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EXPLAINING YOUNG MORTALITY

COLIN O’HARE AND YOUWEI LI †

ABSTRACT. Stochastic modeling of mortality rates focuses on fitting linear models to loga-

rithmically adjusted mortality data from the middle or lateages. Whilst this modeling enables

insurers to project mortality rates and hence price mortality products it does not provide good fit

for younger aged mortality. Mortality rates below the early20’s are important to model as they

give an insight into estimates of the cohort effect for more recent years of birth. It is also impor-

tant given the cumulative nature of life expectancy to be able to forecast mortality improvements

at all ages. When we attempt to fit existing models to a wider age range, 5-89, rather than 20-89

or 50-89, their weaknesses are revealed as the results are not satisfactory. The linear innovations

in existing models are not flexible enough to capture the non-linear profile of mortality rates that

we see at the lower ages. In this paper we modify an existing 4 factor model of mortality to

enable better fitting to a wider age range, and using data fromseven developed countries our

empirical results show that the proposed model has a better fit to the actual data, is robust, and

has good forecasting ability.
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1. INTRODUCTION

In recent years there has been an increasing amount of attention put on the modeling of

mortality risk as a significant risk that pension providers and insurance firms are exposed to.

These development have been driven in part by the introduction of more stringent regulation

and historically low rates of interest and inflation. The later has exposed longevity risk as

being a significant risk in its own right and the development of innovative hedging products has

allowed risk holders to unbundle longevity risk from the interest and inflation risks.
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There is a significant amount of literature on stochastic modeling of mortality rates. The

impetus for the rapid development in stochastic mortality modeling started with the often used

model of Lee and Carter (1992) who modeled US male data using aone factor time series

approach. Many innovations of the Lee-Carter model have been developed since including,

Boothet al. (2002), Brouhnset al. (2002), Girosi and King (2005), Renshaw and Haberman

(2006), Cairnset al. (2006), Currieet al. (2004), Currie (2006), Háriet al. (2008), Tulijapurkar

(2008), and Plat (2009).

Many papers propose that mortality in advanced ages is influenced by the mortality experi-

ences at the younger age range and it is clear that the averagelife expectancy of a population

will be affected by experience at all ages. This cumulative effect means that experience at the

younger ages is important to consider when modeling the mortality experience of a population.

From a demographic viewpoint it is also clear that being ableto model and forecast mortality

at all ages is important. Hauser and Weir (2010) and Weir (2011) state that greater attention

must be given to study designs that allow early-life exposures, experiences, and characteristics

to be included in the analysis of outcomes in later life. Cohort effects1 have been identified as an

important component in a mortality model and yet existing models are missing significant in-

formation on the most recent cohorts by excluding the younger ages from their models. When

we fit existing models to a wider age range starting from age 5 rather than age 20 or 50, the

results are not satisfactory2 since the linear innovations are not flexible enough to capture the

non-linear dynamics at the lower ages, the so called “lifestyle” mortality (accidents, drug abuse)

profile. In this paper we propose a mortality model that aims to improve upon the fit quality

of existing models on a wider age range whilst at the same timenot losing sight of the positive

aspects of existing models. In particular, using a wider agerange introduces a non-linear profile

of mortality and we aim to capture this in a better way.

Using the data of a range of developed countries’ from 1950 - 2006 we find that the proposed

model fits the data very well, is applicable to a fuller age range and captures the cohort effect. It

also has a non-trivial correlation structure, captures thenon-linear effects at lower ages, has no

1The cohort effect was identified in reports by the GovernmentActuary’s Department (1995, 2001, 2002). These
reports highlighted that the generations born between 1925and 1945 (centered on the generation born in 1931)
experienced more rapid improvement than earlier and later generations. This feature had been noted for both males
and females in the UK.
2We show later in the paper that fitting errors more than doublein some cases when a wider age range is fitted. See
tables 6 and 7 model M9 for example.
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robustness problems and can take into account parameter risk, while the structure of the model

remains relatively simple.

The remainder of the paper is organized as follows. First, inSection 2 the background to

stochastic mortality modeling is reviewed. In Section 3 an empirical comparison of existing

models is conducted which further motivates the paper. In Section 4 a modification of the

Plat (2009) model is proposed and its fitting and forecastingperformance is assessed using the

mortality data of 7 different countries. Conclusions are drawn in Section 5.

2. BACKGROUND

Due to the increasing focus on risk management and measurement for insurers and pension

funds, the literature on stochastic mortality models has developed rapidly during the last twenty

years. A need to measure the performance quality of these models led to the development

of a range of criteria against which models could be assessed. In this section we discuss the

background to stochastic mortality modeling starting withthe criteria. We follow this with an

overview of existing stochastic mortality models up to and including the Plat (2009) model.

