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Abstract. We report the fabrication of a bio-compatible diffraction grating made out chitosan, a derivative of 

chitin. The diffraction grating has been realised by laser ablation using 193 nm excimer laser. Thin spun coated 

chitosan films 520 nm thick were used in the laser ablation experiments. We report a laser ablation threshold for 

chitosan of FT = 85 ± 8 mJcm-2. A clean laser ablation process is observed with very little material redeposited 

on the sample. Following equipment; white light interferometry, scanning electron microscopy, power spectral 

density and Fraunhofer diffraction measurements were utilized to characterise the diffraction grating. Calculation 

of the temperature rise induced during laser ablation has been carried out and compared with decomposition 

temperatures deduced from thermogravimetric data. Applications of bio-compatible gratings realised by laser 

direct write patterning are briefly discussed. 
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1. Introduction  

There is a great deal of interest in diffraction gratings made from bio-compatible materials within the 

scientific community. Interestingly, one of the earliest reported amplitude grating was realised by 

Rittenhouse as far back as 1786. The grating consisted of a thin taught wire formed around two fine 

pitch brass screws. It would appear the grating was not used for scientific purposes, however, 

Fraunhofer reproduced a similar grating in about 1813 using the first-ever ruling engine [1]. 

Diffraction gratings can be classified as amplitude gratings as in the latter example and phase gratings. 

When an electromagnetic wave is an incident on a diffraction grating it will have its electric field 

amplitude, or phase, or both, modified. Both types of gratings have been fabricated by lasers for many 

years, however, as new material is developed new applications also emerge. As a result, Several 

different techniques for creating diffraction gratings are now usable including; Mechanical 

scripting[1], dip-pen lithography[2], 3D printing[3], micro-contact printing[4,5] and laser ablation[6–

8] to name a few. In this work, we report using a laser direct write (LDW) method to fabricate surface 

relief grating. A DLW method is useful in many areas of science and technology as gratings can be 

written at specific spatial locations on a device architecture. An area of specific interest in this work is 

the realisation of bio-compatible diffraction gratings for lab-on-chip (LOC) sensors.  
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We report laser ablation of spun coated chitosan thin films realised by (DLW) using short ultraviolet 

wavelength emitted by a 193nm ArF pulsed laser. This fabrication route has an advantage over some 

processes. It is a relatively quick processing technique as the workpiece can be rapidly translated 

relative to a stationary beam or one can use scanning mirrors to steer a laser beam over a stationary 

sample or a combination of both. The LDW method, therefore, complements other fabrication methods 

that are used to produce working LOC sensors or devices [9]. LOC architectures often integrate fluidic 

channels, lenses, lens arrays, gratings, textured hydrophobic surfaces all of which have been realised 

by laser patterning [10]. It is therefore important to establish the optimum laser parameters and 

conditions that are required to fabricate bio-compatible optical components. This includes identifying 

laser ablation removal rates, the laser ablation threshold and to understand and often minimise laser 

induced surface roughness of optical components. Optical absorption of a laser beam and hence depth 

resolution is dependent on the laser wavelength where the former increases with decreasing laser 

wavelength. Therefore, ultraviolet (UV) and vacuum ultraviolet (VUV) lasers are an ideal choice for 

achieving high depth resolution during laser processing. There are many examples (and references 

within) of UV and VUV in the literature reporting ablation patterning that covers a range of laser 

emission wavelengths: Krypton Fluoride (KrF) 248nm [11], Argon Fluoride, (ArF) 193nm [12] and 

VUV Fluorine (F2) 157nm [13]. In addition to optimising depth resolution, it is often desirable to 

reduce the footprint of LOC sensors and devices and consequently there is also a need to achieve high 

lateral spatial resolutions. Generally, this is addressed using high numerical aperture lenses, where the 

lateral resolution is given as R k NA= , where λ is the laser wavelength, NA is the numerical 

aperture of the lens and k is material dependent constant. Therefore, large numerical aperture lenses 

and short-wavelength are key when realising small and compact features. There are many objective 

lenses that meet these criteria for high-resolution laser processing such as multi-element refractive 

lenses or using reflective Schwarzschild objectives. We note this work is not primarily looking at 

achieving sub-micron features but what is of more importance at this stage is to report the behaviour of 

chitosan when subjected to UV laser radiation.  

