising, we might note that these parameters also differ across stock indices.
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and their connections to the underlying deterministic dynamics, we studied in the characteri-

zation of the power-law volatility behaviour of the MF modeland its comparison with the real

world. We found that the agent heterogeneity, risk-adjusted trend chasing through the geomet-

ric learning process, and the interplay of noise and the underlying deterministic dynamics can

explain the power-law distributed fluctuations.

It is interesting and important to see how the deterministicdynamics and noise interact with

each other, and further, to understand the connections between the nonlinear dynamics of the un-

derlying deterministic system and certain time series properties of the corresponding stochastic

system. The theoretical analysis is important but difficultgiven the current state of knowledge

on nonlinear random dynamic system. Therefore statisticalanalysis with powerful econometric

tools seems necessary. Based upon Monte Carlo simulations, statistical analysis, including es-

timates of the (FI)GARCH parameters and related tests, we showthat the MF model is able to

explain some of the characteristics that are well established in the empirical finance literature.

There is a clear evidence of the power-law and GARCH effects. Itis worth emphasizing that

all these interesting qualitative and quantitative features arise from the simple model with fixed

market fractions.

Further investigation and extension of the simple model seems necessary. It may be inter-

esting to extend our analysis to the model established recently by Dieci et al. (2006), in which

part of the market fractions are governed by market mood and the rest follows some adaptive

switching process. One way to start might be to estimate the model first, and then implement

misspecification tests. Econometric methods, such as efficient methods of moments could be

used. Allowing for market mood and switching mechanisms andusing these econometric esti-

mation approaches, we may gain a better characterization and understanding of the mechanisms

deriving financial markets.

APPENDIX A. STATISTICAL RESULTS

TABLE A.1. Summary statistics ofrt.

data mean std. skewness kurtosis min max stud. range Jarque-Bera
DAX 30 0.0003 0.0143 -0.467 8.940 -0.137 0.076 14.91 7991
FTSE 100 0.0003 0.0105 -0.735 13.07 -0.130 0.076 19.60 22879
NIKKEI 225 0.0000 0.0137 -0.142 10.47 -0.161 0.124 20.78 12365
S&P 500 0.0004 0.0107 -1.997 45.96 -0.228 0.087 29.35 411423
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FIGURE A.1. Autocorrelations of returns, the squared returns and the absolute
returns for the DAX 30 (a), the FTSE 100 (b), the NIKKEI 225 (c), and the S&P
500 (d). The lines from the bottom to the top are the autocorrelations for returns,
the squared returns, and the absolute returns, respectively.

TABLE A.2. The estimates ofd for the DAX 30 withm = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI d̂RH t p-value 95% CI
rt 0.0884 0.858 0.391 [-0.1136, 0.2903]-0.0034 -0.048 0.962 [-0.1420, 0.1352]

0.0491 0.707 0.480 [-0.0870, 0.1852] 0.0634 1.267 0.205 [-0.0346, 0.1614]
0.0527 0.948 0.343 [-0.0563, 0.1617] 0.0901 2.208 0.027 [0.0101, 0.1702]
0.0348 0.730 0.465 [-0.0586, 0.1281] 0.0528 1.493 0.135 [-0.0165, 0.1221]
0.0434 1.027 0.305 [-0.0395, 0.1264] 0.0609 1.926 0.054 [-0.0011, 0.1229]

r2

t 0.4380 4.252 0.000 [0.2361, 0.6400] 0.4156 5.878 0.000 [0.2770, 0.5542]
0.4727 6.807 0.000 [0.3366, 0.6089] 0.4570 9.139 0.000 [0.3590, 0.5550]
0.4111 7.391 0.000 [0.3021, 0.5201] 0.3887 9.521 0.000 [0.3087, 0.4687]
0.3710 7.787 0.000 [0.2776, 0.4643] 0.3649 10.32 0.000 [0.2956, 0.4342]
0.3830 9.054 0.000 [0.3001, 0.4660] 0.3714 11.74 0.000 [0.3094, 0.4334]

|rt| 0.6478 6.287 0.000 [0.4458, 0.8497] 0.6137 8.678 0.000 [0.4751, 0.7522]
0.6013 8.658 0.000 [0.4652, 0.7374] 0.5986 11.97 0.000 [0.5006, 0.6966]
0.5846 10.51 0.000 [0.4756, 0.6936] 0.5565 13.63 0.000 [0.4765, 0.6366]
0.5404 11.34 0.000 [0.4471, 0.6338] 0.5366 15.18 0.000 [0.4673, 0.6059]
0.5215 12.33 0.000 [0.4386, 0.6044] 0.5166 16.34 0.000 [0.4546, 0.5785]
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TABLE A.3. The estimates ofd for the FTSE 100 withm = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI d̂RH t p-value 95% CI
rt -0.0641 -0.623 0.534 [-0.2661, 0.1378] 0.0109 0.155 0.877 [-0.1277, 0.1495]