In order to assess the quality of a model (from both a fitting and a forecasting perspective)

we need to have a range of metrics on which we can quantify the performance of the model. A

good set of criteria should allow us to quantify the performance of a mortality model against

a range of aspects considered to be “good qualities” for a model of mortality rates. Cairnset

al. (2011) proposed criteria against which a model can be assessed. For example, the model

must fit the existing data well, the model must produce biologically reasonable forecasts etc.

Using these criteria we can determine how good a particular model is at fitting and forecasting

mortality.

Stochastic mortality models either model the central mortality rate or the initial mortality rate

(see Coughlanet al., 2007). LetDx,t be the number of people with agex that died in yeart, and

Ex,t, the exposure being the average population with agex in the yeart, the central mortality

rate3 mx,t is defined as:

(1) mx,t =
Dx,t

Ex,t

,

3The initial mortality rateqx is the probability that a person agedx dies within the next year. The different mortality
measures are linked by the approximation:qx ≈ 1 − e−mx .
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The first and most well known stochastic mortality model is that of Lee and Carter (1992):

(2) ln(mx,t) = ax + bxκt + ǫx,t,

whereax and bx are age effects andκt is a random period effect.4 Applying the necessary

constraints theax are given by

(3) ax =
1

N

N
∑

t=1

ln mx,t.

The bilinear partbxκt was then determined as the first singular component of a singular value

decomposition (SVD), with the remaining information from the SVD considered to be part of

the error structure. Theκt are estimated and refitted to ensure the model maps onto historic data

and the subsequent time seriesκt is used to forecast mortality rates using normal time series

forecasting techniques.

Among many discussions of the Lee-Carter model, Cairnset al. (2006, 2009, and 2011) sum-

marized the main disadvantages of the model. The model has one factor, resulting in mortality

improvements at all ages being perfectly correlated (trivial correlation structure). For countries

where a cohort effect is observed in the past, the model givesa poor fit to historical data. The

uncertainty in future death rates is proportional to the average improvement ratebx which for

high ages can lead to this uncertainty being too low, since historical improvement rates have of-

ten been lower at high ages. Also, the model can result in a lack of smoothness in the estimated

age effectbx.

Despite the weaknesses of the Lee-Carter model it’s simplicity has led to it being taken as

a benchmark against which other stochastic mortality models can be assessed. There has been

a significant amount of literature developing additions to,or modifications of, the Lee-Carter

model. For example Boothet al. (2002), Brouhnset al. (2002), Lee and Miller (2001), Girosi

and King (2005), De Jong and Tickle (2006), Delwardeet al. (2007) and Renshaw and Haber-

man (2003, 2006).

Mortality data is 2 dimensional with deaths and exposures being recorded by year and by

age. We can therefore consider the data from three differentviewpoints, the age profile (or

how mortality changes from age to age), the time profile (how mortality rates for a specific

4This model was fitted to US mortality data for ages 0-110 between the years of 1933 and 1987.
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age change over time), and more recently identified, the cohort profile (how mortality for a

specific cohort of the population - those born in a particularyear - changes in relation to other

cohorts). The Lee Carter model identified the interaction between age and time through the

one bilinear factorbxκt. Many of the modifications since the Lee Carter model have sought to

capture additional age-period effects or cohort effects and they can be grouped as such.

2.1. Cohort effect additions. Renshaw and Haberman (2006) modified the Lee-Carter model

by simply adding a factorγt−x to capture effects that could be attributed to the year of birth

(t − x),

(4) ln(mx,t) = ax + b1

xκt + b2

xγt−x + ǫx,t,

whereκt is defined as before andγt−x is a random cohort effect.

The model does have a much better fit for countries such as the UK where a cohort effect

has been identified, however it suffers from a lack of robustness perhaps due to the presence of

more than one local maximum in the likelihood function. Among others, for instance Currie

(2006) noted that if the model was fitted using data from 1961-2000 then the parameters showed

qualitatively different characteristics to those obtained when fitting to data from 1981-2000.

Furthermore, as noted by Currie (2006), although the model incorporates the cohort effect, for

most of the simulated mortality rates the correlation structure is still trivial with the simulated

cohort parameters only being relevant for the higher ages atthe far end of the projection.

Following this analysis Currie (2006) applied a simplified age-period-cohort model of Clay-

ton and Schlifflers (1987) to mortality which removed the robustness problem but at the expense

of the fitting quality:

(5) ln(mx,t) = ax + κt + γt−x + ǫx,t.

2.2. Age-period effect additions. Cairnset al. (2006) observed that for England & Wales and

United States data, the fitted cohort effect appeared to havea trend in the year of birth. This

suggested that the cohort effect was compensating for the lack of a second age-period effect, as

well as trying to capture the cohort effect in the data. This led them to introduce a two factor

model of mortality,

(6) logit(qx,t) = κ1

t + κ2

t (x − x̄) + ǫx,t,
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wherex̄ is the mean age in the sample range and(κ1
t , κ

2
t ) are assumed to be a bivariate random

walk with drift. The two factors in this model were both period factors with no cohort effect

allowed for. This was rectified in Cairnset al. (2009), namely capturing the cohort effect as an

additional effect on top of the two age-period effects. All these models have multiple factors

resulting in a non-trivial correlation structure which mirrors the reality that improvements in

mortality rates are different for different age ranges. A further adaptation was also created

allowing for the cohort effect to diminish over time. The main problem with these models

arises from the fact that they were designed for higher ages and so ignored the modeling of

mortality at the lower ages (for example the accident hump).Cairnset al. (2009) argue that the

significant cost associated with mortality is at the older ages and thus their modeling focused

on those ages. When using these models for full age ranges, the fit quality is relatively poor and

the projections are biologically unreasonable.

