EXPLAINING YOUNG MORTALITY
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ABSTRACT. Stochastic modeling of mortality rates focuses on fittimgar models to loga-

rithmically adjusted mortality data from the middle or lages. Whilst this modeling enables
insurers to project mortality rates and hence price maytphoducts it does not provide good fit
for younger aged mortality. Mortality rates below the e&@ys are important to model as they
give an insight into estimates of the cohort effect for mawent years of birth. It is also impor-
tant given the cumulative nature of life expectancy to be &bforecast mortality improvements
at all ages. When we attempt to fit existing models to a widerragge, 5-89, rather than 20-89
or 50-89, their weaknesses are revealed as the resultstaatisfactory. The linear innovations
in existing models are not flexible enough to capture thelimwar profile of mortality rates that

we see at the lower ages. In this paper we modify an existirgctbf model of mortality to

enable better fitting to a wider age range, and using data §®ren developed countries our
empirical results show that the proposed model has a bdttertfie actual data, is robust, and

has good forecasting ability.

JEL ClassificationC51, C52, C53, G22, G23, J11

Keywords and PhraseMlortality, stochastic models, forecasting, non-lingari

1. INTRODUCTION

In recent years there has been an increasing amount ofiattgmit on the modeling of
mortality risk as a significant risk that pension providensl &nsurance firms are exposed to.
These development have been driven in part by the introslucf more stringent regulation
and historically low rates of interest and inflation. Theefahas exposed longevity risk as
being a significant risk in its own right and the developmédntnovative hedging products has

allowed risk holders to unbundle longevity risk from theeirgst and inflation risks.
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2 O’HARE AND LI
There is a significant amount of literature on stochastic elind of mortality rates. The
impetus for the rapid development in stochastic mortalipdeling started with the often used

model of Lee and Carter (1992) who modeled US male data usimgeafactor time series
approach. Many innovations of the Lee-Carter model have loeseloped since including,
Booth et al. (2002), Brouhnset al. (2002), Girosi and King (2005), Renshaw and Haberman
(2006), Cairnset al. (2006), Currieet al. (2004), Currie (2006), Haet al. (2008), Tulijapurkar
(2008), and Plat (2009).

Many papers propose that mortality in advanced ages is mfke by the mortality experi-
ences at the younger age range and it is clear that the av#feggpectancy of a population
will be affected by experience at all ages. This cumulatiecé means that experience at the
younger ages is important to consider when modeling theatityrexperience of a population.
From a demographic viewpoint it is also clear that being ableodel and forecast mortality
at all ages is important. Hauser and Weir (2010) and Weir 1281ate that greater attention
must be given to study designs that allow early-life expesuexperiences, and characteristics
to be included in the analysis of outcomes in later life. Gobffects have been identified as an
important component in a mortality model and yet existingdeie are missing significant in-
formation on the most recent cohorts by excluding the youages from their models. When
we fit existing models to a wider age range starting from agatker than age 20 or 50, the
results are not satisfactdrgince the linear innovations are not flexible enough to gaptie
non-linear dynamics at the lower ages, the so called “iffesmortality (accidents, drug abuse)
profile. In this paper we propose a mortality model that aimsrtprove upon the fit quality
of existing models on a wider age range whilst at the samertimhéosing sight of the positive
aspects of existing models. In particular, using a widerragge introduces a non-linear profile
of mortality and we aim to capture this in a better way.

Using the data of a range of developed countries’ from 195i62ve find that the proposed
model fits the data very well, is applicable to a fuller agegeaand captures the cohort effect. It

also has a non-trivial correlation structure, capturesithelinear effects at lower ages, has no

The cohort effect was identified in reports by the Governmeniiary’s Department (1995, 2001, 2002). These
reports highlighted that the generations born between 28251945 (centered on the generation born in 1931)
experienced more rapid improvement than earlier and laeeigtions. This feature had been noted for both males
and females in the UK.

AWe show later in the paper that fitting errors more than doimbdeme cases when a wider age range is fitted. See
tables 6 and 7 model M9 for example.
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EXPLAINING YOUNG MORTALITY 3
robustness problems and can take into account parame¢ewhige the structure of the model
remains relatively simple.

The remainder of the paper is organized as follows. Firs§antion 2 the background to
stochastic mortality modeling is reviewed. In Section 3 arpeical comparison of existing
models is conducted which further motivates the paper. kti@e 4 a modification of the
Plat (2009) model is proposed and its fitting and forecagigrgormance is assessed using the

mortality data of 7 different countries. Conclusions aravdn in Section 5.