-0.0560 -0.806 0.420 [-0.1921, 0.0801]-0.0174 -0.349 0.727 [-0.1154, 0.0806]
-0.0881 -1.582 0.114 [-0.1972, 0.0211]-0.0410 -1.004 0.315 [-0.1210, 0.0390]
-0.0695 -1.458 0.145 [-0.1628, 0.0239]-0.0289 -0.817 0.414 [-0.0982, 0.0404]
-0.0178 -0.421 0.673 [-0.1008, 0.0651]-0.0051 -0.162 0.871 [-0.0671, 0.0569]

r2

t 0.2739 2.658 0.008 [0.0719, 0.4758] 0.2958 4.184 0.000 [0.1572, 0.4344]
0.2802 4.035 0.000 [0.1441, 0.4164] 0.2923 5.845 0.000 [0.1943, 0.3903]
0.2469 4.439 0.000 [0.1379, 0.3559] 0.2684 6.575 0.000 [0.1884, 0.3485]
0.2201 4.621 0.000 [0.1268, 0.3135] 0.2560 7.239 0.000 [0.1867, 0.3253]
0.2297 5.430 0.000 [0.1468, 0.3126] 0.2630 8.318 0.000 [0.2011, 0.3250]

|rt| 0.5609 5.444 0.000 [0.3589, 0.7628] 0.5797 8.197 0.000 [0.4411, 0.7182]
0.6044 8.702 0.000 [0.4682, 0.7405] 0.5666 11.33 0.000 [0.4686, 0.6646]
0.5656 10.17 0.000 [0.4566, 0.6746] 0.5242 12.84 0.000 [0.4441, 0.6042]
0.5156 10.82 0.000 [0.4222, 0.6089] 0.5023 14.21 0.000 [0.4330, 0.5716]
0.5134 12.13 0.000 [0.4305, 0.5963] 0.5003 15.82 0.000 [0.4384, 0.5623]

TABLE A.4. The estimates ofd for the NIKKEI 225 withm = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI d̂RH t p-value 95% CI
rt 0.1560 1.514 0.130 [-0.0460, 0.3579]0.0476 0.673 0.501 [-0.0910, 0.1862]

0.1107 1.594 0.111 [-0.0254, 0.2469]0.0411 0.821 0.411 [-0.0569, 0.1391]
0.0796 1.431 0.152 [-0.0294, 0.1886]0.0483 1.183 0.237 [-0.0317, 0.1283]
0.0518 1.088 0.277 [-0.0415, 0.1452]0.0347 0.981 0.326 [-0.0346, 0.1040]
0.0283 0.668 0.504 [-0.0547, 0.1112]0.0127 0.403 0.687 [-0.0493, 0.0747]

r2

t 0.3277 3.180 0.001 [0.1257, 0.5296] 0.3746 5.298 0.000 [0.2361, 0.5132]
0.3251 4.681 0.000 [0.1890, 0.4612] 0.3250 6.500 0.000 [0.2270, 0.4230]
0.3231 5.810 0.000 [0.2141, 0.4321] 0.3145 7.704 0.000 [0.2345, 0.3945]
0.3211 6.740 0.000 [0.2277, 0.4145] 0.3164 8.948 0.000 [0.2471, 0.3857]
0.3147 7.437 0.000 [0.2317, 0.3976] 0.3059 9.673 0.000 [0.2439, 0.3679]

|rt| 0.6019 5.841 0.000 [0.3999, 0.8038] 0.6060 8.570 0.000 [0.4674, 0.7446]
0.5174 7.449 0.000 [0.3812, 0.6535] 0.5270 10.54 0.000 [0.4290, 0.6250]
0.5356 9.631 0.000 [0.4266, 0.6446] 0.5193 12.72 0.000 [0.4393, 0.5993]
0.5103 10.71 0.000 [0.4169, 0.6037] 0.5112 14.46 0.000 [0.4419, 0.5805]
0.5121 12.11 0.000 [0.4292, 0.5951] 0.5090 16.09 0.000 [0.4470, 0.5709]