2.3. Age-period and cohort additions combined.Plat (2009) wanted to develop a model

which maintained the good aspects of the existing models whilst leaving out the weaker features.

The result was a four factor model which took its beginnings from the Lee-Carter model and

which added factors to capture the second age-period effect, as per the Cairnset al. (2006)

model and the cohort effect, as per the Renshaw and Haberman (2006) model. The innovation

in the Plat model was to then add a further period factor affecting only the lower ages and

designed to allow the model to fit to the whole age range. The model specification is given by:

(7) ln(mx,t) = ax + κ1

t + κ2

t (x̄ − x) + κ3

t (x̄ − x)+ + γt−x + ǫx,t,

where theax is similar to that of the Lee-Carter model and makes sure thatthe overall shape of

the mortality curve by age is reasonable, theκ1
t andκ2

t model the mortality rates as in the Cairns

et al. (2006) model and theκ3
t models the effects specific to the lower ages only where(x̄−x)+

takes the value(x̄ − x) when this is positive and zero otherwise. Finally theγt−x models the

cohort effect.

The range of existing models described above meet most of thecriteria set out by Cairnset al.

(2011) and the Plat model meets all of the criteria by it’s very design. However, when the age

range is widened to allow for the non-linear characteristics of young mortality experience then
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as far as we are aware, none of the existing models meet the above criteria adequately (although

some are close). This is the starting point of this paper.

3. EMPIRICAL COMPARISON OF EXISTING MODELS

In this section we empirically compare the existing models to see their performance when the

age range is widened to allow for the non-linear mortality experience at lower ages. For ease of

notation we will use the naming convention established by Cairns et al. (2009). Table 5 in the

appendix sets out the names we will use for each of the models.

We fit the models to different countries and to different age ranges for each country. The data

sets5 used are: Male mortality data during 1950-2006 for age ranges 5-89, 20-89 and 50-89 of

Great Britain (GB), England & Wales (E&W), Scotland (SCO), United States (US), Australia

(AUS), New Zealand (NZ), and The Netherlands (NL). Althougha longer history is available

for some of the countries, we have used the period 1950 - 2006 for all the countries as this data is

more reliable and will allow a valid comparison with the results of Cairnset al.(2009 and 2011),

and with Plat (2009) who used the period 1960 - 2006. The modelfit is compared using the

Mean Average Percentage Error (MAPE) measure and the Bayesian Information Criterion(BIC)

measure.

The MAPE measures the average difference in absolute value betweenm̂x,t, the estimate of

mx,t, andmx,t itself, it is defined by:

(8) MAPE =
1

NM

∑

x,t

‖m̂x,t − mx,t‖

mx,t

.

where we have N time dimensions (in this case N=57) and M age dimensions (in this case

M=70).

The BIC measure provides a trade-off between fit quality and parsimony of the model and it

is defined as:

(9) BIC = L(φ̂) −
1

2
K ln(P ),

whereL(φ̂) is the log-likelihood of the estimated parameterφ̂, P is the number of observations

andK is the number of parameters being estimated.

5The data consists of numbers of deathsDx,t and the corresponding exposuresEx,t and is extracted from:
www.mortality.org, see HMD 2004.
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Table 1 gives a comparison of the fitting results (in terms of MAPE) to the age range 5-89.

Tables 2 and 3 show the fitting results to ages 20-89 and 50-89.We see from tables 1 and 2

that when a wide age range is used (5-89 or 20-89), the Plat model M9 is not the best fitting

model, however, if we exclude model M2, which suffers from robustness issues, the Plat model

is confirmed to be the best fitting model over the age range 20-89. When fitting to the age

ranges 5-89 and 20-89 it is important to note that the models of Cairnset al. (2006, 2009) do

not perform very well for these age ranges, since they were designed for higher ages only. For

comparison we also fit the existing models to data between 1950 and 2006 for ages 50-89 only.

Table 3 shows that the Plat model still outperforms other models.