2. BACKGROUND

Due to the increasing focus on risk management and measaréonénsurers and pension
funds, the literature on stochastic mortality models hagldped rapidly during the last twenty
years. A need to measure the performance quality of theseels\¢etl to the development
of a range of criteria against which models could be assedsetthis section we discuss the
background to stochastic mortality modeling starting viité criteria. We follow this with an
overview of existing stochastic mortality models up to amduding the Plat (2009) model.

In order to assess the quality of a model (from both a fitting ariorecasting perspective)
we need to have a range of metrics on which we can quantifygtfenmance of the model. A
good set of criteria should allow us to quantify the perfonggof a mortality model against
a range of aspects considered to be “good qualities” for aein@idmortality rates. Cairnst
al. (2011) proposed criteria against which a model can be aste$®r example, the model
must fit the existing data well, the model must produce biclalty reasonable forecasts etc.
Using these criteria we can determine how good a particutatehis at fitting and forecasting
mortality.

Stochastic mortality models either model the central nlityteate or the initial mortality rate
(see Coughlaet al, 2007). LetD, ; be the number of people with age¢hat died in yeat, and
E. ., the exposure being the average population with-agethe yeart, the central mortality

rate’ m,, is defined as:

(1) Myt = :

3The initial mortality ratey, is the probability that a person agedlies within the next year. The different mortality
measures are linked by the approximatignz 1 — e~ "=,
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The first and most well known stochastic mortality model &t tbf Lee and Carter (1992):
(2) ln(mm,t> = a; + b:}c’ft + €xts

wherea, andb, are age effects and, is a random period effeét. Applying the necessary

constraints the,, are given by

1 N
(3) Ap = N ; hl mnt.

The bilinear parb,~; was then determined as the first singular component of a lsingalue
decomposition (SVD), with the remaining information frohetSVD considered to be part of
the error structure. The, are estimated and refitted to ensure the model maps ontoibidéda
and the subsequent time serigsis used to forecast mortality rates using normal time series
forecasting techniques.

Among many discussions of the Lee-Carter model, Catrag. (2006, 2009, and 2011) sum-
marized the main disadvantages of the model. The model lafotor, resulting in mortality
improvements at all ages being perfectly correlated élieorrelation structure). For countries
where a cohort effect is observed in the past, the model giyesor fit to historical data. The
uncertainty in future death rates is proportional to theaye improvement rate, which for
high ages can lead to this uncertainty being too low, sinsehcal improvement rates have of-
ten been lower at high ages. Also, the model can result inkadbsmoothness in the estimated
age effect,.

Despite the weaknesses of the Lee-Carter model it's simphas led to it being taken as
a benchmark against which other stochastic mortality nsodah be assessed. There has been
a significant amount of literature developing additionsaiomodifications of, the Lee-Carter
model. For example Bootét al. (2002), Brouhnt al. (2002), Lee and Miller (2001), Girosi
and King (2005), De Jong and Tickle (2006), Delwaateal. (2007) and Renshaw and Haber-
man (2003, 2006).

Mortality data is 2 dimensional with deaths and exposurésgoeecorded by year and by
age. We can therefore consider the data from three differiemtpoints, the age profile (or

how mortality changes from age to age), the time profile (hosvtality rates for a specific

“This model was fitted to US mortality data for ages 0-110 betwtbe years of 1933 and 1987.



EXPLAINING YOUNG MORTALITY 5
age change over time), and more recently identified, the regirofile (how mortality for a
specific cohort of the population - those born in a particykzar - changes in relation to other
cohorts). The Lee Carter model identified the interactiotwben age and time through the
one bilinear factob, ;. Many of the modifications since the Lee Carter model havelsoio

capture additional age-period effects or cohort effectsthry can be grouped as such.

2.1. Cohort effect additions. Renshaw and Haberman (2006) modified the Lee-Carter model

by simply adding a factof;;,_,. to capture effects that could be attributed to the year dahbir

(t —x),
4) In(myy) = a, + bilﬁt + bi%—m + €t

wherex; is defined as before ang_,. is a random cohort effect.

The model does have a much better fit for countries such as khetére a cohort effect
has been identified, however it suffers from a lack of robestrperhaps due to the presence of
more than one local maximum in the likelihood function. Argasthers, for instance Currie
(2006) noted that if the model was fitted using data from 126Q60 then the parameters showed
qualitatively different characteristics to those obtdirvehen fitting to data from 1981-2000.
Furthermore, as noted by Currie (2006), although the maaelrporates the cohort effect, for
most of the simulated mortality rates the correlation streecis still trivial with the simulated
cohort parameters only being relevant for the higher agteedar end of the projection.