TABLE A.5. The estimates ofd for the S&P 500 withm = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI d̂RH t p-value 95% CI
rt 0.0606 0.588 0.557 [-0.1414, 0.2625] 0.0575 0.814 0.416 [-0.0811, 0.1961]

0.0375 0.537 0.591 [-0.0994, 0.1744] 0.0306 0.612 0.541 [-0.0674, 0.1286]
0.0287 0.515 0.606 [-0.0804, 0.1378] 0.0137 0.335 0.737 [-0.0663, 0.0937]
0.0232 0.488 0.626 [-0.0701, 0.1166] 0.0028 0.078 0.938 [-0.0665, 0.0721]
0.0155 0.367 0.714 [-0.0674, 0.0985]-0.0023 -0.072 0.943 [-0.0643, 0.0597]

r2

t 0.2425 2.354 0.018 [0.0406, 0.4445] 0.2558 3.618 0.000 [0.1172, 0.3944]
0.2249 3.239 0.001 [0.0888, 0.3611] 0.2455 4.909 0.000 [0.1475, 0.3435]
0.1707 3.070 0.002 [0.0617, 0.2797] 0.1905 4.667 0.000 [0.1105, 0.2706]
0.1493 3.133 0.002 [0.0559, 0.2426] 0.1732 4.899 0.000 [0.1039, 0.2425]
0.1418 3.351 0.001 [0.0589, 0.2247] 0.1700 5.374 0.000 [0.1080, 0.2319]

|rt| 0.6241 6.057 0.000 [0.4221, 0.8260] 0.6139 8.682 0.000 [0.4753, 0.7525]
0.6096 8.778 0.000 [0.4735, 0.7458] 0.6084 12.17 0.000 [0.5104, 0.7064]
0.5530 9.943 0.000 [0.4440, 0.6620] 0.5152 12.62 0.000 [0.4352, 0.5952]
0.4888 10.26 0.000 [0.3954, 0.5822] 0.4856 13.74 0.000 [0.4163, 0.5549]
0.4515 10.67 0.000 [0.3686, 0.5344] 0.4659 14.73 0.000 [0.4039, 0.5279]
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TABLE A.6. Engle’s test statistics for the presence of ARCH/GARCH effects

data lag 1 lag 2 lag 5 lag 10 lag 50
DAX 30 234.5 440.9 620.5 713.4 809.1
FTSE 100 1415 1433 1462 1497 1596
NIKKEI 225 240.1 261.8 347.4 364.3 438.4
S&P 500 85.65 182.8 280.5 293.6 351.7

TABLE A.7. GARCH(1, 1) Parameter Estimates

data a × 10
3 b α0 × 10

4 α1 β1

DAX 30 0.655(0.161) 0.0335(0.0162) 0.048(0.004) 0.1185(0.0049) 0.8604(0.0071)
FTSE 100 0.514(0.120) 0.0404(0.0149) 0.023(0.003) 0.0966(0.0066) 0.8824(0.0085)
NIKKEI 225 0.751(0.138) 0.0415(0.0150) 0.023(0.003) 0.1392(0.0036) 0.8608(0.0046)
S&P 500 0.600(0.119) 0.0267(0.0154) 0.013(0.002) 0.0797(0.0020) 0.9114(0.0036)

Note: The numbers in parentheses are standard errors. This also holds for Table A.8.

TABLE A.8. FIGARCH(1, d, 1) Parameter Estimates

data a × 10
3 b α0 × 10

4 d φ1 β

DAX 30 0.694(0.142) 0.0358(0.0144) 0.933(0.057) 0.0675(0.0129) 0.9608(0.0044) 0.9059(0.0088)
FTSE 100 0.528(0.118) 0.0459(0.0143) 0.673(0.093) 0.3270(0.0259) 0.0150(0.0556) 0.2559(0.0739)
NIKKEI 225 20.75(0.070) -0.0460(0.0010) 0.056(0.024) 0.4047(0.0046) 0.1454(0.0029) 0.7542(0.0027)
S&P 500 0.629(0.116) 0.0290(0.0158) 0.665(0.094) 0.3353(0.0202) 0.2765(0.0367) 0.5032(0.0447)

TABLE A.9. The estimates ofd for the MF model withm = 50, 100, 150, 200, 250

d̂GPH t p-value 95% CI Sig% d̂RH t p-value 95% CI Sig%
rt -0.0500 -0.4856 0.4123 [-0.0564, -0.0436] 13.2-0.0581 -0.8215 0.3318 [-0.0625, -0.0537] 26.3