TABLE 1. The MAPE for the model fit to ages 5-89 (%)

Model M1 M2 M3 M5 M6 M7 M9
GB 6.14 3.91 6.96 21.83 16.71 12.88 7.56

E&W 6.38 4.16 7.08 21.83 16.87 13.03 7.64
SCO 10.97 9.28 12.76 19.99 18.74 15.76 14.72
US 4.58 2.96 5.43 16.08 15.59 15.20 5.65
NL 8.99 7.01 7.91 23.57 17.82 12.95 7.22

AUS 7.45 6.44 8.80 23.86 20.46 18.52 9.61
NZ 12.32 11.86 13.66 27.42 25.46 23.84 13.74

TABLE 2. The MAPE for the model fit to ages 20-89 (%)

Model M1 M2 M3 M5 M6 M7 M9
GB 14.45 3.19 14.53 16.53 9.93 7.60 3.27

E&W 14.34 3.39 14.42 16.82 10.09 7.73 3.50
SCO 15.67 6.31 15.70 16.45 10.32 8.816.31
US 12.47 2.46 12.53 14.07 7.92 6.30 2.76
NL 12.54 4.16 12.62 16.14 11.20 8.03 4.22

AUS 5.67 4.56 5.84 17.10 10.99 8.40 5.25
NZ 9.57 8.57 9.26 19.20 15.32 12.06 9.19

TABLE 3. The MAPE for the model fit to ages 50-89 (%)

Model M1 M2 M3 M5 M6 M7 M9
GB 2.86 1.75 2.00 3.87 1.93 1.531.36

E&W 2.94 1.87 2.13 4.03 2.02 1.621.48
SCO 4.05 3.33 3.17 4.57 3.29 3.142.82
US 2.21 1.47 1.61 2.52 2.09 1.871.41
NL 4.05 2.39 2.59 4.01 2.19 2.162.07

AUS 3.18 3.22 3.78 3.62 2.94 2.652.59
NZ 5.64 5.46 5.94 6.35 5.81 5.785.37
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We also look at the fitting results based on the BIC. Tables 6, 7, and 8 in the appendix show the

BIC measures for the seven countries, based on fitting to the full age 5-89, the 20-89 age range,

and the 50-89 age range, respectively. We see from the tablesthat it is unclear which model

is the best performing using a BIC measure with the Renshaw-Haberman model, M2, showing

some good fitting performances, but with models M3, M5, M6, and M9, all performing well on

some countries data sets. A particular point to note at this stage (and to motivate the discussion

further), is that by widening the age range from 20-89 to 5-89we can see that for the Plat model

for example, the fit quality moves from3.27% on the 20-89 age range to7.56% on the 5-89 age

range.

To understand why the Plat model does not perform very well for the wider age range and

to motivate our further analysis, we look at male data from GBand US. At first, it might be

informative to split the data into the period effect and the age effect. Figures 1 and 2 plot the

time effect for GB and US males at ages 15, 35, 55 and 75 with each graph showing the natural

logarithm of mortality between the years 1950 and 2006. We see from figures 1 and 2 that the

logarithm of mortality for both GB and US shows a markedly downward trend over time for

each of the age ranges, and the mortality looks more volatileat the younger ages, in this case

the 15 and 35 year old samples. This might be attributed to thesmall numbers of deaths at those

ages and the fact that deaths at the lower ages are due to a wider range of causes influenced by

“lifestyle” choices and so are not linked to general deterioration due to ill health and old age.

Focusing on specific years and looking at the mortality effect for the whole age range, in

figures 3 and 4, we can see that a linear pattern does emerges beyond age 25 or so, however,

looking at the mortality below that age we see a very clear non-linear pattern arising. Again this

is due to “lifestyle” factors and in order to model these effects we require more flexibility in the

factors than the existing model allow.

Looking at the 4 factor model of Eq. (7), the design innovation was to include the additional

factorκ3
t (x̄ − x)+. This factor adds, in a linear way, an additional flexibilityfor ages less than

the mean of the data set. In the case of Plat this would be for ages less than 55. Figures 3 and 4

show clearly that the logarithm of mortality for ages below the mean of 55 are far from linear.

As we have seen from tables 1 - 3 whilst the Plat model performsrelatively well when fit

to the data set from age 20, its performance dips somewhat when fitted to the larger data set.

In terms of the MAPE when looking at tables 1 and 2 we find that when the wider age range
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FIGURE 1. Logarithm of mortality by year for GB males aged (a) 15, (b)35, (c)
55, and (d) 75.

is fitted the percentage error more than doubles across all countries for which we have fit the

model. This implies that the addition of a fourth linear factor is inadequate when modeling

mortality at lower ages. In the following section we proposea modification to the Plat model

which introduces some additional flexibility into the modelallowing it to be more adequately

fitted to a wider age range.

4. A MODIFICATION TO THE PLAT MODEL

In this section we incorporate the non-linear features of mortality at younger ages into an

adaptation of the Plat model proposing an alternative better fitting model. We show the quality

of the fit of the proposed model with that of the existing models by fitting to data from a range

of countries for the age ranges 5-89, 20-89 and 50-89 and for years 1950-2006.