Following this analysis Currie (2006) applied a simplifiegtgperiod-cohort model of Clay-
ton and Schilifflers (1987) to mortality which removed theustmess problem but at the expense
of the fitting quality:

(5) In(Mmgys) = ag + K+ Yoo + o

2.2. Age-period effect additions. Cairnset al. (2006) observed that for England & Wales and
United States data, the fitted cohort effect appeared to &dxend in the year of birth. This
suggested that the cohort effect was compensating for theofea second age-period effect, as
well as trying to capture the cohort effect in the data. Tadthem to introduce a two factor

model of mortality,

(6) logit(g,+) = KJ% + /{f(x —T) + €4,
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wherez is the mean age in the sample range é&rjdx?) are assumed to be a bivariate random
walk with drift. The two factors in this model were both petitactors with no cohort effect
allowed for. This was rectified in Cairret al. (2009), namely capturing the cohort effect as an
additional effect on top of the two age-period effects. Akkse models have multiple factors
resulting in a non-trivial correlation structure which noirs the reality that improvements in
mortality rates are different for different age ranges. AtHar adaptation was also created
allowing for the cohort effect to diminish over time. The mairoblem with these models
arises from the fact that they were designed for higher agdssa ignored the modeling of
mortality at the lower ages (for example the accident hur@gjrnset al. (2009) argue that the
significant cost associated with mortality is at the oldezsagnd thus their modeling focused
on those ages. When using these models for full age rangef, tjuality is relatively poor and

the projections are biologically unreasonable.

2.3. Age-period and cohort additions combined.Plat (2009) wanted to develop a model
which maintained the good aspects of the existing modelstaaving out the weaker features.
The result was a four factor model which took its beginningsnf the Lee-Carter model and
which added factors to capture the second age-period g#sqgber the Cairnst al. (2006)
model and the cohort effect, as per the Renshaw and Habe&@86)(model. The innovation
in the Plat model was to then add a further period factor affgoonly the lower ages and

designed to allow the model to fit to the whole age range. Theergpecification is given by:
(7) In(myy) = ay + Ky + K2 (T — ) + K5(T — 2)T 4+ Yo + €os,

where thez, is similar to that of the Lee-Carter model and makes suretligapverall shape of
the mortality curve by age is reasonable, th@ndx? model the mortality rates as in the Cairns
et al.(2006) model and the} models the effects specific to the lower ages only wierex)™
takes the valuéz — x) when this is positive and zero otherwise. Finally the, models the
cohort effect.

The range of existing models described above meet most ofitkeea set out by Cairnet al.
(2011) and the Plat model meets all of the criteria by it's)agsign. However, when the age

range is widened to allow for the non-linear charactergstityoung mortality experience then
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as far as we are aware, none of the existing models meet the abteria adequately (although

some are close). This is the starting point of this paper.

3. EMPIRICAL COMPARISON OF EXISTING MODELS

In this section we empirically compare the existing modelsge their performance when the
age range is widened to allow for the non-linear mortalitgyenence at lower ages. For ease of
notation we will use the naming convention established biyrSat al. (2009). Table 5 in the
appendix sets out the names we will use for each of the models.

We fit the models to different countries and to different ayeges for each country. The data
setS used are: Male mortality data during 1950-2006 for age rasg&9, 20-89 and 50-89 of
Great Britain (GB), England & Wales (E&W), Scotland (SCO)itéd States (US), Australia
(AUS), New Zealand (NZ), and The Netherlands (NL). Althowglonger history is available
for some of the countries, we have used the period 1950 - 20@#8lthe countries as this data is
more reliable and will allow a valid comparison with the résof Cairnset al. (2009 and 2011),
and with Plat (2009) who used the period 1960 - 2006. The miitdsl compared using the
Mean Average Percentage Error (MAPE) measure and the Baykegormation Criterion(BIC)
measure.

The MAPE measures the average difference in absolute velwebnm, ;, the estimate of

mg+, andm,, itself, it is defined by:

t— mx,t”

mr,t

1 772,
(8) MAPE = NM;

where we have N time dimensions (in this case N=57) and M agemkions (in this case
M=70).
The BIC measure provides a trade-off between fit quality ardipmony of the model and it

is defined as:
(9) BIC = L(¢) — %Kln(P),

WhereL(gﬁ) is the log-likelihood of the estimated parameter” is the number of observations

and K is the number of parameters being estimated.

>The data consists of numbers of deaihs, and the corresponding exposurEs, and is extracted from:
www.mortality.org, see HMD 2004.
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Table 1 gives a comparison of the fitting results (in terms &ME) to the age range 5-89.
Tables 2 and 3 show the fitting results to ages 20-89 and 50A%9see from tables 1 and 2
that when a wide age range is used (5-89 or 20-89), the Plaeinh® is not the best fitting
model, however, if we exclude model M2, which suffers frorustness issues, the Plat model
is confirmed to be the best fitting model over the age rangeR20v8hen fitting to the age
ranges 5-89 and 20-89 it is important to note that the modeaonset al. (2006, 2009) do
not perform very well for these age ranges, since they wesgded for higher ages only. For
comparison we also fit the existing models to data betweefl 488 2006 for ages 50-89 only.