Chitosan has been taken high attention of scientific researchers as a bio-compatible material for many 

applications [14]. the chemical structure of chitosan is shown in figure 1, which is a natural polymer 

(polysaccharide) prepared from chitin by deacetylation.  

 

 
Figure 1: Chitosan chemical structure.  

Chitosan can be easily spun to make thin films that are made available in planar form for laser 

processing.  It is a material that has been employed to be used for wide range of applications, for 

example, medical, pharmaceutical, for example, it can be used to a substitute for artificial skin [15], 

bandages and contact lenses [16], drug delivery vehicles [17] surgical sutures [18,19], and to make 

waveguides for routing light around LOC architectures [20].  
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2. Experimental 

Laser processing has been carried out using a 193nm excimer laser ( Lambda Physik LPF 202). Figure 

2 illustrates the experimental set-up for the laser processing work was used to realise the diffraction 

grating the scope of this paper.  

 

 
Figure 2: Schematic of the beam delivery system of the 193nm excimer laser. 

An object mask was used as a parallel bar TEM grid (Agar co, 3.05 mm diameter 400 Parallel Bar Nic

kel: AGG2016N). To pick the most homogeneous portion of the beam, the grid was positioned in the 

raw beam.  1/5 magnification was used to image the mask onto the surface of the chitosan film. The 

laser ablation chitosan grating was characterized by the following instruments; Optical Microscope 

(Leica DMLM), White Light Interferometer (WLI, WYKO NT1100), and Scanning Electron 

Microscopy (SEM, Zeiss EVO60). During the fabrication process of the grating, all processed samples 

were translated relative to the laser beam using a nano motion control stages (Aerotech Fibre Align). 

To control the laser fluence, the laser output was passed through a double rotating plate attenuator 

(Metrolux, ML2110). Dielectric mirrors designed for 45 degrees transmission were used to direct the 

beam in a vertical direction to the specimen. This sample was oriented in a horizontal position, chosen 

for ease of sample positioning and a practical reason for laser processing of liquid samples. Joule 

meter (Molectron) and a fast photodiode (Hamamatsu, S7911) connected to an oscilloscope (Infinium, 

500MHz, 2 Gb Samples s-1) were utilised to measure the output energy and the temporal shape of the 

ArF 193 nm excimer laser respectively. The diffracted order efficiencies were measured using a large 

area detector (CASCO silonex- SLSD-71N5) and a 5 Watt HeNe laser (model, 1125P) 

 

2.1. Sample Preparation  

Chitosan (Chitosan-448869)  as a powder was bought from Sigma-Aldrich. Thin films of chitosan 

were made by spun coated onto standard soda-lime glass microscope slides, (Thermo Scientific). A 

calibration curve was carried out to identify the spin speed to achieve ~500 nm thick films of chitosan. 

The films were left for one day to dry before the films were laser ablated. Weight of 0.2 mg of 

chitosan powder was dissolved in 10 mL acetic acid to obtain a 2% concentration of chitosan solution.  
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3. Results and Discussion 

3.1. Laser Ablation 

To determine the laser fluence needed for subsequent laser ablation experiments, etch rate 

measurements were carried out.  Application of the Beer-Lambert law, and using equation (3-1) an 

ablation threshold of 85 ± 8 mJcm-2 and an effective absorption coefficient of 6.4 ×104 cm-1 was 

determined. The absorption coefficient of chitosan at visible wavelengths has been widely reported but 

less so at a wavelength 193nm. Table 1 lists the absorption coefficients, 
eff ,  and 

trans  

corresponding to the effective absorption coefficient from laser etch rate measurements and optical 

transmission measurements along with their corresponding optical absorption depths. 

 
Table 3-1: The absorption coefficient of chitosan calculated from the etch rate data and from the extension 

coefficient extracted from the transmission data with corresponding optical absorption depth. 

   Absorption Coefficient (cm-1)                                                              Optical Absorption Depth 

(nm) 

     αeff                          6.4×104                                                                   
1−

eff                               155 

       trans                      3×103                                                                                                               1−

trans                            3,333 

As expected at 193 nm strong optical absorption occurs close to the surface of chitosan. An equation 

for the etch depth per pulse as a function of the laser fluence, F, is shown in equation (1) below, where  

TF  is the ablation threshold.  