4.1. The model. We model the central mortality ratemx,t as:

(10) ln(mx,t) = ax + κ1

t + κ2

t (x̄ − x) + κ3

t

(

(x̄ − x)+ + [(x̄ − x)+]2
)

+ γt−x + ǫx,t,
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FIGURE 2. Logarithm of mortality by year for US males aged (a) 15, (b)35, (c)
55, and (d) 75.

whereax makes sure that the basic shape of the mortality curve over ages is in line with his-

torical observations as in the Lee-Carter model (2) and theκ1
t factor represents changes in the

level of mortality for all ages. Following the reasoning in Cairnset al. (2006), the (long-term)

stochastic process for this factor should not be mean reverting. Theκ2
t factor allows changes

in mortality to vary between ages reflecting the historical observation that improvement rates

can differ for different age classes andκ3
t models the effects specific to the lower age only as in

the Plat model (7). The adjusted coefficient ofκ3
t is designed to capture some of the non-linear

effects observed at the lower ages, the “quadratic lower ageeffect”6. Finally theγt−x models

the cohort effect in the same way as the models of Currie (2006) and Cairnset al. (2009) and

Plat (2009). The proposed model (10) has 4 stochastic factors, and so has a relatively simple

structure similar to the Plat (2009), Currie (2006) and the Cairnset al. (2006) models.

6We also look at the more general caseln(mx,t) = ax+κ1
t +κ2

t (x̄−x)+κ3
t

(

(x̄−x)++a[(x̄−x)+]2
)

+γt−x+ǫx,t

where the parameter “a” was included to test a range of different quadratic coefficients. However, we found that
the fit quality did not vary much, on both BIC and MAPE for non-zero values of “a”, and we therefore focus on a
model with a parametera = 1. Results of general “a” are available on request.
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FIGURE 3. Logarithm of mortality for GB males during the years (a) 1950, (b)
1965, (c) 1980, and (d) 2005.

Historical data indicates that the dynamics of mortality rates at lower ages (up to age 40 /

50) whilst still showing a downward trend over time does showmuch more variation around

the trend. This can be attributed in part to the small number of deaths and in part to the nature

of deaths at these ages, the so called “lifestyle” mortalityfactors (smoking, drug abuse, alcohol

abuse, car accidents and violence) for example. In the Plat model the factorκ3
t was added. In

model (10) we modify the coefficient ofκ3
t to capture the non-linear dynamics observed in the

historical data.

The factorκ1
t shows a trend and is fitted with a non-stationary ARIMA process. The factors

κ2
t andκ3

t allow the model to have a non-trivial correlation structurebetween ages. Fitting a

non-stationary ARIMA-process for these factors could result (in some scenarios) in projected

scenarios where the shape of the mortality curve over ages isnot biologically reasonable. There-

fore, a stationary (mean reverting) process will be assumedfor these factors. The process for

the cohort effect factorγt−x should not have a trend since we should not expect cohort effects to

improve year on year. Therefore, a trendless mean revertingprocess will be assumed forγt−x.
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FIGURE 4. Logarithm of mortality for US males during the years (a) 1950, (b)
1965, (c) 1980, and (d) 2005.

As with all stochastic mortality models, the mortality model proposed above has an iden-

tifiability problem, meaning that different parameterizations could lead to identical values for

ln(mx,t). However, this can be resolved by setting identifiability constraints. As the model has

the same time series structure to that of the Plat (2009), following an approach of Cairnset al.

(2009, model M6), we have

(1)
∑c=cl

c=c0
γc = 0

(2)
∑c=cl

c=c0
cγc = 0

(3)
∑

t κ
3
t = 0

wherec0 andc1 are the earliest and latest year of birth to which a cohort effect is fitted, and

c = t− x. These constraints are the same as for the Plat(2009) model as is the rationale behind

the choice of the constraints.

Fitting methodology — The original method by which to fit such a stochastic model was

to use SVD as used in Lee and Carter (1992). Brouhnset al. (2002) described an alternative

fitting methodology for the Lee-Carter model in which the number of deathsDx,t is modeled
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as a Poisson distribution with parameter(Ex,tmx,t) wheremx,t is the mortality rate we are

estimating. The main advantage of the Brouhnset al. (2002) approach over the SVD approach

is that it accounts for the heteroscedasticity of the mortality data for different ages. Indeed this

method has been used more commonly, see for example Renshaw and Haberman (2003, 2006)

and Cairnset al. (2009), Plat (2009). We adopt this approach and model the number of deaths

by Dx,t ≈ Poisson(Ex,tmx,t). The parameters of model (10) are estimated by maximizing the

log-likelihood function7:

(11) L(φ; D, E) =
∑

x,t

Dx,t ln[Ex,tmx,t(φ)] − Ex,tmx,t(φ) − ln(Dx,t!).

Besides estimates forax, the fitting procedure described above leads to time series of estima-

tions ofκ1
t , κ2

t , κ3
t , andγt−x. After fitting the model we take the fitted values for the time series

and fit suitable ARIMA-processes.