Table 3 shows that the Plat model still outperforms other eted

TABLE 1. The MAPE for the model fit to ages 5-89 (%)

Model M1 M2 M3 M5 M6 M7 M9

GB 6.14 391 6.96 21.83 16.71 12.88 7.56
E&W 6.38 4.16 7.08 21.83 16.87 13.03 7.64
SCO 10.97 9.28 12.76 19.99 18.74 15.76 14.72
US 458 296 543 16.08 15.59 15.20 5.65
NL 899 7.01 791 2357 17.82 1295 7.22
AUS 745 6.44 8.80 23.86 20.46 18.52 9.61
NZ 12.32 11.86 13.66 27.42 25.46 23.84 13.74

TABLE 2. The MAPE for the model fit to ages 20-89 (%)

Model M1 M2 M3 M5 M6 M7 M9

GB 14.45 3.19 1453 16.53 9.93 7.60 3.27
E&W 14.34 3.39 14.42 16.82 10.09 7.73 3.50
SCO 15.67 6.31 15.70 16.45 10.32 8.816.31

US 1247 2.46 1253 14.07 7.92 6.30 2.76
NL 1254 4.16 12.62 16.14 11.20 8.03 4.22
AUS 5.67 456 5.84 17.10 10.99 8.40 5.25
NZ 9.57 857 9.26 19.20 15.32 12.06 9.19

TABLE 3. The MAPE for the model fit to ages 50-89 (%)

Model M1 M2 M3 M5 M6 M7 M9
GB 286 1.75 2.00 3.87 1.93 1.53.36
E&W 294 1.87 2.13 4.03 2.02 1.62.48
SCO 4.05 3.33 3.17 4.57 3.29 3.12.82
Uus 221 147 161 252 2.09 1.81.41
NL 4.05 2.39 259 4.01 219 2.1&.07
AUS 3.18 3.22 3.78 3.62 2.94 2.62.59
NZ 5.64 546 594 6.35 581 5.7%.37
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We also look at the fitting results based on the BIC. Tables#&nd 8 in the appendix show the
BIC measures for the seven countries, based on fitting tathade 5-89, the 20-89 age range,
and the 50-89 age range, respectively. We see from the tdidesd is unclear which model
is the best performing using a BIC measure with the RenshabeHnan model, M2, showing
some good fitting performances, but with models M3, M5, M@ &9, all performing well on
some countries data sets. A particular point to note at thgegand to motivate the discussion
further), is that by widening the age range from 20-89 to w8%an see that for the Plat model
for example, the fit quality moves frof127% on the 20-89 age range 1056% on the 5-89 age
range.

To understand why the Plat model does not perform very weltife wider age range and
to motivate our further analysis, we look at male data from &M@ US. At first, it might be
informative to split the data into the period effect and tige affect. Figures 1 and 2 plot the
time effect for GB and US males at ages 15, 35, 55 and 75 with @aph showing the natural
logarithm of mortality between the years 1950 and 2006. Veefisan figures 1 and 2 that the
logarithm of mortality for both GB and US shows a markedly davard trend over time for
each of the age ranges, and the mortality looks more vokititee younger ages, in this case
the 15 and 35 year old samples. This might be attributed terttel numbers of deaths at those
ages and the fact that deaths at the lower ages are due toarange of causes influenced by
“lifestyle” choices and so are not linked to general detation due to ill health and old age.

Focusing on specific years and looking at the mortality ¢ffecthe whole age range, in
figures 3 and 4, we can see that a linear pattern does emergasdogge 25 or so, however,
looking at the mortality below that age we see a very clearlivwar pattern arising. Again this
is due to “lifestyle” factors and in order to model these etffeve require more flexibility in the
factors than the existing model allow.

Looking at the 4 factor model of Eq. (7), the design innovati@s to include the additional
factorx?(z — z)™. This factor adds, in a linear way, an additional flexibifity ages less than
the mean of the data set. In the case of Plat this would be &5 l@gs than 55. Figures 3 and 4
show clearly that the logarithm of mortality for ages beltw thean of 55 are far from linear.

As we have seen from tables 1 - 3 whilst the Plat model perfosiatively well when fit
to the data set from age 20, its performance dips somewhat ¥itted to the larger data set.

In terms of the MAPE when looking at tables 1 and 2 we find thag¢nvtihe wider age range
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FIGURE 1. Logarithm of mortality by year for GB males aged (a) 15,36) (c)

55, and (d) 75.
is fitted the percentage error more than doubles across @litiges for which we have fit the
model. This implies that the addition of a fourth linear tacts inadequate when modeling
mortality at lower ages. In the following section we propasaodification to the Plat model
which introduces some additional flexibility into the moa@#ibwing it to be more adequately

fitted to a wider age range.