( )
1

ln
eff T

F
d F

F

 
=  

 
     (3-1) 

The etch rate is of the order ~ 10 nm per laser pulse was calculated at a laser fluence close to the 

ablation threshold, FT = 100 mJcm-2. Hence, relatively high depth resolution is observed when 

irradiating chitosan at a wavelength of 193 nm. Optical micrograph of surface relief grating made of 

chitosan is illustrated in figure 3. It can be noticed that well-defined linear grooves were formed, with 

little redeposited materials were left on the chitosan film surface. 

 

Figure 3: Optical micrograph of a chitosan relief grating fabricated by LDW technique using 193 nm 

excimer laser. 12 µm grating period, F = 110 mJcm-2, overlapping pulses of 42 pulses and a pulse 

repetition frequency of 10Hz. 
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A line profile was extracted from WLI data and a grating period of up to 12 μm was determined. 

Figure 4 displays a graph of the spatial frequency of the grating. Using WLI measurements, these data 

were acquired and analysed using the choice Power Spectral Density (PSD). As the PSD result shows, 

the grating has a well-defined 12 μm length. It is also noted from the graph that one can see a 

subgrating structure of the ~4 μm and ~6 μm of periodic. This is assumed to be due to stitch errors and 

the potential relaxation of the surface tension. Figure 4 inset depicts a small grating area in three 

dimensions. 

 

 

Figure 4: Chitosan grating measured with Power Spectral Density (PSD) using a white light 

interferometer, 10 × magnification objective lens. Inset displays a 3D image 

 of a small area of the grating. 

Figure 5 depicts the one dimension of four surface ridges of the grating. There is some evidence that 

peak asymmetry is compatible with PSD measurements. 
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Figure 5: Chitosan surface relief grating cross-section was obtained using white light interferometer 

data. ~ 250 nm depth was measured. 

SEM measurement of the biocompatible chitosan diffraction grating is shown in figure 6. Observation 

of well-established chitosan tracks at the top of these tracks with some signs of surface texture. The 

systematic study was conducted using WLI for surface roughness of unirradiated chitosan spun films 

and chitosan treated with the laser.
aR ~ 4 nm of surface roughness was measured In the as-spun film, 

while the surface roughness for the chitosan film treated with the laser is slightly increased to be of  

aR ~ 6 nm.  Masking technique in WLI  was used for all surface roughness measurements. 
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Figure 6: The SEM of surface relief grating of chitosan film (9k × magnifications, 80° tilt). 110mJcm-2 laser 

fluence at a pulse repetition frequency of 10Hz. 

 

To be noticed that the area in which these measurements are obtained over a small area and therefore 

we should not draw too many conclusions from the measurements of irradiated and unirradiated 

surface roughness other than spun coated surface roughness is weak and potentially useful for optical 

components. Ideally, the grating ridges should be voided of 193 nm photon flux during laser 

processing and thus the texture seen on the ridges may be due to stress-induced relaxation as the 

chitosan temperature rises and falls. A Fraunhofer intensity pattern created using a HeNe laser light is 

shown in Figure 7. The 0 and ±1, ±2 diffracted orders are clearly seen in figure 7. By this figure, it can 

be noticed there are Some scattered between the orders. Efficiencies in the diffraction grating order are 

measurements.  During these measurements, the chitosan films were left on their glass substrates and 

probed with a HeNe laser with a wavelength of 632.8 nm and a 5 Watt power. The efficiencies 

between the corresponding positive and negative diffracted orders were symmetrical within the 

uncertainty associated with the grating measurements: 0 = 40%, ±1 = 24%, ± 2 = 2% (order 

uncertainty ± 3%, reflection loss 4%). Chitosan laser processing at a wavelength of 193 nm shows the 

strong effective coupling of UV light with relatively small damage caused by the laser. 

 

 

 

 

 

Figure 7: Far-field diffraction pattern of the chitosan grating, lightened with a 5W HeNe laser, 

wavelength 632.8nm. 

 

The heat diffusion length lh measurements were limited to a short distance, Dlh 4= = 200 nm. 

Laser ablation below the ablation threshold was performed to reduce the temperature rise caused 

during laser ablation. 

 

3.2. Temperature Calculations 

Knowledge of the sample, temperature-induced by laser processing provides useful information to 

interpret ablation experiments. We calculate the surface temperature using equation (3-2) for three 

different laser fluence [21].  