4.2. Comparison of fit quality with existing models. To evaluate whether the proposed model

fits historical data well, we fit the model to the data sets described in Section 3. We also fit the

model to the three different age ranges, 5-89, 20-89 and 50-89 to show the flexibility of the

proposed model. The fitting quality for each of the countries, using a MAPE and BIC measure

are presented in table 4.

TABLE 4. MAPE and BIC results for model M10

Country MAPE BIC
5-89 20-89 50-89 5-89 20-89 50-89

GB 5.88 2.77 1.29 -28326 -21887 -13148
E&W 6.05 2.79 1.37 -27549 -21634 -13074
SCO 11.88 2.79 2.76 -18586 -15768 -10096
US 4.14 2.31 1.35 -50487 -29998 -18727
NL 6.11 2.67 1.99 -19586 -16729 -10601

AUS 8.14 2.65 2.48 -22466 -18327 -10956
NZ 13.65 2.69 5.39 -17272 -14714 -9433

When a wider age range is used the logarithm of mortality is nolonger relatively linear.

However, when comparing the results with table 1 (Excludingthe results from model M2,the

Renshaw-Haberman model, because of robustness problems) we see that this non-linearity is

captured adequately by the quadratic lower age effect in theproposed model. Across all coun-

tries considered in this paper the proposed model fits the data better than the previous best fitting

7We used an adaptation of the R-code of the software package “Lifemetrics” which is an open source toolkit for
measuring and managing longevity and mortality risk, designed by J.P. Morgan, see http://www.lifemetrics.com
and http:// www.r-project.org/.
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models. Looking at the results when compared with table 2 theperformance of the model is still

very good when compared with the leading stochastic models of mortality. Comparisons with

the results of table 3 show that the model still outperforms the existing stochastic models for

the age range 50-89. As the improved specification has been done within a 4 factor framework

this model has a similar structure to the previously best performing model on a fitting measure,

namely the Plat model. Thus the model remains relatively parsimonious and this is reflected in

the BIC measures in table 4 when compared with tables 6, 7, and8 in the appendix.

The goodness of fit of stochastic mortality models can be evaluated by analyzing residuals

of the models, Dowdet al. (2010a) applied the t-test, variance ratio test, and the Jarque-Bera

test among others to six stochastic mortality models (M1, M2, M3, M5, M6 and M7) using the

English and Welsh male mortality data. We carried out similar tests for model M10 using US

and GB data. Results8 of these tests show that the proposed M10 model performs adequately

when compared to those in the Dowdet al. (2010a).

Fitting the ARIMA processes — In the remainder of this subsection, we focus on the pop-

ulations of GB and US males and on fitting to the age range 5-89.After fitting the model to the

population data the next step is to select and fit suitable ARIMA-process to the time series’ of

κ1
t , κ2

t , κ3
t , andγt−x. The fitted parametersκ1

t , κ2
t , κ3

t , andγt−x for GB males are given in figure

5 and for US males are given in figure 7. The estimates for theαx parameters are given in figure

6 and figure 8. The figures shows that the pattern of the important parameterκ1
t is well-behaved.

The patterns of the other parameters all reveal some autoregressive behavior. Since the factor

κ1
t drives a significant part of the uncertainty in mortality rates, its relatively regular behavior

(for this particular dataset) will also show in the relatively narrow confidence intervals.

The parameters for the Plat model are plotted in the appendixas figures 11, 12, 13 and 14 for

comparison purposes. They show that the qualitative characteristics of the parametersκ1
t , κ2

t ,

κ3
t , andγt−x remain unchanged with the more general model specification.

It is commonly assumed that the time series driving the dynamics, namelyκ1
t should be fitted

with an ARIMA(0,1,0) time series. For the other parameters,which show some autoregressive

behavior, we have fit them with ARIMA(1,0,0) processes as in Plat (2009). It is also com-

monly assumed (see Renshaw and Haberman (2006), CMI (2007) and Cairnset al. (2011)) that

the process forγt−x is independent of the other processes, so the parameters of this process

8The results are available upon request.
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FIGURE 5. Estimated values of (a)κ1
t , (b) κ2

t , (c) κ3
t , and (d)γt−x based on GB

males aged 5-89 between years 1950 and 2006.
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FIGURE 6. Estimated values ofax based on GB males aged 5-89 between years
1950 and 2006.

can be fitted independently using Ordinary Least Squares. The other processes can be fitted

simultaneously using Seemingly Unrelated Regression.

4.3. Forecasting. This section shows the simulation results and results of robustness tests for

the proposed mortality model.
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FIGURE 7. Estimated values of (a)κ1
t , (b) κ2

t , (c) κ3
t , and (d)γt−x based on US

males aged 5-89 between years 1950 and 2006.
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FIGURE 8. Estimated values ofax based on US males aged 5-89 between years
1950 and 2006.

Using the fitted ARIMA processes and the fitted values forax andγt−x (see figures 5, 6, 7 and

89), future mortality rate scenarios can be constructed usingMonte Carlo simulation. Figures 9

and 10 show simulation results for ages 15, 35, 55 and 75 for GBmales and US males.