4. A MODIFICATION TO THE PLAT MODEL

In this section we incorporate the non-linear features oftality at younger ages into an
adaptation of the Plat model proposing an alternative bétteag model. We show the quality
of the fit of the proposed model with that of the existing mads} fitting to data from a range

of countries for the age ranges 5-89, 20-89 and 50-89 andefnsyl 950-2006.

4.1. The model. We model the central mortality rate, ; as:

(10) In(myy) = a, + Ky + K2(T — x) + /-ci’((:z’: —x) 4+ [(z - x)+]2) + Vi + €t
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FIGURE 2. Logarithm of mortality by year for US males aged (a) 15,3B)(c)
55, and (d) 75.

wherea, makes sure that the basic shape of the mortality curve oes iagn line with his-
torical observations as in the Lee-Carter model (2) and:thiactor represents changes in the
level of mortality for all ages. Following the reasoning iai@set al. (2006), the (long-term)
stochastic process for this factor should not be mean iagerTher? factor allows changes
in mortality to vary between ages reflecting the historidadervation that improvement rates
can differ for different age classes amtimodels the effects specific to the lower age only as in
the Plat model (7). The adjusted coefficientgfis designed to capture some of the non-linear
effects observed at the lower ages, the “quadratic lowereffget™®. Finally thev,_, models
the cohort effect in the same way as the models of Currie (28068 Cairnset al. (2009) and
Plat (2009). The proposed model (10) has 4 stochastic fgcaod so has a relatively simple
structure similar to the Plat (2009), Currie (2006) and th@iz et al. (2006) models.

®We also look at the more general casen,, ;) = a, +r} +#3 (T —x)+ 3 (T—2) +a[(T—2) 1)) +Yimw+eus
where the parametern” was included to test a range of different quadratic coeffits. However, we found that
the fit quality did not vary much, on both BIC and MAPE for noera values of 4", and we therefore focus on a
model with a parameter = 1. Results of generali” are available on request.
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105

FIGURE 3. Logarithm of mortality for GB males during the years (apQ9(b)
1965, (c) 1980, and (d) 2005.

Historical data indicates that the dynamics of mortalitiesaat lower ages (up to age 40 /
50) whilst still showing a downward trend over time does shmuch more variation around
the trend. This can be attributed in part to the small numbdeaths and in part to the nature
of deaths at these ages, the so called “lifestyle” mortédityors (smoking, drug abuse, alcohol
abuse, car accidents and violence) for example. In the Ridehthe factor:? was added. In
model (10) we modify the coefficient ef to capture the non-linear dynamics observed in the
historical data.

The factorx; shows a trend and is fitted with a non-stationary ARIMA pracékhe factors
x? andx? allow the model to have a non-trivial correlation structbetween ages. Fitting a
non-stationary ARIMA-process for these factors could lte@a some scenarios) in projected
scenarios where the shape of the mortality curve over ages sologically reasonable. There-
fore, a stationary (mean reverting) process will be assuimethese factors. The process for
the cohort effect factoy;_, should not have a trend since we should not expect cohoutefie

improve year on year. Therefore, a trendless mean reveptowess will be assumed foy_,.
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FIGURE 4. Logarithm of mortality for US males during the years (abQ9(b)
1965, (c) 1980, and (d) 2005.

As with all stochastic mortality models, the mortality mbgeoposed above has an iden-
tifiability problem, meaning that different parameteriaat could lead to identical values for
In(m,.). However, this can be resolved by setting identifiabilitpsiaints. As the model has
the same time series structure to that of the Plat (2009pwoig an approach of Cairnet al.

(2009, model M6), we have

1) ZZE@ Ye =10
2) ZZEQ v =0
() >, ki =0

wherecy andc; are the earliest and latest year of birth to which a cohodogfis fitted, and
¢ =t — x. These constraints are the same as for the Plat(2009) m®detree rationale behind
the choice of the constraints.

Fitting methodology — The original method by which to fit such a stochastic moded wa
to use SVD as used in Lee and Carter (1992). Browtred. (2002) described an alternative

fitting methodology for the Lee-Carter model in which the ruegnof deathsD,, ; is modeled
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as a Poisson distribution with parametés, ;m,,) wherem,, is the mortality rate we are
estimating. The main advantage of the Brouknhal. (2002) approach over the SVD approach
is that it accounts for the heteroscedasticity of the mibytdhta for different ages. Indeed this
method has been used more commonly, see for example Rensbda#aherman (2003, 2006)
and Cairnset al. (2009), Plat (2009). We adopt this approach and model thebruwf deaths
by D, ; ~ PoissofE, ;m. ;). The parameters of model (10) are estimated by maximiziag th

log-likelihood functior:
(11) L(¢:D,E) =Y Dy In[Eymy ()] — Epymg(¢) — In(D,,)).
z,t

Besides estimates fat,, the fitting procedure described above leads to time sefiestna-
tions of k!, k2, K3, andy;_,. After fitting the model we take the fitted values for the tireeias

and fit suitable ARIMA-processes.