-0.0892 -1.2842 0.2890 [-0.0935, -0.0849] 37.4-0.0916 -1.8311 0.2251 [-0.0947, -0.0885] 47.6
-0.1111 -1.9976 0.2057 [-0.1146, -0.1077] 52.3-0.1091 -2.6722 0.1513 [-0.1116, -0.1066] 63.6
-0.1133 -2.3783 0.1670 [-0.1163, -0.1104] 60.8-0.1091 -3.0862 0.1161 [-0.1113, -0.1069] 71.0
-0.1065 -2.5173 0.1340 [-0.1091, -0.1039] 67.1-0.1021 -3.2294 0.1027 [-0.1041, -0.1002] 76.3

r2

t 0.7529 7.3072 0.0000 [0.7465, 0.7593] 100 0.7380 10.436 0.0000 [0.7336, 0.7423] 100
0.5876 8.4603 0.0000 [0.5833, 0.5919] 100 0.5964 11.929 0.0000 [0.5933, 0.5995] 100
0.4884 8.7822 0.0000 [0.4850, 0.4919] 100 0.5175 12.676 0.0000 [0.5150, 0.5200] 100
0.4258 8.9378 0.0000 [0.4228, 0.4288] 100 0.4698 13.288 0.0000 [0.4676, 0.4720] 100
0.3791 8.9610 0.0000 [0.3765, 0.3818] 100 0.4341 13.727 0.0000 [0.4321, 0.4360] 100

|rt| 0.8696 8.4395 0.0000 [0.8632, 0.8760] 100 0.8519 12.048 0.0000 [0.8475, 0.8563] 100
0.7068 10.176 0.0000 [0.7025, 0.7111] 100 0.7125 14.250 0.0000 [0.7094, 0.7156] 100
0.5975 10.741 0.0000 [0.5940, 0.6009] 100 0.6279 15.379 0.0000 [0.6253, 0.6304] 100
0.5235 10.987 0.0000 [0.5205, 0.5265] 100 0.5731 16.208 0.0000 [0.5709, 0.5753] 100
0.4683 11.066 0.0000 [0.4657, 0.4709] 100 0.5327 16.845 0.0000 [0.5307, 0.5347] 100
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TABLE A.10. The GARCH(1, 1) Parameter Estimates for the MF Model

a × 10
3 b α0 × 10

4 α1 β

0.0740 0.0725 0.0078 0.0260 0.9738
(0.2300) (0.0139) (0.0035) (0.0032) (0.0033)

47 77.1 17.7 100 100

Note: The numbers in parentheses are the standard errors, and the numbers in the last row are the percent-
ages that the test statistics are significant at5% level over 1000 independent simulations. This also holds
for Table A.11.

TABLE A.11. The FIGARCH(1, d, 1) Parameter Estimates for the MF Model

a b α0 × 10
4 d φ1 β

0.0137 0.0769 0.3620 0.3797 0.3439 0.7933
(0.0010) (0.0195) (0.6112) (0.0386) (0.0281) (0.0295)

41.2 72.6 35.6 87.6 83.1 98.5

TABLE A.12. The Wald test ofd with m = 50, 100, 150, 200, 250

DAX 30 FTSE 100 NIKKEI 225 S&P 500
rt 1.806 0.599 0.019 0.953 4.000 2.235 1.153 2.674

3.960 9.610 0.228 2.202 8.273 7.044 3.323 5.973
8.679 23.84 0.171 2.786 11.76 14.88 6.322 9.059
9.681 20.92 0.847 5.133 12.03 16.50 8.223 9.992
12.56 26.61 4.397 9.423 10.16 13.20 8.318 9.974

r2

t 9.347 20.79 21.63 39.12 17.04 26.42 24.56 46.52
2.733 7.773 19.56 36.99 14.27 29.46 27.23 49.25
1.933 9.966 18.87 37.28 8.839 24.76 32.65 64.24
1.325 8.781 18.67 36.48 4.838 18.78 33.74 70.20
0.009 3.937 12.47 29.32 2.318 16.46 31.47 69.85

|rt| 4.637 11.35 8.983 14.82 6.755 12.10 5.681 11.33
2.304 2.595 2.171 4.259 7.427 6.884 1.956 2.168
0.054 1.020 0.329 2.151 1.240 2.360 0.641 2.541
0.126 0.267 0.028 1.003 0.077 0.767 0.531 1.532
1.582 0.052 1.137 0.210 1.072 0.112 0.158 0.893
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