9The fitted values forax andγt−x for England & Wales, Scotland, Netherlands, Australia and New Zealand are
available in the appendix in figures 15 and 16.
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FIGURE 9. Log mortality rates from 1950-2006 followed by forecasting results
2006 - 2026 (mean and 95% confidence intervals) for ages (a) 15, (b) 35, (c) 55,
and (d) 75 for GB males.

For higher ages, the widths of the confidence intervals are broadly similar as the models of

Plat (2009) and Cairnset al. (2011) confirming the results are biologically plausible. The results

for younger ages (15 and 35) also seem plausible, where the observed historical variability is

reflected in the wider confidence intervals.

Recall that some models suffer from a lack of robustness, forinstance the Renshaw-Haberman

model is not robust for changes in range of years. The model proposed in this paper is tested

for robustness by fitting the model to data from 1975-2006. Indoing this we are looking to

observe that the qualitative characteristics of the fitted parameters have not changed because the

fitting period is different. We are not looking to show that the trend direction is unchanged, or

that the actual forecasts are unchanged. It is a characteristic of these sorts of models that the

forecasted trend will to an extent be dependent on the periodover which the model has been

fitted to the data. Given that it is likely the trend forecast will be different when fit to the period

1975-2006 compared to 1950-2006, it is inevitable, for all models, that the simulation results

will be somewhat different.
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FIGURE 10. Log mortality rates from 1950-2006 followed by forecasting results
2006 - 2026 (mean and 95% confidence intervals) for ages (a) 15, (b) 35, (c) 55,
and (d) 75 for US males.

Figures 17 and 18 in the Appendix plot the fitted parameters for GB and US data from 1975-

2006. The illustrations show that the estimated parametersdo not show significantly different

qualitative characteristics when fitted to a different dataset. The conclusion is that the proposed

model is robust for the fitting periods given above.

Furthermore, backtesting (as in Dowdet al. 2010) of the model has been carried out, meaning

that the model is fitted to historical data, 1950-1999 in thiscase, and the forecast results are

compared with the actual observations for the period 2000-2006. The results are illustrated in

figure 19 in the Appendix where we can see that the proposed model performs adequately.

We have shown so far that the proposed model produces plausible results and they seem

robust. Plat (2009) came to the same conclusion for model M9 and Cairnset al. (2011) came to

the same conclusion for the models of Currie (2006) and Cairns et al. (2006, 2009), M7. The

models of Cairnset al. (2006, 2009) are designed for higher ages, so will not produce plausible

results for lower ages. Compared to those models the proposed model has the advantage that it

does produce plausible results for a full age range.
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Compared to the model of Currie (2006) the proposed model hasthe advantage that it has

a non-trivial correlation structure. This is important because often insurers and pension funds

have different type of exposures for younger or middle ages (term insurance, pre-retirement

spouse option) than for higher ages (pensions, annuities).Aggregating these different types of

exposures can only be done sufficiently if the model has a non-trivial correlation structure. As-

suming an almost perfect correlation between ages, as in theCurrie (2006) model, will possibly

lead to an overstatement of the diversification benefits thatarise when aggregating these expo-

sures. Compared to the model of Plat (2009) the proposed model produces plausible forecasts

for the lower age range (below age 20) for which the Plat modelwas not designed.

5. CONCLUSIONS

In this paper we identify and address a limitation of the Plat(2009) model and previous

stochastic mortality models. This limitation is in the inability of existing models to adequately

fit mortality rates at the lower ages due to the non-linear dynamics at the lower ages, the so

called “lifestyle” mortality profile. We believe that it is important to be able to factor in such

mortality rates into a single mortality model because of thecumulative nature of mortality and

from a demographic viewpoint it is clearly important to be able to model and forecast mortality

rates at all ages. The proposed model has the additional flexibility to fit to the mortality rates

of a wider age range, 5-89. In particular, the model capturesthe non-linear profile of mortality

at lower ages. We show that the model has a better fit for the range of countries considered in

this study. We have also shown that the model does not lose anyof the benefits of the previous

stochastic models.

The results of this analysis have exposed the weakness of previous models when trying to

fit to non-linear features of the data and shows that a more non-linear flexibility is needed to

capture the mortality profile, particularly at lower ages. To develop this area further we now

need to address the “lifestyle” factors affecting mortality rates in this age range. These may

be affected by policy, social, environmental and economic pressures suggesting that a future

approach may be to model the underlying causes rather than bytrend forecasting.
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Appendix: Additional Tables and Figures