4.2. Comparison of fit quality with existing models. To evaluate whether the proposed model
fits historical data well, we fit the model to the data sets dleed in Section 3. We also fit the
model to the three different age ranges, 5-89, 20-89 andd5@8how the flexibility of the
proposed model. The fitting quality for each of the countniessng a MAPE and BIC measure

are presented in table 4.
TABLE 4. MAPE and BIC results for model M10

Country MAPE BIC

5-89 20-89 50-89 5-89 20-89 50-89
GB 5.88 2.77 1.29| -28326 -21887 -13148
E&W | 6.05 2,79 1.37|-27549 -21634 -13074
SCO |11.88 2.79 2.76|-18586 -15768 -10096
us 414 231  1.35|-50487 -29998 -18727
NL 6.11 2.67 1.99| -19586 -16729 -10601
AUS 8.14 2.65  2.48|-22466 -18327 -10956
NZ 13.65 2.69 5.39| -17272 -14714 -9433

When a wider age range is used the logarithm of mortality idamger relatively linear.
However, when comparing the results with table 1 (Excludhmgresults from model M2,the
Renshaw-Haberman model, because of robustness probleasgemhat this non-linearity is
captured adequately by the quadratic lower age effect iptbeosed model. Across all coun-
tries considered in this paper the proposed model fits treelmdter than the previous best fitting
madaptation of the R-code of the software packagmietrics” which is an open source toolkit for

measuring and managing longevity and mortality risk, desigby J.P. Morgan, see http://www.lifemetrics.com
and http:// www.r-project.org/.
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models. Looking at the results when compared with table pénformance of the model is still
very good when compared with the leading stochastic modetsootality. Comparisons with
the results of table 3 show that the model still outperforhesexisting stochastic models for
the age range 50-89. As the improved specification has besnwlibhin a 4 factor framework
this model has a similar structure to the previously bedbpeting model on a fitting measure,
namely the Plat model. Thus the model remains relativelgipamious and this is reflected in
the BIC measures in table 4 when compared with tables 6, 78 amthe appendix.

The goodness of fit of stochastic mortality models can beuawatl by analyzing residuals
of the models, Dowdabt al. (2010a) applied the t-test, variance ratio test, and thguéaBera
test among others to six stochastic mortality models (M1, M2, M5, M6 and M7) using the
English and Welsh male mortality data. We carried out siméats for model M10 using US
and GB data. Resuft®f these tests show that the proposed M10 model performsuatiy
when compared to those in the Dowtlal. (2010a).

Fitting the ARIMA processes— In the remainder of this subsection, we focus on the pop-
ulations of GB and US males and on fitting to the age range A86r fitting the model to the
population data the next step is to select and fit suitablevRprocess to the time series’ of
ki, k2, k2, andy;_,. The fitted parameters, 2, 7, andy;_, for GB males are given in figure
5 and for US males are given in figure 7. The estimates forithgarameters are given in figure
6 and figure 8. The figures shows that the pattern of the impigperameter:; is well-behaved.
The patterns of the other parameters all reveal some augssge behavior. Since the factor
x+ drives a significant part of the uncertainty in mortalityesatits relatively regular behavior
(for this particular dataset) will also show in the relalywearrow confidence intervals.

The parameters for the Plat model are plotted in the appexsdigures 11, 12, 13 and 14 for
comparison purposes. They show that the qualitative cteistics of the parameters, «?,
3, andv,_, remain unchanged with the more general model specification.

It is commonly assumed that the time series driving the dyosmamelys; should be fitted
with an ARIMA(0,1,0) time series. For the other parametetsich show some autoregressive
behavior, we have fit them with ARIMA(1,0,0) processes aslat 2009). It is also com-
monly assumed (see Renshaw and Haberman (2006), CMI (200 Qairnset al. (2011)) that

the process for,_, is independent of the other processes, so the parametengs qgirbcess

8The results are available upon request.
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FIGURE 5. Estimated values of (&), (b) x7, (c) x3, and (d)y,_, based on GB
males aged 5-89 between years 1950 and 2006.
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FIGURE 6. Estimated values af, based on GB males aged 5-89 between years
1950 and 2006.

can be fitted independently using Ordinary Least Square® oOfler processes can be fitted

simultaneously using Seemingly Unrelated Regression.