( ) ( ) ( ) ( ) ''2

0

'2'

0   exp
 

 
dtDterfcDtttI

c

A
TtT

t

S 



−+=    (3-2) 

where, I, T0, α, A, , c, R, D, t, erfc  are the laser intensity, initial temperature, absorption coefficient, 

absorptivity (1-R), mass density, specific heat capacity, reflectivity, thermal diffusivity heat duration 
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and complimentary error function respectively. The temporal excimer laser pulse shape was 

simulated using equation (3-3).  

( ) 






 −
=



tt
ItI exp0                       (3-3) 

where  = 4.5 ns corresponds to the 11.5 ns FWHM laser pulse that was used in these experiments , I0, 

is the laser intensity. The simulated laser pulse is shown in the inset of figure 8 and resembles quite 

well the measured laser pulse. The simplified calculations estimate the surface temperature of chitosan 

when subjected to a single excimer laser pulse.  We assume the thermal and optical properties are 

temperature independent and we neglect the discrepancies between the gas and condensed phase 

enthalpies. Also, due to the relatively low laser fluence employed in the experiments we assume, The 

incident laser pulse is not shielded by the ablated materials. The absorption coefficient used for the 

temperature calculations of chitosan was from spectrophotometer transmission measurements that 

exhibited thin film interference effects which were used to extract the extinction coefficient, k = 

0.0046 and used in 
trans  [22,23], see table 1. Calculating the surface temperature at a laser fluence of 

90 mJcm-2 (ablation threshold) and using the absorption coefficient  = 3 ×103 cm-1 (
1 −
~3 µm) 

corresponds to a calculated surface temperature 3

90

, 3 10S
T

= 
= 347 K, see Figure 8. We note that the 

ablation threshold indicates the onset of significant mass removal, and atoms will be removed at a 

slightly lower laser fluence especially noticeable if a large number of laser pulses are delivered. This 

region below the laser ablation threshold, say 80 mJcm-1, is also calculated and corresponds to a 

temperature of 3

80

, 3 10S
T

= 
 = 335 K. 

 

 

Figure 8:The surface temperature of chitosan sample irradiated at different laser fluence (70 mJcm-2,80 

mJcm-2 , 90 mJcm-2, 110 mJcm-2). The inset shows the simulated laser pulse shape used  

for the calculations . 
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The decomposition temperature of bulk chitosan is dT ~300K obtained from TGA analysis 

measurements [24]. Using equation (3-2) we calculate the laser fluence that would be necessary to 

reach the thermos-gravimetric decomposition temperature of chitosan. An estimate of the laser fluence 

that would be required for chitosan to reach the decomposition temperature is calculated to be in the 

fluence range of ~ 58-66 mJcm-2. Hence the fluence used in these experiments is consistent with 

calculations.   

4. Discussion  

An interesting research area is the laser processing of biocompatible materials. This research was 

performed primarily to examine the interaction between UV 193 nm laser radiation and chitosan. 

Secondly, analysis of the surface resolution and feasibility of small optical components. Diffraction 

gratings are an optical component which could be used on LOC platforms perhaps, as grating couplers 

or on-chip sensors. Other bio-compatible components could also be fabricated using similar UV laser 

patterning to produce waveguides and lenses for example and could, therefore, be integrated on board 

LOC architectures [25–28]. It is therefore envisaged that laser processing could be applied to similar 

bio-compatible materials and applications. Reducing the grating pitch, for example, to realise bio-

compatible distributed feedback lasers [29,30] may be an interesting direction forward. From a 

material perspective, silk fibroin is another interesting bio-compatible material [31] and the authors of 

this paper are currently carrying out similar work in this area.  

5. Conclusion. 

An ArF 193 nm laser was used to realise a spun chitosan thin film diffraction grating. The absorption 

of chitosan is relatively high at 193 nm wavelength which enables controlled mass removal rates 

resulting in a high depth resolution processing. We report the ablation threshold for chitosan which is 

at the sub hundred mJcm-2 level. Measurements for optical and SEM indicate clean ablation with 

limited deposit content. There is some evidence of texture in the laser ablated areas, but there is no 

substantial evidence that the optical properties of the diffraction grating have affected by the texture. 

Therefore, the LDW technique should be extended to similar bio-compatible materials.     
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