TABLE 5. The names of stochastic mortality models

Name Model and Name
M1 Lee and Carter (1992)

ln(mx,t) = ax + bxκt + ǫx,t

M2 Renshaw and Haberman (2006)
ln(mx,t) = ax + b1

xκt + b2
xγt−x + ǫx,t

M3 Currie (2006)
ln(mx,t) = ax + κt + γt−x + ǫx,t

M5 Cairnset al. (2006)
logit(qx,t) = κ1

t + κ2
t (x − x̄) + ǫx,t

M6 Cairnset al. (2009) with cohort effect
logit(qx,t) = κ1

t + κ2
t (x − x̄) + γt−x + ǫx,t

M7 Cairnset al. (2009) with cohort and quadratic age effect
logit(qx,t) = κ1

t + κ2
t (x − x̄) + κ3

t ((x − x̄)2 − σ2
x) + γt−x + ǫx,t

M9 Plat (2009)
ln(mx,t) = ax + κ1

t + κ2
t (x̄ − x) + κ3

t (x̄ − x)+ + γt−x + ǫx,t

M10 Quadratic effect model
ln(mx,t) = ax + κ1

t + κ2
t (x̄ − x) + κ3

t

(

(x̄ − x)+ + [(x̄ − x)+]2
)

+ γt−x + ǫx,t

Note: The model M4 and M8 are not included in our analysis. TheM4 is a P-splines model
developed in Currie (2006), it is of a structurally different nature to the remaining stochastic
models. The M8 in Cairnset al. (2009) with diminishing cohort effect is a modification of
the M5, it was primarily designed for ages over and above 50. The M10 is the model that we
propose in this paper.



22 O’HARE AND LI

TABLE 6. The BIC for the model fit to ages 5-89

Model M1 M2 M3 M5 M6 M7 M9
GB -38228 -28854 -34181 -150856 -96992 -57365 -33640

E&W -36686 -28315 -32984 -136658 -88876 -53211 -32295
SCO -20960 -20633 -20787 -29413 -25752 -22671 -20998
US -72612 -43997 -69820 -552628 -271679 -258323 -66989
NL -24914 -22122 -22516 -55568 -37711 -26912 -22178

AUS -24340 -23217 -25594 -82648 -44443 -29848 -25692
NZ -17842 -18288 -18154 -31360 -23208 -22149 -18284

TABLE 7. The BIC for the model fit to ages 20-89

Model M1 M2 M3 M5 M6 M7 M9
GB -33926 -24684 -27031 -91937 -58540 -39770 -24921

E&W -32516 -24236 -26558 -83889 -54516 -37511 -24551
SCO -18326 -17904 -17575 -22881 -19994 -18897 -17689
US -64565 -37863 -56350 -368252 -143067 -97548 -43425
NL -20928 -19012 -18980 -32420 -26601 -21424-18778

AUS -20833 -19909 -21449 -57681 -30301 -23740 -20697
NZ -15282 -15714 -15484 -22794 -18177 -16394 -15818

TABLE 8. The BIC for the model fit to ages 50-89

Model M1 M2 M3 M5 M6 M7 M9
GB -20246 -15074 -16493 -26013 -15756 -14874-14834

E&W -19591 -14891 -16301 -25094 -15524 -14817-14759
SCO -11394 -11247 -11050 -11675 -11111 -11146 -11259
US -29981 -20581 -22653 -35419 -27749 -22562 -21598
NL -13344 -11902 -11910 -13009-11684 -11786 -11909

AUS -12337 -12187 -12864 -12798 -12324 -12306 -12278
NZ -9534 -9873 -9801 -9698 -9847 -9993 -9984
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FIGURE 11. Estimated values of (a)κ1
t , (b)κ2

t , (c)κ3
t , and (d)γt−x based on GB

males aged 5-89 between years 1950 and 2006 for the Plat model.
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FIGURE 12. Estimated values ofax based on GB males aged 5-89 between
years 1950 and 2006 for the Plat model.
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FIGURE 13. Estimated values of (a)κ1
t , (b)κ2

t , (c)κ3
t , and (d)γt−x based on US

males aged 5-89 between years 1950 and 2006 for the Plat model.
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FIGURE 14. Estimated values ofax based on US males aged 5-89 between years
1950 and 2006 for the Plat model.
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FIGURE 15. Estimated values ofax based on ages 5-89 for countries (a) Aus-
tralia, (b) England and Wales, (c) Scotland, (d) New Zealandand (e) Nether-
lands.
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FIGURE 16. Estimated values ofγt−x based on year of birth 1865-1955 for
countries (a) England and Wales, (b) Scotland, (c) Netherlands, (d) Australia
and (e) New Zealand.
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FIGURE 17. GB fitted parameters (a)κ1
t , (b) κ2

t , (c) κ3
t , and (d)γt−x with data

from 1975-2006.
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FIGURE 18. US fitted parameters (a)κ1
t , (b) κ2

t , (c) κ3
t , and (d)γt−x with data

from 1975-2006.
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FIGURE 19. Log mortality rates from 1950 - 2006 plotted with 95% confidence
intervals from 2000-2006 based on fitting from 1950-2000. Plots show ages (a)
and (b) 15, (c) and (d) 35, (e) and (f) 55, and (g) and (h) 75 for countries GB and
US respectively.
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