4.3. Forecasting. This section shows the simulation results and results aistiess tests for

the proposed mortality model.



EXPLAINING YOUNG MORTALITY 17

0.2 T T T T T T T T T T
0 6
4
-0.2
2
-04 0
-0.6 ‘ ‘ ‘ ‘ ‘ -2 ‘ ‘ ‘ ‘ ‘
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010
@ (b)
0.01 T T T T T 0.2 T T T T
0.005 1 0.1
0 0
-0.005 1 -0.1
-0.01 I I I I I -02 I I I I
1950 1960 1970 1980 1990 2000 2010 1860 1880 1900 1920 1940 1960
© (d

FIGURE 7. Estimated values of (a), (b) x2, (c) 3, and (d)y,_, based on US
males aged 5-89 between years 1950 and 2006.

90

FIGURE 8. Estimated values af, based on US males aged 5-89 between years
1950 and 2006.

Using the fitted ARIMA processes and the fitted valuesifoand~, .. (see figures 5, 6, 7 and
8%, future mortality rate scenarios can be constructed ugiogte Carlo simulation. Figures 9
and 10 show simulation results for ages 15, 35, 55 and 75 fom@®s and US males.

%The fitted values for, and~,_, for England & Wales, Scotland, Netherlands, Australia amsvN ealand are
available in the appendix in figures 15 and 16.
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FIGURE 9. Log mortality rates from 1950-2006 followed by forecagtresults
2006 - 2026 (mean and 95% confidence intervals) for ages (€b)1L35, (c) 55,
and (d) 75 for GB males.

For higher ages, the widths of the confidence intervals avadly similar as the models of
Plat (2009) and Cairnst al. (2011) confirming the results are biologically plausibléeTesults
for younger ages (15 and 35) also seem plausible, where tenadd historical variability is
reflected in the wider confidence intervals.

Recall that some models suffer from a lack of robustness&tance the Renshaw-Haberman
model is not robust for changes in range of years. The modglgzed in this paper is tested
for robustness by fitting the model to data from 1975-2006dding this we are looking to
observe that the qualitative characteristics of the fitea@meters have not changed because the
fitting period is different. We are not looking to show tha¢ tinend direction is unchanged, or
that the actual forecasts are unchanged. It is a charaaterfghese sorts of models that the
forecasted trend will to an extent be dependent on the pesed which the model has been
fitted to the data. Given that it is likely the trend forecast e different when fit to the period
1975-2006 compared to 1950-2006, it is inevitable, for aldeds, that the simulation results

will be somewhat different.
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FIGURE 10. Log mortality rates from 1950-2006 followed by foreoagtresults
2006 - 2026 (mean and 95% confidence intervals) for ages (éb)1L35, (c) 55,
and (d) 75 for US males.

Figures 17 and 18 in the Appendix plot the fitted parameter&®and US data from 1975-
2006. The illustrations show that the estimated parameersot show significantly different
gualitative characteristics when fitted to a different dagta The conclusion is that the proposed
model is robust for the fitting periods given above.

Furthermore, backtesting (as in Dowtlal 2010) of the model has been carried out, meaning
that the model is fitted to historical data, 1950-1999 in ti@se, and the forecast results are
compared with the actual observations for the period 20062 The results are illustrated in
figure 19 in the Appendix where we can see that the propose@impedorms adequately.

We have shown so far that the proposed model produces plausiults and they seem
robust. Plat (2009) came to the same conclusion for modelmMd9Cairnset al. (2011) came to
the same conclusion for the models of Currie (2006) and Garm/. (2006, 2009), M7. The
models of Cairn®t al. (2006, 2009) are designed for higher ages, so will not pregilausible
results for lower ages. Compared to those models the prdpusdel has the advantage that it

does produce plausible results for a full age range.
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Compared to the model of Currie (2006) the proposed modetheadvantage that it has
a non-trivial correlation structure. This is important dese often insurers and pension funds
have different type of exposures for younger or middle agesn(insurance, pre-retirement
spouse option) than for higher ages (pensions, annuidggregating these different types of
exposures can only be done sufficiently if the model has atnaiat correlation structure. As-
suming an almost perfect correlation between ages, as @uhé (2006) model, will possibly
lead to an overstatement of the diversification benefitsahaé when aggregating these expo-
sures. Compared to the model of Plat (2009) the proposedImoatiuces plausible forecasts

for the lower age range (below age 20) for which the Plat ma@el not designed.

5. CONCLUSIONS

In this paper we identify and address a limitation of the P2t09) model and previous
stochastic mortality models. This limitation is in the iflélp of existing models to adequately
fit mortality rates at the lower ages due to the non-linearadlyics at the lower ages, the so
called “lifestyle” mortality profile. We believe that it isriportant to be able to factor in such
mortality rates into a single mortality model because ofdheulative nature of mortality and
from a demographic viewpoint it is clearly important to béeatio model and forecast mortality
rates at all ages. The proposed model has the additionabiflgxio fit to the mortality rates
of a wider age range, 5-89. In particular, the model captimeson-linear profile of mortality
at lower ages. We show that the model has a better fit for thgerahcountries considered in
this study. We have also shown that the model does not losefahg benefits of the previous
stochastic models.

The results of this analysis have exposed the weakness wibpsemodels when trying to
fit to non-linear features of the data and shows that a mordinear flexibility is needed to
capture the mortality profile, particularly at lower age® develop this area further we now
need to address the “lifestyle” factors affecting moryafdtes in this age range. These may
be affected by policy, social, environmental and economésgures suggesting that a future

approach may be to model the underlying causes rather thaery forecasting.
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Appendix: Additional Tables and Figures

TABLE 5. The names of stochastic mortality models

Name Model and Name

M1

M2

M3

M5

M6

M7

M9

M10

Lee and Carter (1992)

In(mg ) = ag + byke + €xt

Renshaw and Haberman (2006)

In(mys) = az +bleg +b2vi—0 + €2t

Currie (2006)

ln(mm,t) =0z + Kt + V-2 + €zt

Cairnset al. (2006)

logit(gz.c) = ki + K2 (x — &) + €1t

Cairnset al. (2009) with cohort effect

|Ogit(QI,t) = K% + Ii%(l‘ - j) + Vt—z + €zt

Cairnset al. (2009) with cohort and quadratic age effect
logit(gs,t) = 7 + Kz — 7) + K7 (2 = 2)* = 02) + Yo + €ayt
Plat (2009)

In(my ) = az + ki + k2T — ) + 63T — )" + Vo + €an
Quadratic effect model

In(my ) = az + wf +#7(T —2) + 57— 2)" +[(Z = 2)¥]) + -0 + €aye

Note: The model M4 and M8 are not included in our analysis. WHeis a P-splines model
developed in Currie (2006), it is of a structurally diffeterature to the remaining stochastic
models. The M8 in Cairngt al. (2009) with diminishing cohort effect is a modification of
the M5, it was primarily designed for ages over and above 36 M10 is the model that we
propose in this paper.
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TABLE 6. The BIC for the model fit to ages 5-89

Model M1 M2 M3 M5 M6 M7 M9

GB  -38228 -28854 -34181 -150856 -96992 -57365 -33640
E&W -36686 -28315 -32984 -136658 -88876 -53211 -32295
SCO -20960 -20633 -20787 -29413 -25752 -22671 -20998
US -72612 -43997 -69820 -552628 -271679 -258323 -66989
NL  -24914 -22122 -22516 -55568 -37711 -26912 -22178
AUS  -24340 -23217 -25594 -82648 -44443 -29848 -25692
NZ -17842 -18288 -18154 -31360 -23208 -22149 -18284

TABLE 7. The BIC for the model fit to ages 20-89

Model M1 M2 M3 M5 M6 M7 M9

GB  -33926 -24684 -27031 -91937 -58540 -39770 -24921
E&W -32516 -24236 -26558 -83889 -54516 -37511 -24551
SCO -18326 -17904-17575 -22881 -19994 -18897 -17689
US  -64565 -37863 -56350 -368252 -143067 -97548 -43425
NL -20928 -19012 -18980 -32420 -26601 -2142418778

AUS -20833 -19909 -21449 -57681 -30301 -23740 -20697
Nz  -15282 -15714 -15484 -22794 -18177 -16394 -15818

TABLE 8. The BIC for the model fit to ages 50-89

Model M1 M2 M3 M5 M6 M7 M9
GB  -20246 -15074 -16493 -26013 -15756 -148744834
E&W -19591 -14891 -16301 -25094 -15524 -1481714759
SCO -11394 -11247-11050 -11675 -11111 -11146 -11259
US  -29981 -20581 -22653 -35419 -27749 -22562 -21598
NL  -13344 -11902 -11910 -13009-11684 -11786 -11909
AUS -12337 -12187 -12864 -12798 -12324 -12306 -12278
NZ -9534 -9873 -9801 -9698 -9847 -9993 -9984
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FIGURE 11. Estimated values of (&}, (b) x2, (c) 3, and (d)y;_, based on GB
males aged 5-89 between years 1950 and 2006 for the Plat model

FIGURE 12. Estimated values af, based on GB males aged 5-89 between
years 1950 and 2006 for the Plat model.
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FIGURE 14. Estimated values af, based on US males aged 5-89 between years
1950 and 2006 for the Plat model.
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